A Pollaczek-Khinchine formula for multidimensional ruin problem

S.Ramasubramanian Indian Statistical Institute, Bangalore

Conference on Stochastic Systems IISc, Bangalore

Sep. 09, 2014

PK formula

For $i = 1, \dots, d$, surplus of Company *i*, in the absence of risk diversifying treaty:

$$H^{(i)}(t) = a_i + c_i t - \sum_{\ell=1}^{N^{(i)}(t)} J_{\ell}^{(i)}, t \ge 0,$$
 (1)

 $a_i \geq 0$: initial capital, $c_i > 0$: constant premium rate, $N^{(i)}(\cdot)$: Poisson process (λ_i) , $J_{\ell}^{(i)}$, $\ell \geq 1$: i.i.d. claim sizes, $\{N^{(i)}(t)\}, \{J_{\ell}^{(j)}\}, 1 \leq i, j \leq d$ are independent families $H^{(1)}(\cdot), \ldots, H^{(d)}(\cdot)$ are d independent Cramer-Lundberg risk processes

C-L network: contd.

 $J^{(1)}, \dots, J^{(d)}$ independent generic r.v.'s s.t. $J^{(k)} = {}^d J^{(k)}_1, \forall k;$ $N(t) = \sum_{i=1}^d N^{(i)}(t), t \ge 0$: Poisson process $(\lambda), \ \lambda = \sum_{i=1}^d \lambda_i;$ d-dimensional r.v. $J = (0, \dots, 0, J^{(i)}, 0, \dots, 0)$ with prob. $\frac{1}{\lambda}\lambda_i$.

Vector claim sizes $X_{\ell}, \ell \geq 1$ i.i.d. \mathbb{R}^d -valued r.v.s = $^d J$

$$a = (a_1, \cdots, a_d) \ c = (c_1, \cdots, c_d)$$
$$H^{(a)}(t) \triangleq a + tc - \sum_{\ell=1}^{N(t)} X_{\ell}$$
$$=^d (H^{(1)}(t), \cdots, H^{(d)}(t)), \ t \ge 0,$$
(2)

as processes

- J takes value in ∂G = boundary of d-dimensional positive orthant G
- Though J⁽ⁱ⁾, 1 ≤ i ≤ d are independent, marginals
 (J)_i, 1 ≤ i ≤ d of J are not independent
- Even if $J^{(i)}, 1 \leq i \leq d$ are absolutely continuous, J is not
- Marginals $(J)_i$ have atom at 0

Assumptions on reflection matrix R

 (H1) R = ((R_{ij})) = I − P^t constant d × d matrix s.t. P_{ii} = 0, P_{ij} ≥ 0, i ≠ j, ∀1 ≤ i, j ≤ d; and spectral radius of P is strictly less than 1. So

$$R^{-1} = I + P^{t} + (P^{t})^{2} + (P^{t})^{3} + \cdots$$
 (3)

is a matrix with nonnegative entries, with diagonal entries ≥ 1.
(H2) ∃k ∈ {1,2,...,d} s.t. (R⁻¹)_{ik} > 0, ∀1 ≤ i ≤ d; so at least one column vector of R⁻¹ has strictly positive entries.

For insurance models, besides (H1), natural to assume also that $\sum_{j \neq i} P_{ij} \leq 1, \forall i$, that is P is a substochastic matrix (H2) is satisfied if P is irreducible

Stochastic assumptions

- (H3) A_i, i = 1, 2, ... one dimensional i.i.d. random variables such that A_i > 0; (scalar interarrival times)
- (H4) X_ℓ, ℓ = 1, 2, ... i.i.d. ℝ^d₊-valued random variables; (vector claim sizes)
- (H5) {A_i : i ≥ 1}, {X_ℓ : ℓ ≥ 1} are independent families of random variables.
- (H6) For each ℓ = 1, 2, · · · and i = 1, 2, · · · , d,
 P((X_ℓ)_i > x) > 0, ∀x ≥ 0; i.e., marginal claim sizes have unbounded support.
- (H7) c = ((c)₁, ..., (c)_d) ≫ 0 with (c)_i denoting constant premium rates. A₁, (X₁)_i, 1 ≤ i ≤ d have finite expectations, and E[(c)_iA₁ (X₁)_i] > 0, 1 ≤ i ≤ d; this is coordinatewise net profit condition.

To describe joint dynamics of the d companies under risk diversifying treaty:

 $G = \{x \in \mathbb{R}^d : x_i > 0, 1 \le i \le d\}$ denotes the *d*-dimensional positive orthant, and \overline{G} its closure

We seek processes $\{Y^{(a)}(t) = (Y_1^{(a)}(t), \dots, Y_d^{(a)}(t)) : t \ge 0\}, \{Z^{(a)}(t) = (Z_1^{(a)}(t), \dots, Z_d^{(a)}(t)) : t \ge 0\}$ satisfying the following

(S0)
$$Y^{(a)}(0) = 0, Z^{(a)}(0) = a = (a_1, \dots, a_d).$$

(S1) [Constraint] $Z_i^{(a)}(t) \ge 0, \quad t \ge 0, 1 \le i \le d;$
so $Z^{(a)}(\cdot)$ is a \bar{G} -valued process

SP:contd.

(S2) For $1 \le i \le d$ the *Skorokhod equation* holds, that is,

$$Z_{i}^{(a)}(t) = a_{i} + c_{i}t - \sum_{\ell=1}^{N(t)} (X_{\ell})_{i} + Y_{i}^{(a)}(t) + \sum_{j \neq i} R_{ij}Y_{j}^{(a)}(t); (4)$$

or equivalently in vector notation

$$Z^{(a)}(t) = H^{(a)}(t) + R \cdot (Y(t) - Y(0), t \ge 0.$$
 (5)

(S3) [Minimality] For $1 \le i \le d$, $Y_i^{(a)}(\cdot)$ is a nondecreasing process and $Y_i^{(a)}(\cdot)$ can increase only when $Z_i^{(a)}(\cdot) = 0$; that is,

$$Y_i^{(a)}(t) - Y_i^{(a)}(s) = \int_{(s,t]} \mathbf{1}_{\{0\}}(Z_i^{(a)}(r)) dY_i^{(a)}(r), \ t \ge s \ge 0.$$
 (6)

Let Company *i* need at some instant of time an amount dy_i to avert ruin. For $j \neq i$, Company *j* is required to give a preassigned fraction $|R_{ji}|dy_i = P_{ij}dy_i$.

If $\sum_{j\neq i} |R_{ji}| < 1$, shortfall $(1 - \sum_{j\neq i} |R_{ji}|) dy_i$ to be procured by shareholders of Company *i* as "capital injection"; ('open' system) Objective of treaty: To keep surplus of each company ≥ 0 in an optimal fashion.

The set up leads naturally to a *d*-person dynamic game with state space constraints and Skorokhod problem provides the optimal solution

(H1) ensures that SP in the orthant can be solved uniquely 'path-by-path'

Under optimality, a company can borrow, invoking the treaty, only when its reserve is zero/ it is in the red, and the amount borrowed should be just enough to keep it afloat $Y_i^{(a)}(t) =$ optimal cumulative amount obtained by Co.*i* as capital injection by its shareholders, and from other companies during [0, t] specifically for the purpose of averting ruin $Z_{i}^{(a)}(t) =$ optimal current surplus of Co.*i* at time t In (S0)-(S3) note that the only interaction among d companies is through risk reducing treaty

A random walk in \mathbb{R}^d

Interarrival times for $\{N(t)\}$: $A_{\ell}, \ell \ge 1 \operatorname{Exp}(\lambda)$ i.i.d. r.v.'s. $T_0 = 0, \ T_k = \sum_{\ell=1}^k A_{\ell}, \ k \ge 1$ claim arrival times for network On $[T_k, T_{k+1})$ each component of $H^{(a)}(\cdot)$, and hence of $Z^{(a)}(\cdot)$, strictly increasing; so need for capital injection only at $T_k, k \ge 1$; also ruin can occur only at an arrival time.

$$H^{(a)}(T_n) = a + \sum_{\ell=1}^n A_\ell c - \sum_{\ell=1}^n X_\ell$$

= $a + \sum_{\ell=1}^n U_\ell, n = 1, 2, \cdots$ (7)

a random walk in \mathbb{R}^d starting at a, as $\{U_\ell\}$ are i.i.d. \mathbb{R}^d -valued r.v.'s.

 $SP(\{a + \sum_{\ell} U_{\ell}\}, R)$

$$\{Y_n^{(a)}\}, \{Z_n^{(a)}\} \text{ satisfy } Y_0^{(a)} = 0, Z_n^{(a)} = a,$$
$$(Z_n^{(a)})_i = (a)_i + \sum_{\ell=1}^n (U_\ell)_i + (Y_n^{(a)})_i + \sum_{j \neq i} R_{ij}(Y_n^{(a)})_j, \quad (8)$$

for $n \ge 1, 1 \le i \le d$; equivalently

$$Z_n^{(a)} = Z_{n-1}^{(a)} + U_n + R(\Delta Y_n^{(a)}), \ n \ge 1,$$
(9)

where $\Delta Y_n^{(a)} = Y_n^{(a)} - Y_{n-1}^{(a)}$; also $Z_n^{(a)} \in \overline{G}, n \ge 0$ (*Constraint*), $Y_n^{(a)} \ge Y_{n-1}^{(a)}, n \ge 1$, as vectors, and (*Minimality*)

$$\left\langle Z_n^{(a)}, \Delta Y_n^{(a)} \right\rangle = 0, \ n \ge 1$$
 (10)

 $\{Y_n^{(a)}\}$ 'pushing part', $\{Z_n^{(a)}\}$ 'regulated/ reflected part' of solution

 $\xi, \zeta \in \mathbb{R}^d$ solution pair to *Linear complementarity problem* $LCP(\eta, R)$ if

$$\zeta = \eta + R\xi, \ \xi \ge 0, \ \zeta \ge 0, \ \langle \xi, \zeta \rangle = 0.$$

 ξ 'pushing part', ζ 'regulated part' of solution (H1) implies $LCP(\eta, R)$ as well as $SP(\{a + \sum_{\ell} U_{\ell}\}, R)$ are well-posed $\{Y_n^{(a)}, n \ge 0\}, \{Z_n^{(a)}, n \ge 0\}$ solution pair to $SP(\{a + \sum_{\ell} U_{\ell}\}, R)$ if and only if for each $n = 1, 2, \dots \Delta Y_n^{(a)}, Z_n^{(a)}$ is solution pair to $LCP(Z_{n-1}^{(a)} + U_n, R)$

As before these can be solved 'path-by-path'

 $\begin{aligned} a + \sum_{\ell=1}^{n} U_{\ell}, n &\geq 0 \text{ random walk in } \mathbb{R}^{d} \text{ starting at } a. \\ \text{Hence } Z_{n}^{(a)}, n &\geq 0, \text{ (or the pair } Y_{n}^{(a)}, Z_{n}^{(a)}, n \geq 0) \text{ considered} \\ \text{corresponding regulated/ reflected random walk in the orthant } \overline{G}. \\ (7) \text{ implies } \Delta Y_{n}^{(a)} &= Y^{(a)}(T_{n}) - Y^{(a)}(T_{n-1}), \\ Z_{n}^{(a)} &= Z^{(a)}(T_{n}), n \geq 1. \text{ Also } Y^{(a)}(t) - Y^{(a)}(t-) \gg 0 \text{ for some} \\ t > 0 \text{ if and only if } \Delta Y_{n}^{(a)} \gg 0 \text{ for some } n \geq 1. \end{aligned}$

 $(U_k)_i = (\text{premium income for Co.}i \text{ during } (k-1,k]) \text{ minus } (\text{claim amt. for Co.}i \text{ due to } k-\text{th claim to network}),$ $(Z_k^{(a)})_i = \text{current surplus for Co.}i \text{ at time } k, \text{ under optimality,}$ $(\Delta Y_k^{(a)})_i = \text{marginal deficit of Co.}i \text{ at time } k, \text{ under optimality.}$

Sufficient to study 'ruin' in the context of regulated random walk

'Ruin' of insurance network $= \Delta Y_n^{(a)} \gg 0$ for some $n \ge 1$. (For vectors $\xi \gg \zeta$ denotes $(\xi)_i > (\zeta)_i, 1 \le i \le d$) Ruin means every company has strictly positive deficit at the *same* time *n*, for some $n \ge 1$.

Ruin probability: Prob.(ruin in finite time, starting with initial capital a) = $\mathbb{P}(\Delta Y_n^{(a)} \gg 0$ for some $n \ge 1$)

To understand ruin probability, we look at the deterministic (i.e., sample path) set up first. Considering $\omega \in \Omega$ as fixed, $u_{\ell}, y_k^{(a)}, z_k^{(a)}, \cdots$ may be regarded as particular realization of $U_{\ell}(\omega), Y_k^{(a)}(\omega), Z_k^{(a)}(\omega), \cdots$ $\{y_n^{(a)}, z_n^{(a)}\}$ solution pair to $SP(\{a + \sum_{\ell} u_{\ell}\}, R)$: So $z_0^{(a)} = a, y_0^{(a)} = 0; z_n^{(a)} \in \overline{G}, n \ge 1$ (constraint); Skorokhod equation holds, that is,

$$z_n^{(a)} = z_{n-1}^{(a)} + u_n + R\Delta y_n^{(a)}, \ n \ge 1,$$
 (11)

where $\Delta y_n^{(a)} = y_n^{(a)} - y_{n-1}^{(a)} \ge 0, n \ge 1$ componentwise; and $\left\langle z_n^{(a)}, \Delta y_n^{(a)} \right\rangle = 0, n \ge 1$ minimality.

'Ruin' means $\Delta y_n^{(a)} \gg 0$ for some $n \ge 1$.

Using minimality and (11) repeatedly

Lemma

Fix
$$n \ge 1$$
. Then $\Delta y_n^{(a)} \gg 0 \Leftrightarrow -R^{-1}u_n \gg R^{-1}z_{n-1}^{(a)} \Leftrightarrow \cdots \Leftrightarrow -\sum_{\ell=1}^n u_\ell \gg R^{-1}a + y_{n-1}^{(a)}$.

Corollary

Fix
$$n \ge 1$$
; suppose $\Delta y_n^{(a)} \gg 0$. Then $-R^{-1}u_n \gg 0$,
 $-\sum_{\ell=k}^n R^{-1}u_\ell \gg 0$, $k = n, n - 1, \dots, 2, 1$, and
 $-\sum_{\ell=1}^n R^{-1}u_\ell \gg R^{-1}a$.

$$z = u + R(\Delta y), \ z \ge 0, \ \Delta y \ge 0, \ \langle z, \Delta y \rangle = 0$$

is equivalent to

$$\Delta y = -R^{-1}u + R^{-1}z, \ \Delta y \ge 0, \ z \ge 0, \ \langle \Delta y, z \rangle = 0;$$

that is, $\Delta y, z$ is the solution pair to LCP(u, R) if and only if $z, \Delta y$ is the solution pair to $LCP(-R^{-1}u, R^{-1})$

This leads to a sequence of LCP's, resulting in a SP with reflection matrix R^{-1} , related to the preceding SP with a time reversal over a finite time horizon

Fix
$$n \ge 1$$
. $\{u_{\ell} \in \mathbb{R}^{d}, 1 \le \ell \le n\}$ as before
Set $\hat{u}_{1} = -R^{-1}u_{n}, \ \hat{u}_{2} = -R^{-1}u_{n-1}, \cdots, \hat{u}_{n} = R^{-1}u_{1}$
Put $w_{0} = 0, v_{0} = 0$ Define $\Delta v_{k}, w_{k}, \ 1 \le k \le n$ by

$$w_1 = \hat{u}_1 + R^{-1}\Delta v_1, \ w_1 \ge 0, \ \Delta v_1 \ge 0, \ \langle w_1, \Delta v_1 \rangle = 0,$$

 $w_k = w_{k-1} + \hat{u}_k + R^{-1}\Delta v_k, \ w_k \ge 0, \ \Delta v_k \ge 0, \ \langle w_k, \Delta v_k \rangle = 0$

An interpretation of storage network

 $d \ge 1$ storage depots of infinite capacity, 0 initial stock; demands may be continuous, but fresh stocks and reinforcements arrive only at the end of periods $k = 1, 2 \cdots$

 $(\hat{u}_k)_i = (\text{fresh supply at Depot } i \text{ at the end of period } k) \text{ minus}$ (demand at Depot i during (k - 1, k])

 $(w_k)_i$ = current stock at Depot *i* at the end of period *k*, after taking into account all reinforcement *to* Depot *i* till the end of period *k*; so $(w_k)_i \ge 0, \forall i, k$

 $(R^{-1})_{ii}(\Delta v_k)_i$ = amount of reinforcement sent to Depot *i* at the end of *k*, due to unfulfilled demand after taking into account existing stock, fresh supply and inflow to Depot *i* due to shortfall at other depots at the end of period *k*

 $(R^{-1})_{ij}(\Delta v_k)_j = \text{reinforcement sent to Depot } i \text{ due to shortfall at}$ Depot $j, j \neq i$ at the end of period k
$$\begin{split} \sigma_{bd} &= \inf\{k \geq 1 : w_k \in \partial G\} = \text{hitting time of boundary} \\ \vartheta_{R^{-1}a} &= \inf\{k \geq 1 : w_k \gg R^{-1}a\} = \text{entrance time into open} \\ \text{upper orthant with vertex } R^{-1}a \end{split}$$

Theorem

Assume (H1). Fix
$$n \ge 1$$
. Then $\Delta y_n^{(a)} \gg 0$ if and only if $\vartheta_{R^{-1}a} \le n < \sigma_{bd}$. Moreover, taking $a = 0$, $[y_n^{(0)} : {\Delta y_n^{(0)} \gg 0}] = [w_n : {\sigma_{bd} > n}] = -\sum_{\ell=1}^n R^{-1} u_\ell$

 \Rightarrow : Earlier corollary rephrased

 $\Leftarrow: \text{ If } \sigma_{bd} > n, \text{ then during time span } \{1, 2, \cdots, n\}, \\ \{w_k : 1 \le k \le n\} \text{ has no need for reinforcement at any of the } d \\ \text{depots} \end{cases}$

Stochastic set up

$$\begin{split} &U_{\ell} = A_{\ell}c - X_{\ell}, \ell \geq 1 \text{ i.i.d. } \mathbb{R}^{d} - \text{valued r.v.'s} \\ &\hat{U}_{\ell} = R^{-1}U_{\ell}, \ell \geq 1 \text{ also i.i.d. } \mathbb{R}^{d} - \text{valued r.v.'s Put} \\ &W_{0} = 0, V_{0} = 0 \text{ Define } W_{n}, \ V_{n} = V_{0} + \sum_{k=1}^{n} \Delta V_{k}, \ n \geq 1 \text{ by} \\ &W_{1} = \hat{U}_{1} + R^{-1}\Delta V_{1}, \ W_{1} \geq 0, \ \Delta V_{1} \geq 0, \ \langle W_{1}, \Delta V_{1} \rangle = 0, \\ &W_{k} = W_{k-1} + \hat{U}_{k} + R^{-1}\Delta V_{k}, \ W_{k} \geq 0, \ \Delta V_{k} \geq 0, \ \langle W_{k}, \Delta V_{k} \rangle = 0 \\ &\text{Above process is another regulated random walk in the orthant} \end{split}$$

(storage network)

Results from deterministic set up applied to make statements of equality in distribution

(H2),(H6) imply events making ruin (of network) possible are non-null

Ruin probability

$$\begin{split} \varrho^{(a)}(\omega) &= \inf\{k \geq 1 : \Delta Y_k^{(a)}(\omega) \gg 0\} = \text{ruin time} \\ \sigma_{bd}(\omega) &= \inf\{k \geq 1 : W_k(\omega) \in \partial G\} = \text{hitting time of boundary} \\ \vartheta_{R^{-1}a}(\omega) &= \inf\{k \geq 1 : W_k(\omega) \gg R^{-1}a\} = \text{entrance time into} \\ \text{open upper orthant with vertex } R^{-1}a \end{split}$$

Theorem

Assume (H1)-(H7). Let
$$a \in \overline{G}$$
. Then

$$0 < \mathbb{P}(\varrho^{(a)} < \infty) = \mathbb{P}(\vartheta_{R^{-1}a} < \sigma_{bd}) < 1.$$
(12)

Moreover $\mathbb{P}(\Delta Y_n^{(a)} \gg 0) > 0$ and hence $\mathbb{P}(\sigma_{bd} > n) > 0$ for any $n \ge 1$. Also

$$\lim_{|a|\to\infty,a\in G} \mathbb{P}(\varrho^{(a)}<\infty) = 0.$$
 (13)

< 17 >

-

≪ ≣ ⊁

æ

Ladder height r.v.'s

Take $\tau_0 \equiv 0$. For $n \geq 1$, define stopping times $\tau_n(\omega) = \inf\{k \geq \tau_{n-1}(\omega) + 1 : \Delta Y_k^{(0)}(\omega) \gg 0\}$, if the set $\{k \geq \tau_{n-1}(\omega) + 1 : \Delta Y_k^{(0)}(\omega) \gg 0\} \neq \emptyset$; put $\tau_n(\omega) = +\infty$ if there is no $k \geq \tau_{n-1}(\omega) + 1$ such that $\Delta Y_k^{(0)}(\omega) \gg 0$. For $n \geq 1$, define

$$L_{n}(\omega) = Y^{(0)}(\tau_{n},\omega) - Y^{(0)}(\tau_{n-1},\omega), \text{ if } \tau_{n}(\omega) < \infty,$$

= 0, if $\tau_{n}(\omega) = +\infty;$ (14)

$$L_n^+(\cdot) = L_n(\cdot)$$
 restricted to $\{\tau_n < \infty\};$ (15)

in the above note that $Y^{(0)}(\tau_0) \equiv 0$. Clearly L_n takes value in $\{0\} \cup G$, and L_n^+ in G. Call L_1^+ the d-dimensional first strictly ascending ladder height random variable, and L_k^+ the d-dimensional k-th strictly ascending ladder height random variable

Ladder height distribution

$$\alpha_+(B) = \mathbb{P}(L_1^+ \in B), \quad B \subseteq G, \tag{16}$$

$$\alpha_0(B) = \frac{1}{\alpha_+(G)} \alpha_+(B), \quad B \subseteq G.$$
 (17)

 α_+ is a defective distribution, while α_0 a prob. distn. both concentrated on *G*. Take $M_0 \equiv 0$; define

$$M_n(\omega) = \sum_{j=1}^n L_j(\omega), \ M(\omega) = \sum_{j=1}^\infty L_j(\omega)$$

note that $M_n(\omega) = Y^{(0)}(\tau_n(\omega), \omega)$, if $\tau_n(\omega) < \infty$ and $M_n(\omega) = M_{n-1}(\omega)$ if $\tau_n(\omega) = \infty$. Thanks to (NPC) (H7), *M* is finite with prob. 1

Pollaczek-Khinchine formula

$$\beta(\omega) = \inf\{k \ge 1 : \tau_k(\omega) = +\infty\} = \inf\{k \ge 1 : L_k(\omega) = 0\}$$

Theorem

Assume (H1)-(H7). Denote $p \triangleq \mathbb{P}(\hat{U}_1 \in G) = \mathbb{P}(-R^{-1}U_1 \in G)$; note that $0 . Then <math>(\beta - 1)$ has Geom.(1 - p) distn., $\alpha_+(G) = p$, and M has geometric compound distn.

$$\nu_M(B) = (1-p)\delta_0(B) + \sum_{k=1}^{\infty} (1-p)p^k \alpha_0^{*(k)}(B),$$
 (18)

 $B \subseteq \{0\} \cup G$. Also ruin probability for insurance network is

$$\mathbb{P}(\varrho^{(a)} < \infty) = \mathbb{P}(M \gg R^{-1}a)$$

= $(1-p)\sum_{n=1}^{\infty} \alpha_{+}^{*(n)}(\{x \gg R^{-1}a\}), a \in \overline{G}(19)$

P-K formula: contd.

Theorem

Assume (H1)-(H7). Set
$$\hat{U}_k^+ = \hat{U}_k$$
 restricted to $\{\hat{U}_k \in G\}$

$$\mu_{+}(B) = \mathbb{P}(\hat{U}_{1}^{+} \in B) = \mathbb{P}(\hat{U}_{1} \in B), \ B \subseteq G$$
(20)

 μ_+ is a defective distn. with $0 . Let <math>\mu_0(\cdot) = \frac{1}{p}\mu_+(\cdot)$. Define the compound geometric

$$\nu(B) = (1-p)\delta_0(B) + \sum_{k=1}^{\infty} (1-p)p^k \mu_0^{*(k)}(B).$$
 (21)

Then the following hold:
(i)
$$(\sigma_{bd} - 1)$$
 has Geom. $(1 - p)$ distn.; hence $\sigma_{bd} =^{d} \beta$.

/₽ ► < ∃ ►

P-K formula: contd.

Theorem

(ii) ν is a prob. measure concentrated on $\{0\} \cup G$, s.t. $(\max_{k \leq \sigma_{bd}} W_k) =^d W(\sigma_{bd} - 1) =^d \nu$. Also, on $[0, \sigma_{bd}), W_n$ converges in distribution to $W(\sigma_{bd} - 1)$. (iii) $M =^d \max_{k < \sigma_{bd}} W_k$, and hence $\nu_M = \nu$. (iv) $\hat{U}_1^+ =^d L_1^+$; so μ_+ is the d-diml ladder height distn. i.e., $\mathbb{P}(L_1^+ \in B) = \mathbb{P}(-R^{-1}(cA_1 - X_1) \in B), B \subseteq G.$ (22)(v) For $a \in \overline{G}$. $\mathbb{P}(\varrho^{(a)} < \infty) \ = \ \sum (1-p) \mu_+^{*(k)}(\{x \gg R^{-1}a\}).$ (23)k=1