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Model Description

Consider a (possibly) infinite random tree where each node has out
degree which is an independent copy of N with E[N] > 1 and

wk = P[N = k], k = 0, 1, . . . .

At time t = 0, each node has a load that is an independent copy of
0 < L < c with d.f. F.
The capacity of each node is a fixed constant c > 0.
At time t = 0, the load at the root r increases to ` > c. This causes r to
fail.
If the out-degree N(r) = 0, then process terminates. Else given
N(r) = k, let u1, . . . , uk be the nodes connected to r. Let
{prui , i = 1, . . . , k} be a random exchangeable pmf.
The load at time t = 1 at ui is given by

L(1)
ui

= prui`+ L(0)
ui
.
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Going Forward

If L(1)
ui < c for all i = 1, . . . , k, then cascade terminates at time t = 1.

Node ui fails at time 1 if the resultant load L(1)
ui ≥ c.

The process now proceeds as above from each of the failed node with
input L(1)

· .

Once a node fails it takes no further part in the process.

The process terminates at time T + 1 if some node at a distance T from
the root has failed and none of the nodes at distance T + 1 fail at time
T + 1.

We will refer to this process as the Autoregressive Cascade or ARC
model.
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Cascades on Random Graphs

Cascades in random networks was introduced by D.J. Watts (2002), to
study the spread of ideas, opinion, technology etc.

Agents are the nodes of a network

Interactions between agents - links in the network.

Agent initially in state 0 will adopt a new idea (state 1) as soon as a
fraction of its neighbors who have adopted the new idea exceeds a
threshold.

Showed the existence of a phase transition (as a function of the threshold)

A large number of generalizations of this model have been studied.
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Cascades on Random Graphs

Gleeson, Hurd, Melnik and Hackett (2013): Systemic risks in financial
networks.

Links have weights that may depend on the degree of the nodes that the
link connects. Node changes state if the sum of the weights of links that
have adopted the idea exceeds a threshold.

Kempe, Kleinberg and Tardos (2003) and Venkatraman and Kumar
(2011): Random thresholds.

Models for epidemic (Newman (2010), Lelarge (2012)): Nodes fail or
are infected based on some probabilistic or deterministic mechanism that
depends only on the number of failed/infected neighbors but not the
severity of the infection.

ARC model, failure is governed by a mechanism of load transfer whose
effect can persist over several generations.
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Cascades on Random Graphs

The ARC model is suited to study the behavior of outages in electrical
power networks.

A single node failure can lead to catastrophically wide-spread outages
(Santhi (2010); simulation studies with exponential load distributions).

Dobson, Carreras, Newman (2004): Each failing node results in the
failure of k nodes.

Dobson, Carreras, Newman (2005): Failure at a node results in a uniform
increase in the loads at all the active nodes.

Sand pile models.
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Super-Critical Regime

p(k)
d
= prui(k), F̄ = 1− F.

The ARC process survives indefinitely with positive probability if c
satisfies the following condition:

∞∑
k=1

wk kE [F̄(c(1− p(k)))] > 1.

Idea of proof: Couple with a Galton-Watson branching process.
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The Coupled GW process

Gen 0: Start with an individual labelled r.

Given N(r) = k > 0, let {ui, i = 1, 2, . . . , k} be neighbors of r and let
{prui , i = 1, 2, . . . , k} be the random allocation in the tree.

A child labelled ui is born to r in the GW process if

pruic + L(0)
ui
≥ c.

Note that node ui fails in the ARC process if

L(1)
ui

= pruiL
(0)
r + L(0)

ui
≥ c.

Since L(0)
r = ` > c node ui fails in the ARC process if it is born in the

GW process.

The same procedure holds for generating offspring in subsequent
generations.
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Supercriticality of the Coupled GW process

Probability a child is born to a parent with out-degree k in the graph is

E [F̄(c(1− p(k)))] .

So expected offspring size will be

∞∑
k=1

wk kE [F̄(c(1− p(k)))]

The ARC process survives if the GW does, which happens if the
expected number of offspring exceeds one.
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Sub-Critical Regime

h := inf
θ≥0

E
[
Neθ(L−(1−p)c)

]
If h < 1 then the cascade will terminate in finite time with probability
one.

Idea: dominate the ARC process with a branching random walk
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Branching Random Walks (BRW)

A BRW is a process that starts with a single individual labelled r located
at x ∈ R.

An individual labelled u born at location at y ∈ R lives for unit time ...

at the end of which gives birth to offspring located according to the point
process y + Zu, where Zu is an independent copy of a point process Z.

m(θ) = E
[∫ ∞
−∞

e−θtdZ(t)
]

η = inf{m(θ) : θ ≥ 0}.

Theorem [Biggins, 1977] Let Z(n) be the number of individuals of the
BRW in generation n located in the interval (−∞, 0]. Then if η < 1,
then, almost surely, Z(n) = 0 for all but finitely many n.
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The Drift in the Load

If node u fails then its load increases to L(1)
u ≥ c.

The load at its child node v increases to

L(1)
v = puvL(1)

u + L(0)
v

The difference in the loads at nodes v and u, or the “drift” of the load
increase satisfies

L(1)
v − L(1)

u = −(1− puv)L(1)
u + L(0)

v ≤ −(1− puv)c + L(0)
v
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Constructing the Coupled BRW

The process X starts with a particle labelled r located at ` > c.

Suppose node u fails at time t in the ARC process.

If the number of non-failed neighbors of u , N(u) = 0, then no child is
born in the BRW process.

Else given N(u) = k, then for each neighbor vi of u, an individual with
the same label is born in the BRW process at time t + 1 if it is located in
(c,∞).

The new load at node vi in the ARC process is

L(1)
vi

= puvi(k)L(1)
u + L(0)

vi
.

The location of vi in the BRW process will

x(t+1)
vi

= x(t)u − (1− puvi(k))c + L(0)
vi
≥ L(1)

vi
,

If X terminates then so does the ARC.
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Two more tricks

Consider another BRW Y coupled to X as follows. The process Y starts
off with a single individual located at −`
if a child is born to a parent located at x in the BRW X such that the
location of the child is x + d, then a child is born to a corresponding
parent located at y in the process Y and the child is located at y− d.

Individuals in Y produce offspring whose numbers are distributed as N
with displacements distributed as −(L− (1− p)c). If X drifts to the left,
then Y drifts to the right.

No barrier in the Y process.

Shift the origin to −c.

The BRW X terminates if for some n, Xn([2c,∞)) = 0 and this happens
if Yn((−∞, 0] = 0.
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Extensions

Can extend to graphs that are “locally tree-like” such as the Newman,
Strogatz and Watts (2001) random graphs with a given degree
distribution.

Size-biased distribution

w̃k−1 =
kwk

µ
, k ≥ 1,

µ =
∞∑

k=1

kwk.

Random capacities and allocation depending on load at neighboring
nodes?
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