# A Pollaczek-Khinchine formula <br> for multidimensional ruin problem 

S.Ramasubramanian<br>Indian Statistical Institute, Bangalore

## Conference on Stochastic Systems IISc, Bangalore

Sep. 09, 2014

## Cramer-Lundberg network without treaty

For $i=1, \cdots, d$, surplus of Company $i$, in the absence of risk diversifying treaty:

$$
\begin{equation*}
H^{(i)}(t)=a_{i}+c_{i} t-\sum_{\ell=1}^{N^{(i)}(t)} J_{\ell}^{(i)}, \quad t \geq 0 \tag{1}
\end{equation*}
$$

$a_{i} \geq 0$ : initial capital, $c_{i}>0$ : constant premium rate, $N^{(i)}(\cdot)$ : Poisson process $\left(\lambda_{i}\right), J_{\ell}^{(i)}, \ell \geq 1$ : i.i.d. claim sizes, $\left\{N^{(i)}(t)\right\},\left\{J_{\ell}^{(j)}\right\}, 1 \leq i, j \leq d$ are independent families $H^{(1)}(\cdot), \ldots, H^{(d)}(\cdot)$ are $d$ independent Cramer-Lundberg risk processes

## C-L network: contd.

$J^{(1)}, \cdots, J^{(d)}$ independent generic r.v.'s s.t. $J^{(k)}={ }^{d} J_{1}^{(k)}, \forall k$; $N(t)=\sum_{i=1}^{d} N^{(i)}(t), t \geq 0$ : Poisson process $(\lambda), \lambda=\sum_{i=1}^{d} \lambda_{i}$; $d$-dimensional r.v. $J=\left(0, \cdots, 0, J^{(i)}, 0, \cdots, 0\right)$ with prob. $\frac{1}{\lambda} \lambda_{i}$.

Vector claim sizes $X_{\ell}, \ell \geq 1$ i.i.d. $\mathbb{R}^{d}$-valued r.v.s $={ }^{d} \mathrm{~J}$
$a=\left(a_{1}, \cdots, a_{d}\right) c=\left(c_{1}, \cdots, c_{d}\right)$

$$
\begin{align*}
H^{(a)}(t) & \triangleq a+t c-\sum_{\ell=1}^{N(t)} X_{\ell} \\
& ={ }^{d} \quad\left(H^{(1)}(t), \cdots, H^{(d)}(t)\right), t \geq 0 \tag{2}
\end{align*}
$$

as processes

## C-L network: contd.

- $J$ takes value in $\partial G=$ boundary of $d$-dimensional positive orthant G
- Though $J^{(i)}, 1 \leq i \leq d$ are independent, marginals
$(J)_{i}, 1 \leq i \leq d$ of $J$ are not independent
- Even if $J^{(i)}, 1 \leq i \leq d$ are absolutely continuous, $J$ is not
- Marginals $(J)_{i}$ have atom at 0


## Assumptions on reflection matrix $R$

- (H1) $R=\left(\left(R_{i j}\right)\right)=I-P^{t}$ constant $d \times d$ matrix s.t.
$P_{i j}=0, P_{i j} \geq 0, i \neq j, \forall 1 \leq i, j \leq d$; and spectral radius of $P$ is strictly less than 1 . So

$$
\begin{equation*}
R^{-1}=I+P^{t}+\left(P^{t}\right)^{2}+\left(P^{t}\right)^{3}+\cdots \tag{3}
\end{equation*}
$$

is a matrix with nonnegative entries, with diagonal entries $\geq 1$.

- (H2) $\exists k \in\{1,2, \cdots, d\}$ s.t. $\left(R^{-1}\right)_{i k}>0, \forall 1 \leq i \leq d$; so at least one column vector of $R^{-1}$ has strictly positive entries.

For insurance models, besides (H1), natural to assume also that
$\sum_{j \neq i} P_{i j} \leq 1, \forall i$, that is $P$ is a substochastic matrix
$(\mathrm{H} 2)$ is satisfied if $P$ is irreducible

## Stochastic assumptions

- (H3) $A_{i}, i=1,2, \ldots$ one dimensional i.i.d. random variables such that $A_{i}>0$; (scalar interarrival times)
- (H4) $X_{\ell}, \ell=1,2, \ldots$ i.i.d. $\mathbb{R}_{+}^{d}$-valued random variables; (vector claim sizes)
- (H5) $\left\{A_{i}: i \geq 1\right\},\left\{X_{\ell}: \ell \geq 1\right\}$ are independent families of random variables.
- (H6) For each $\ell=1,2, \cdots$ and $i=1,2, \cdots, d$, $\mathbb{P}\left(\left(X_{\ell}\right)_{i}>x\right)>0, \quad \forall x \geq 0$; i.e., marginal claim sizes have unbounded support.
- (H7) $c=\left((c)_{1}, \cdots,(c)_{d}\right) \gg 0$ with $(c)_{i}$ denoting constant premium rates. $A_{1},\left(X_{1}\right)_{i}, 1 \leq i \leq d$ have finite expectations, and $\mathbb{E}\left[(c)_{i} A_{1}-\left(X_{1}\right)_{i}\right]>0, \quad 1 \leq i \leq d$; this is coordinatewise net profit condition.


## Skorokhod Problem (SP) in an orthant

To describe joint dynamics of the $d$ companies under risk diversifying treaty:
$G=\left\{x \in \mathbb{R}^{d}: x_{i}>0,1 \leq i \leq d\right\}$ denotes the $d$-dimensional positive orthant, and $\bar{G}$ its closure

We seek processes $\left\{Y^{(a)}(t)=\left(Y_{1}^{(a)}(t), \ldots, Y_{d}^{(a)}(t)\right): t \geq\right.$ $0\},\left\{Z^{(a)}(t)=\left(Z_{1}^{(a)}(t), \ldots, Z_{d}^{(a)}(t)\right): t \geq 0\right\}$ satisfying the following
(S0) $Y^{(a)}(0)=0, Z^{(a)}(0)=a=\left(a_{1}, \cdots, a_{d}\right)$.
(S1) [Constraint] $Z_{i}^{(a)}(t) \geq 0, \quad t \geq 0,1 \leq i \leq d$; so $Z^{(a)}(\cdot)$ is a $\bar{G}$-valued process

## SP:contd.

(S2) For $1 \leq i \leq d$ the Skorokhod equation holds, that is,

$$
Z_{i}^{(a)}(t)=a_{i}+c_{i} t-\sum_{\ell=1}^{N(t)}\left(X_{\ell}\right)_{i}+Y_{i}^{(a)}(t)+\sum_{j \neq i} R_{i j} Y_{j}^{(a)}(t) ;(4)
$$

or equivalently in vector notation

$$
\begin{equation*}
Z^{(a)}(t)=H^{(a)}(t)+R \cdot(Y(t)-Y(0), \quad t \geq 0 \tag{5}
\end{equation*}
$$

(S3) [Minimality] For $1 \leq i \leq d, \quad Y_{i}^{(a)}(\cdot)$ is a nondecreasing process and $Y_{i}^{(a)}(\cdot)$ can increase only when $Z_{i}^{(a)}(\cdot)=0$; that is,

$$
\begin{equation*}
Y_{i}^{(a)}(t)-Y_{i}^{(a)}(s)=\int_{(s, t]} \mathbf{1}_{\{0\}}\left(Z_{i}^{(a)}(r)\right) d Y_{i}^{(a)}(r), \quad t \geq s \geq 0 \tag{6}
\end{equation*}
$$

## An interpretation

Let Company $i$ need at some instant of time an amount $d y_{i}$ to avert ruin. For $j \neq i$, Company $j$ is required to give a preassigned fraction $\left|R_{j i}\right| d y_{i}=P_{i j} d y_{i}$.

If $\sum_{j \neq i}\left|R_{j i}\right|<1$, shortfall $\left(1-\sum_{j \neq i}\left|R_{j i}\right|\right) d y_{i}$ to be procured by shareholders of Company $i$ as "capital injection"; ('open' system) Objective of treaty: To keep surplus of each company $\geq 0$ in an optimal fashion.
The set up leads naturally to a d-person dynamic game with state space constraints and Skorokhod problem provides the optimal solution

## C-L network with treaty

(H1) ensures that SP in the orthant can be solved uniquely 'path-by-path'
Under optimality, a company can borrow, invoking the treaty, only when its reserve is zero/ it is in the red, and the amount borrowed should be just enough to keep it afloat $Y_{i}^{(a)}(t)=$ optimal cumulative amount obtained by Co.i as capital injection by its shareholders, and from other companies during $[0, t]$ specifically for the purpose of averting ruin $Z_{i}^{(a)}(t)=$ optimal current surplus of Co.i at time $t$ In (SO)-(S3) note that the only interaction among $d$ companies is through risk reducing treaty

## A random walk in $\mathbb{R}^{d}$

Interarrival times for $\{N(t)\}: A_{\ell}, \ell \geq 1 \operatorname{Exp}(\lambda)$ i.i.d. r.v.'s.
$T_{0}=0, T_{k}=\sum_{\ell=1}^{k} A_{\ell}, k \geq 1$ claim arrival times for network
On $\left[T_{k}, T_{k+1}\right.$ ) each component of $H^{(a)}(\cdot)$, and hence of $Z^{(a)}(\cdot)$,
strictly increasing; so need for capital injection only at $T_{k}, k \geq 1$; also ruin can occur only at an arrival time.

$$
\begin{align*}
H^{(a)}\left(T_{n}\right) & =a+\sum_{\ell=1}^{n} A_{\ell} c-\sum_{\ell=1}^{n} X_{\ell} \\
& =a+\sum_{\ell=1}^{n} U_{\ell}, n=1,2, \cdots \tag{7}
\end{align*}
$$

a random walk in $\mathbb{R}^{d}$ starting at $a$, as $\left\{U_{\ell}\right\}$ are i.i.d. $\mathbb{R}^{d}$-valued r.v.'s.

## $S P\left(\left\{a+\sum_{\ell} U_{\ell}\right\}, R\right)$

$\left\{Y_{n}^{(a)}\right\},\left\{Z_{n}^{(a)}\right\}$ satisfy $Y_{0}^{(a)}=0, Z_{n}^{(a)}=a$,

$$
\begin{equation*}
\left(Z_{n}^{(a)}\right)_{i}=(a)_{i}+\sum_{\ell=1}^{n}\left(U_{\ell}\right)_{i}+\left(Y_{n}^{(a)}\right)_{i}+\sum_{j \neq i} R_{i j}\left(Y_{n}^{(a)}\right)_{j} \tag{8}
\end{equation*}
$$

for $n \geq 1,1 \leq i \leq d$; equivalently

$$
\begin{equation*}
Z_{n}^{(a)}=Z_{n-1}^{(a)}+U_{n}+R\left(\Delta Y_{n}^{(a)}\right), n \geq 1 \tag{9}
\end{equation*}
$$

where $\Delta Y_{n}^{(a)}=Y_{n}^{(a)}-Y_{n-1}^{(a)}$; also $Z_{n}^{(a)} \in \bar{G}, n \geq 0$ (Constraint),
$Y_{n}^{(a)} \geq Y_{n-1}^{(a)}, n \geq 1$, as vectors, and (Minimality)

$$
\begin{equation*}
\left\langle Z_{n}^{(a)}, \Delta Y_{n}^{(a)}\right\rangle=0, n \geq 1 \tag{10}
\end{equation*}
$$

$\left\{Y_{n}^{(a)}\right\}$ 'pushing part', $\left\{Z_{n}^{(a)}\right\}$ 'regulated/ reflected part' of solution

## $\angle C P(\eta, R)$

$\xi, \zeta \in \mathbb{R}^{d}$ solution pair to Linear complementarity problem $L C P(\eta, R)$ if

$$
\zeta=\eta+R \xi, \quad \xi \geq 0, \zeta \geq 0,\langle\xi, \zeta\rangle=0
$$

$\xi$ 'pushing part', $\zeta$ 'regulated part' of solution
(H1) implies $L C P(\eta, R)$ as well as $S P\left(\left\{a+\sum_{\ell} U_{\ell}\right\}, R\right)$ are well-posed
$\left\{Y_{n}^{(a)}, n \geq 0\right\},\left\{Z_{n}^{(a)}, n \geq 0\right\}$ solution pair to $S P\left(\left\{a+\sum_{\ell} U_{\ell}\right\}, R\right)$ if and only if for each $n=1,2, \cdots \Delta Y_{n}^{(a)}, Z_{n}^{(a)}$ is solution pair to $\operatorname{LCP}\left(Z_{n-1}^{(a)}+U_{n}, R\right)$
As before these can be solved 'path-by-path'

## Regulated/reflected random walk

$a+\sum_{\ell=1}^{n} U_{\ell}, n \geq 0$ random walk in $\mathbb{R}^{d}$ starting at a.
Hence $Z_{n}^{(a)}, n \geq 0$, (or the pair $Y_{n}^{(a)}, Z_{n}^{(a)}, n \geq 0$ ) considered corresponding regulated/ reflected random walk in the orthant $\bar{G}$.
(7) implies $\Delta Y_{n}^{(a)}=Y^{(a)}\left(T_{n}\right)-Y^{(a)}\left(T_{n-1}\right)$,
$Z_{n}^{(a)}=Z^{(a)}\left(T_{n}\right), n \geq 1$. Also $Y^{(a)}(t)-Y^{(a)}(t-) \gg 0$ for some $t>0$ if and only if $\Delta Y_{n}^{(a)} \gg 0$ for some $n \geq 1$.
$\left(U_{k}\right)_{i}=$ (premium income for Co.i during $\left.(k-1, k]\right)$ minus (claim amt. for Co. $i$ due to $k$-th claim to network),
$\left(Z_{k}^{(a)}\right)_{i}=$ current surplus for Co. $i$ at time $k$, under optimality, $\left(\Delta Y_{k}^{(a)}\right)_{i}=$ marginal deficit of Co.i at time $k$, under optimality.

Sufficient to study 'ruin' in the context of regulated random walk

## Ruin of network

'Ruin' of insurance network $=\Delta Y_{n}^{(a)} \gg 0$ for some $n \geq 1$.
(For vectors $\xi \gg \zeta$ denotes $(\xi)_{i}>(\zeta)_{i}, 1 \leq i \leq d$ )
Ruin means every company has strictly positive deficit at the same time $n$, for some $n \geq 1$.

Ruin probability: Prob.(ruin in finite time, starting with initial capital a) $=\mathbb{P}\left(\Delta Y_{n}^{(a)} \gg 0\right.$ for some $\left.n \geq 1\right)$

To understand ruin probability, we look at the deterministic (i.e., sample path) set up first. Considering $\omega \in \Omega$ as fixed, $u_{\ell}, y_{k}^{(a)}, z_{k}^{(a)}, \cdots$ may be regarded as particular realization of $U_{\ell}(\omega), Y_{k}^{(a)}(\omega), Z_{k}^{(a)}(\omega), \cdots$

## Deterministic set up

$\left\{y_{n}^{(a)}, z_{n}^{(a)}\right\}$ solution pair to $\operatorname{SP}\left(\left\{a+\sum_{\ell} u_{\ell}\right\}, R\right)$ : So $z_{0}^{(a)}=a, y_{0}^{(a)}=0 ; z_{n}^{(a)} \in \bar{G}, n \geq 1$ (constraint); Skorokhod equation holds, that is,

$$
\begin{equation*}
z_{n}^{(a)}=z_{n-1}^{(a)}+u_{n}+R \Delta y_{n}^{(a)}, n \geq 1 \tag{11}
\end{equation*}
$$

where $\Delta y_{n}^{(a)}=y_{n}^{(a)}-y_{n-1}^{(a)} \geq 0, n \geq 1$ componentwise; and $\left\langle z_{n}^{(a)}, \Delta y_{n}^{(a)}\right\rangle=0, n \geq 1$ minimality.
'Ruin' means $\Delta y_{n}^{(a)} \gg 0$ for some $n \geq 1$.

## Ruin in deterministic set up

Using minimality and (11) repeatedly

## Lemma

Fix $n \geq 1$. Then $\Delta y_{n}^{(a)} \gg 0 \Leftrightarrow-R^{-1} u_{n} \gg R^{-1} z_{n-1}^{(a)} \Leftrightarrow \cdots \Leftrightarrow$
$-\sum_{\ell=1}^{n} u_{\ell} \gg R^{-1} a+y_{n-1}^{(a)}$.

## Corollary

Fix $n \geq 1$; suppose $\Delta y_{n}^{(a)} \gg 0$. Then $-R^{-1} u_{n} \gg 0$,
$-\sum_{\ell=k}^{n} R^{-1} u_{\ell} \gg 0, \quad k=n, n-1, \cdots, 2,1$, and
$-\sum_{\ell=1}^{n} R^{-1} u_{\ell} \gg R^{-1} a$.

## An elementary observation

$$
z=u+R(\Delta y), \quad z \geq 0, \Delta y \geq 0,\langle z, \Delta y\rangle=0
$$

is equivalent to

$$
\Delta y=-R^{-1} u+R^{-1} z, \Delta y \geq 0, z \geq 0,\langle\Delta y, z\rangle=0
$$

that is, $\Delta y, z$ is the solution pair to $\operatorname{LCP}(u, R)$ if and only if $z, \Delta y$ is the solution pair to $\operatorname{LCP}\left(-R^{-1} u, R^{-1}\right)$

This leads to a sequence of LCP's, resulting in a SP with reflection matrix $R^{-1}$, related to the preceding SP with a time reversal over a finite time horizon

## Deterministic (dual) storage network

Fix $n \geq 1$. $\left\{u_{\ell} \in \mathbb{R}^{d}, 1 \leq \ell \leq n\right\}$ as before
Set $\hat{u}_{1}=-R^{-1} u_{n}, \hat{u}_{2}=-R^{-1} u_{n-1}, \cdots, \hat{u}_{n}=R^{-1} u_{1}$
Put $w_{0}=0, v_{0}=0$ Define $\Delta v_{k}, w_{k}, 1 \leq k \leq n$ by

$$
\begin{gathered}
w_{1}=\hat{u}_{1}+R^{-1} \Delta v_{1}, w_{1} \geq 0, \Delta v_{1} \geq 0,\left\langle w_{1}, \Delta v_{1}\right\rangle=0, \\
w_{k}=w_{k-1}+\hat{u}_{k}+R^{-1} \Delta v_{k}, \quad w_{k} \geq 0, \Delta v_{k} \geq 0,\left\langle w_{k}, \Delta v_{k}\right\rangle=0
\end{gathered}
$$

## An interpretation of storage network

$d \geq 1$ storage depots of infinite capacity, 0 initial stock; demands may be continuous, but fresh stocks and reinforcements arrive only at the end of periods $k=1,2 \cdots$
$\left(\hat{u}_{k}\right)_{i}=($ fresh supply at Depot $i$ at the end of period $k)$ minus (demand at Depot $i$ during ( $k-1, k]$ )
$\left(w_{k}\right)_{i}=$ current stock at Depot $i$ at the end of period $k$, after taking into account all reinforcement to Depot $i$ till the end of period $k$; so $\left(w_{k}\right)_{i} \geq 0, \forall i, k$
$\left(R^{-1}\right)_{i i}\left(\Delta v_{k}\right)_{i}=$ amount of reinforcement sent to Depot $i$ at the end of $k$, due to unfulfilled demand after taking into account existing stock, fresh supply and inflow to Depot $i$ due to shortfall at other depots at the end of period $k$ $\left(R^{-1}\right)_{i j}\left(\Delta v_{k}\right)_{j}=$ reinforcement sent to Depot $i$ due to shortfall at Depot $j, j \neq i$ at the end of period $k$

## Ruin and storage sequence

$\sigma_{b d}=\inf \left\{k \geq 1: w_{k} \in \partial G\right\}=$ hitting time of boundary
$\vartheta_{R^{-1} a}=\inf \left\{k \geq 1: w_{k} \gg R^{-1} a\right\}=$ entrance time into open upper orthant with vertex $R^{-1}$ a

## Theorem

Assume (H1). Fix $n \geq 1$. Then $\Delta y_{n}^{(a)} \gg 0$ if and only if
$\vartheta_{R^{-1} a} \leq n<\sigma_{b d}$. Moreover, taking $a=0$,
$\left[y_{n}^{(0)}:\left\{\Delta y_{n}^{(0)} \gg 0\right\}\right]=\left[w_{n}:\left\{\sigma_{b d}>n\right\}\right]=-\sum_{\ell=1}^{n} R^{-1} u_{\ell}$
$\Rightarrow$ : Earlier corollary rephrased
$\Leftarrow$ : If $\sigma_{b d}>n$, then during time span $\{1,2, \cdots, n\}$,
$\left\{w_{k}: 1 \leq k \leq n\right\}$ has no need for reinforcement at any of the $d$ depots

## Stochastic set up

$U_{\ell}=A_{\ell} c-X_{\ell}, \ell \geq 1$ i.i.d. $\mathbb{R}^{d}$-valued r.v.'s
$\hat{U}_{\ell}=R^{-1} U_{\ell}, \ell \geq 1$ also i.i.d. $\mathbb{R}^{d}$-valued r.v.'s Put
$W_{0}=0, V_{0}=0$ Define $W_{n}, V_{n}=V_{0}+\sum_{k=1}^{n} \Delta V_{k}, n \geq 1$ by

$$
W_{1}=\hat{U}_{1}+R^{-1} \Delta V_{1}, W_{1} \geq 0, \Delta V_{1} \geq 0,\left\langle W_{1}, \Delta V_{1}\right\rangle=0
$$

$$
W_{k}=W_{k-1}+\hat{U}_{k}+R^{-1} \Delta V_{k}, W_{k} \geq 0, \Delta V_{k} \geq 0,\left\langle W_{k}, \Delta V_{k}\right\rangle=0
$$

Above process is another regulated random walk in the orthant (storage network)
Results from deterministic set up applied to make statements of equality in distribution
(H2),(H6) imply events making ruin (of network) possible are non-null

## Ruin probability

$\varrho^{(a)}(\omega)=\inf \left\{k \geq 1: \Delta Y_{k}^{(a)}(\omega) \gg 0\right\}=$ ruin time $\sigma_{b d}(\omega)=\inf \left\{k \geq 1: W_{k}(\omega) \in \partial G\right\}=$ hitting time of boundary $\vartheta_{R^{-1} a}(\omega)=\inf \left\{k \geq 1: W_{k}(\omega) \gg R^{-1} a\right\}=$ entrance time into open upper orthant with vertex $R^{-1}$ a

## Theorem

Assume (H1)-(H7). Let $a \in \bar{G}$. Then

$$
\begin{equation*}
0<\mathbb{P}\left(\varrho^{(a)}<\infty\right)=\mathbb{P}\left(\vartheta_{R^{-1} a}<\sigma_{b d}\right)<1 \tag{12}
\end{equation*}
$$

Moreover $\mathbb{P}\left(\Delta Y_{n}^{(a)} \gg 0\right)>0$ and hence $\mathbb{P}\left(\sigma_{b d}>n\right)>0$ for any $n \geq 1$. Also

$$
\begin{equation*}
\lim _{|a| \rightarrow \infty, a \in G} \mathbb{P}\left(\varrho^{(a)}<\infty\right)=0 \tag{13}
\end{equation*}
$$

## Ladder height r.v.'s

Take $\tau_{0} \equiv 0$. For $n \geq 1$, define stopping times
$\tau_{n}(\omega)=\inf \left\{k \geq \tau_{n-1}(\omega)+1: \Delta Y_{k}^{(0)}(\omega) \gg 0\right\}$, if the set $\left\{k \geq \tau_{n-1}(\omega)+1: \Delta Y_{k}^{(0)}(\omega) \gg 0\right\} \neq \varnothing$; put $\tau_{n}(\omega)=+\infty$ if there is no $k \geq \tau_{n-1}(\omega)+1$ such that $\Delta Y_{k}^{(0)}(\omega) \gg 0$. For $n \geq 1$, define

$$
\begin{align*}
L_{n}(\omega) & =Y^{(0)}\left(\tau_{n}, \omega\right)-Y^{(0)}\left(\tau_{n-1}, \omega\right), \text { if } \tau_{n}(\omega)<\infty \\
& =0, \text { if } \tau_{n}(\omega)=+\infty ;  \tag{14}\\
L_{n}^{+}(\cdot) & =L_{n}(\cdot) \text { restricted to }\left\{\tau_{n}<\infty\right\} \tag{15}
\end{align*}
$$

in the above note that $Y^{(0)}\left(\tau_{0}\right) \equiv 0$. Clearly $L_{n}$ takes value in $\{0\} \cup G$, and $L_{n}^{+}$in $G$. Call $L_{1}^{+}$the $d$-dimensional first strictly ascending ladder height random variable, and $L_{k}^{+}$the $d$-dimensional $k$-th strictly ascending ladder height random variable

## Ladder height distribution

$$
\begin{align*}
\alpha_{+}(B) & =\mathbb{P}\left(L_{1}^{+} \in B\right), \quad B \subseteq G,  \tag{16}\\
\alpha_{0}(B) & =\frac{1}{\alpha_{+}(G)} \alpha_{+}(B), \quad B \subseteq G . \tag{17}
\end{align*}
$$

$\alpha_{+}$is a defective distribution, while $\alpha_{0}$ a prob. distn. both concentrated on $G$. Take $M_{0} \equiv 0$; define

$$
M_{n}(\omega)=\sum_{j=1}^{n} L_{j}(\omega), M(\omega)=\sum_{j=1}^{\infty} L_{j}(\omega)
$$

note that $M_{n}(\omega)=Y^{(0)}\left(\tau_{n}(\omega), \omega\right)$, if $\tau_{n}(\omega)<\infty$ and $M_{n}(\omega)=M_{n-1}(\omega)$ if $\tau_{n}(\omega)=\infty$. Thanks to (NPC) (H7), $M$ is finite with prob. 1

## Pollaczek-Khinchine formula

$$
\beta(\omega)=\inf \left\{k \geq 1: \tau_{k}(\omega)=+\infty\right\}=\inf \left\{k \geq 1: L_{k}(\omega)=0\right\}
$$

## Theorem

Assume (H1)-(H7). Denote $p \triangleq \mathbb{P}\left(\hat{U}_{1} \in G\right)=\mathbb{P}\left(-R^{-1} U_{1} \in G\right)$; note that $0<p<1$. Then $(\beta-1)$ has Geom. $(1-p)$ distn., $\alpha_{+}(G)=p$, and $M$ has geometric compound distn.

$$
\begin{equation*}
\nu_{M}(B)=(1-p) \delta_{0}(B)+\sum_{k=1}^{\infty}(1-p) p^{k} \alpha_{0}^{*(k)}(B) \tag{18}
\end{equation*}
$$

$B \subseteq\{0\} \cup G$. Also ruin probability for insurance network is

$$
\begin{aligned}
\mathbb{P}\left(\varrho^{(a)}<\infty\right) & =\mathbb{P}\left(M \gg R^{-1} a\right) \\
& =(1-p) \sum_{n=1}^{\infty} \alpha_{+}^{*(n)}\left(\left\{x \gg R^{-1} a\right\}\right), a \in \bar{G}(19)
\end{aligned}
$$

## P-K formula: contd.

## Theorem

Assume (H1)-(H7). Set $\hat{U}_{k}^{+}=\hat{U}_{k}$ restricted to $\left\{\hat{U}_{k} \in G\right\}$

$$
\begin{equation*}
\mu_{+}(B)=\mathbb{P}\left(\hat{U}_{1}^{+} \in B\right)=\mathbb{P}\left(\hat{U}_{1} \in B\right), B \subseteq G \tag{20}
\end{equation*}
$$

$\mu_{+}$is a defective distn. with $0<p=\mu_{+}(G)<1$. Let $\mu_{0}(\cdot)=\frac{1}{p} \mu_{+}(\cdot)$. Define the compound geometric

$$
\begin{equation*}
\nu(B)=(1-p) \delta_{0}(B)+\sum_{k=1}^{\infty}(1-p) p^{k} \mu_{0}^{*(k)}(B) . \tag{21}
\end{equation*}
$$

Then the following hold:
(i) $\left(\sigma_{b d}-1\right)$ has Geom. $(1-p)$ distn.; hence $\sigma_{b d}={ }^{d} \beta$.

## P-K formula: contd.

## Theorem

(ii) $\nu$ is a prob. measure concentrated on $\{0\} \cup G$, s.t.
$\left(\max _{k<\sigma_{b d}} W_{k}\right)={ }^{d} W\left(\sigma_{b d}-1\right)={ }^{d} \nu$. Also, on $\left[0, \sigma_{b d}\right), W_{n}$ converges in distribution to $W\left(\sigma_{b d}-1\right)$.
(iii) $M={ }^{d} \max _{k<\sigma_{b d}} W_{k}$, and hence $\nu_{M}=\nu$.
(iv) $\hat{U}_{1}^{+}={ }^{d} L_{1}^{+}$; so $\mu_{+}$is the $d$-diml ladder height distn. i.e.,

$$
\begin{equation*}
\mathbb{P}\left(L_{1}^{+} \in B\right)=\mathbb{P}\left(-R^{-1}\left(c A_{1}-X_{1}\right) \in B\right), B \subseteq G \tag{22}
\end{equation*}
$$

(v) For $a \in \bar{G}$,

$$
\begin{equation*}
\mathbb{P}\left(\varrho^{(a)}<\infty\right)=\sum_{k=1}^{\infty}(1-p) \mu_{+}^{*(k)}\left(\left\{x \gg R^{-1} a\right\}\right) \tag{23}
\end{equation*}
$$

