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Cramer-Lundberg network without treaty

For i = 1, · · · , d , surplus of Company i , in the absence of risk

diversifying treaty:

H(i)(t) = ai + ci t −
N(i)(t)∑
`=1

J
(i)
` , t ≥ 0, (1)

ai ≥ 0 : initial capital, ci > 0 : constant premium rate,

N(i)(·) : Poisson process (λi ), J
(i)
` , ` ≥ 1 : i.i.d. claim sizes,

{N(i)(t)}, {J(j)
` }, 1 ≤ i , j ≤ d are independent families

H(1)(·), . . . ,H(d)(·) are d independent Cramer-Lundberg risk

processes
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C-L network: contd.

J(1), · · · , J(d) independent generic r.v.’s s.t. J(k) =d J
(k)
1 ,∀k;

N(t) =
∑d

i=1 N(i)(t), t ≥ 0 : Poisson process (λ), λ =
∑d

i=1 λi ;

d−dimensional r.v. J = (0, · · · , 0, J(i), 0, · · · , 0) with prob. 1
λλi .

Vector claim sizes X`, ` ≥ 1 i.i.d. Rd−valued r.v.s =d J

a = (a1, · · · , ad) c = (c1, · · · , cd)

H(a)(t) , a + tc −
N(t)∑
`=1

X`

=d (H(1)(t), · · · ,H(d)(t)), t ≥ 0, (2)

as processes
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C-L network: contd.

J takes value in ∂G = boundary of d−dimensional positive

orthant G

Though J(i), 1 ≤ i ≤ d are independent, marginals

(J)i , 1 ≤ i ≤ d of J are not independent

Even if J(i), 1 ≤ i ≤ d are absolutely continuous, J is not

Marginals (J)i have atom at 0
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Assumptions on reflection matrix R

(H1) R = ((Rij)) = I − Pt constant d × d matrix s.t.

Pii = 0, Pij ≥ 0, i 6= j ,∀1 ≤ i , j ≤ d ; and spectral radius of P

is strictly less than 1. So

R−1 = I + Pt + (Pt)2 + (Pt)3 + · · · (3)

is a matrix with nonnegative entries, with diagonal entries ≥ 1.

(H2) ∃k ∈ {1, 2, · · · , d} s.t. (R−1)ik > 0,∀1 ≤ i ≤ d ; so at

least one column vector of R−1 has strictly positive entries.

For insurance models, besides (H1), natural to assume also that∑
j 6=i Pij ≤ 1,∀i , that is P is a substochastic matrix

(H2) is satisfied if P is irreducible
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Stochastic assumptions

(H3) Ai , i = 1, 2, . . . one dimensional i.i.d. random variables

such that Ai > 0; (scalar interarrival times)

(H4) X`, ` = 1, 2, . . . i.i.d. Rd
+-valued random variables;

(vector claim sizes)

(H5) {Ai : i ≥ 1}, {X` : ` ≥ 1} are independent families of

random variables.

(H6) For each ` = 1, 2, · · · and i = 1, 2, · · · , d ,
P((X`)i > x) > 0, ∀x ≥ 0; i.e., marginal claim sizes have

unbounded support.

(H7) c = ((c)1, · · · , (c)d)� 0 with (c)i denoting constant

premium rates. A1, (X1)i , 1 ≤ i ≤ d have finite expectations,

and E[(c)iA1 − (X1)i ] > 0, 1 ≤ i ≤ d ; this is coordinatewise

net profit condition.
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Skorokhod Problem (SP) in an orthant

To describe joint dynamics of the d companies under risk

diversifying treaty:

G = {x ∈ Rd : xi > 0, 1 ≤ i ≤ d} denotes the d−dimensional

positive orthant, and Ḡ its closure

We seek processes {Y (a)(t) = (Y
(a)
1 (t), . . . ,Y

(a)
d (t)) : t ≥

0}, {Z (a)(t) = (Z
(a)
1 (t), . . . ,Z

(a)
d (t)) : t ≥ 0} satisfying the

following

(S0) Y (a)(0) = 0,Z (a)(0) = a = (a1, · · · , ad).

(S1) [Constraint] Z
(a)
i (t) ≥ 0, t ≥ 0, 1 ≤ i ≤ d ;

so Z (a)(·) is a Ḡ−valued process
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SP:contd.

(S2) For 1 ≤ i ≤ d the Skorokhod equation holds, that is,

Z
(a)
i (t) = ai + ci t −

N(t)∑
`=1

(X`)i + Y
(a)
i (t) +

∑
j 6=i

RijY
(a)
j (t); (4)

or equivalently in vector notation

Z (a)(t) = H(a)(t) + R · (Y (t)− Y (0), t ≥ 0. (5)

(S3) [Minimality] For 1 ≤ i ≤ d , Y
(a)
i (·) is a nondecreasing

process and Y
(a)
i (·) can increase only when Z

(a)
i (·) = 0; that is,

Y
(a)
i (t)− Y

(a)
i (s) =

∫
(s,t]

1{0}(Z
(a)
i (r))dY

(a)
i (r), t ≥ s ≥ 0. (6)
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An interpretation

Let Company i need at some instant of time an amount dyi to

avert ruin. For j 6= i , Company j is required to give a preassigned

fraction |Rji |dyi = Pijdyi .

If
∑

j 6=i |Rji | < 1, shortfall
(
1−

∑
j 6=i |Rji |

)
dyi to be procured by

shareholders of Company i as ”capital injection”; (’open’ system)

Objective of treaty: To keep surplus of each company ≥ 0 in an

optimal fashion.

The set up leads naturally to a d-person dynamic game with state

space constraints and Skorokhod problem provides the optimal

solution
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C-L network with treaty

(H1) ensures that SP in the orthant can be solved uniquely

’path-by-path’

Under optimality, a company can borrow, invoking the treaty, only

when its reserve is zero/ it is in the red, and the amount borrowed

should be just enough to keep it afloat

Y
(a)
i (t) = optimal cumulative amount obtained by Co.i as capital

injection by its shareholders, and from other companies during

[0, t] specifically for the purpose of averting ruin

Z
(a)
i (t) = optimal current surplus of Co.i at time t

In (S0)-(S3) note that the only interaction among d companies is

through risk reducing treaty
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A random walk in Rd

Interarrival times for {N(t)} : A`, ` ≥ 1 Exp(λ) i.i.d. r.v.’s.

T0 = 0, Tk =
∑k

`=1 A`, k ≥ 1 claim arrival times for network

On [Tk ,Tk+1) each component of H(a)(·), and hence of Z (a)(·),
strictly increasing; so need for capital injection only at Tk , k ≥ 1;

also ruin can occur only at an arrival time.

H(a)(Tn) = a +
n∑
`=1

A`c −
n∑
`=1

X`

= a +
n∑
`=1

U`, n = 1, 2, · · · (7)

a random walk in Rd starting at a, as {U`} are i.i.d. Rd−valued

r.v.’s.
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SP({a +
∑

` U`},R)

{Y (a)
n }, {Z (a)

n } satisfy Y
(a)
0 = 0,Z

(a)
n = a,

(Z
(a)
n )i = (a)i +

n∑
`=1

(U`)i + (Y
(a)
n )i +

∑
j 6=i

Rij(Y
(a)
n )j , (8)

for n ≥ 1, 1 ≤ i ≤ d ; equivalently

Z
(a)
n = Z

(a)
n−1 + Un + R(∆Y

(a)
n ), n ≥ 1, (9)

where ∆Y
(a)
n = Y

(a)
n − Y

(a)
n−1; also Z

(a)
n ∈ G , n ≥ 0 (Constraint),

Y
(a)
n ≥ Y

(a)
n−1, n ≥ 1, as vectors, and (Minimality)〈

Z
(a)
n ,∆Y

(a)
n

〉
= 0, n ≥ 1 (10)

{Y (a)
n } ’pushing part’, {Z (a)

n } ’regulated/ reflected part’ of solution
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LCP(η,R)

ξ, ζ ∈ Rd solution pair to Linear complementarity problem

LCP(η,R) if

ζ = η + Rξ, ξ ≥ 0, ζ ≥ 0, 〈ξ, ζ〉 = 0.

ξ ’pushing part’, ζ ’regulated part’ of solution

(H1) implies LCP(η,R) as well as SP({a +
∑

` U`},R) are

well-posed

{Y (a)
n , n ≥ 0}, {Z (a)

n , n ≥ 0} solution pair to SP({a +
∑

` U`},R) if

and only if for each n = 1, 2, · · · ∆Y
(a)
n ,Z

(a)
n is solution pair to

LCP(Z
(a)
n−1 + Un,R)

As before these can be solved ’path-by-path’
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Regulated/ reflected random walk

a +
∑n

`=1 U`, n ≥ 0 random walk in Rd starting at a.

Hence Z
(a)
n , n ≥ 0, (or the pair Y

(a)
n ,Z

(a)
n , n ≥ 0) considered

corresponding regulated/ reflected random walk in the orthant G .

(7) implies ∆Y
(a)
n = Y (a)(Tn)− Y (a)(Tn−1),

Z
(a)
n = Z (a)(Tn), n ≥ 1. Also Y (a)(t)− Y (a)(t−)� 0 for some

t > 0 if and only if ∆Y
(a)
n � 0 for some n ≥ 1.

(Uk)i = (premium income for Co.i during (k − 1, k]) minus (claim

amt. for Co.i due to k−th claim to network),

(Z
(a)
k )i = current surplus for Co.i at time k, under optimality,

(∆Y
(a)
k )i = marginal deficit of Co.i at time k , under optimality.

Sufficient to study ’ruin’ in the context of regulated random walk
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Ruin of network

’Ruin’ of insurance network = ∆Y
(a)
n � 0 for some n ≥ 1.

(For vectors ξ � ζ denotes (ξ)i > (ζ)i , 1 ≤ i ≤ d)

Ruin means every company has strictly positive deficit at the same

time n, for some n ≥ 1.

Ruin probability: Prob.(ruin in finite time, starting with initial

capital a) = P(∆Y
(a)
n � 0 for some n ≥ 1)

To understand ruin probability, we look at the deterministic (i.e.,

sample path) set up first. Considering ω ∈ Ω as fixed,

u`, y
(a)
k , z

(a)
k , · · · may be regarded as particular realization of

U`(ω),Y
(a)
k (ω),Z

(a)
k (ω), · · ·
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Deterministic set up

{y (a)
n , z

(a)
n } solution pair to SP({a +

∑
` u`},R) : So

z
(a)
0 = a, y

(a)
0 = 0; z

(a)
n ∈ G , n ≥ 1 (constraint); Skorokhod

equation holds, that is,

z
(a)
n = z

(a)
n−1 + un + R∆y

(a)
n , n ≥ 1, (11)

where ∆y
(a)
n = y

(a)
n − y

(a)
n−1 ≥ 0, n ≥ 1 componentwise; and〈

z
(a)
n ,∆y

(a)
n

〉
= 0, n ≥ 1 minimality.

’Ruin’ means ∆y
(a)
n � 0 for some n ≥ 1.
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Ruin in deterministic set up

Using minimality and (11) repeatedly

Lemma

Fix n ≥ 1. Then ∆y
(a)
n � 0⇔ −R−1un � R−1z

(a)
n−1 ⇔ · · · ⇔

−
∑n

`=1 u` � R−1a + y
(a)
n−1.

Corollary

Fix n ≥ 1; suppose ∆y
(a)
n � 0. Then −R−1un � 0,

−
∑n

`=k R−1u` � 0, k = n, n − 1, · · · , 2, 1, and

−
∑n

`=1 R−1u` � R−1a.
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An elementary observation

z = u + R(∆y), z ≥ 0, ∆y ≥ 0, 〈z ,∆y〉 = 0

is equivalent to

∆y = −R−1u + R−1z , ∆y ≥ 0, z ≥ 0, 〈∆y , z〉 = 0;

that is, ∆y , z is the solution pair to LCP(u,R) if and only if

z ,∆y is the solution pair to LCP(−R−1u,R−1)

This leads to a sequence of LCP’s, resulting in a SP with reflection

matrix R−1, related to the preceding SP with a time reversal over

a finite time horizon
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Deterministic (dual) storage network

Fix n ≥ 1. {u` ∈ Rd , 1 ≤ ` ≤ n} as before

Set û1 = −R−1un, û2 = −R−1un−1, · · · , ûn = R−1u1

Put w0 = 0, v0 = 0 Define ∆vk ,wk , 1 ≤ k ≤ n by

w1 = û1 + R−1∆v1, w1 ≥ 0, ∆v1 ≥ 0, 〈w1,∆v1〉 = 0,

wk = wk−1 + ûk + R−1∆vk , wk ≥ 0, ∆vk ≥ 0, 〈wk ,∆vk〉 = 0
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An interpretation of storage network

d ≥ 1 storage depots of infinite capacity, 0 initial stock; demands

may be continuous, but fresh stocks and reinforcements arrive only

at the end of periods k = 1, 2 · · ·
(ûk)i = (fresh supply at Depot i at the end of period k) minus

(demand at Depot i during (k − 1, k])

(wk)i = current stock at Depot i at the end of period k , after

taking into account all reinforcement to Depot i till the end of

period k ; so (wk)i ≥ 0, ∀i , k

(R−1)ii (∆vk)i = amount of reinforcement sent to Depot i at the

end of k , due to unfulfilled demand after taking into account

existing stock, fresh supply and inflow to Depot i due to shortfall

at other depots at the end of period k

(R−1)ij(∆vk)j = reinforcement sent to Depot i due to shortfall at

Depot j , j 6= i at the end of period k
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Ruin and storage sequence

σbd = inf{k ≥ 1 : wk ∈ ∂G} = hitting time of boundary

ϑR−1a = inf{k ≥ 1 : wk � R−1a} = entrance time into open

upper orthant with vertex R−1a

Theorem

Assume (H1). Fix n ≥ 1. Then ∆y
(a)
n � 0 if and only if

ϑR−1a ≤ n < σbd . Moreover, taking a = 0,

[y
(0)
n : {∆y

(0)
n � 0}] = [wn : {σbd > n}] = −

∑n
`=1 R−1u`

⇒: Earlier corollary rephrased

⇐: If σbd > n, then during time span {1, 2, · · · , n},
{wk : 1 ≤ k ≤ n} has no need for reinforcement at any of the d

depots
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Stochastic set up

U` = A`c − X`, ` ≥ 1 i.i.d. Rd−valued r.v.’s

Û` = R−1U`, ` ≥ 1 also i.i.d. Rd−valued r.v.’s Put

W0 = 0,V0 = 0 Define Wn, Vn = V0 +
∑n

k=1 ∆Vk , n ≥ 1 by

W1 = Û1 + R−1∆V1, W1 ≥ 0, ∆V1 ≥ 0, 〈W1,∆V1〉 = 0,

Wk = Wk−1 + Ûk + R−1∆Vk , Wk ≥ 0, ∆Vk ≥ 0, 〈Wk ,∆Vk〉 = 0

Above process is another regulated random walk in the orthant

(storage network)

Results from deterministic set up applied to make statements of

equality in distribution

(H2),(H6) imply events making ruin (of network) possible are

non-null
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Ruin probability

%(a)(ω) = inf{k ≥ 1 : ∆Y
(a)
k (ω)� 0} = ruin time

σbd(ω) = inf{k ≥ 1 : Wk(ω) ∈ ∂G} = hitting time of boundary

ϑR−1a(ω) = inf{k ≥ 1 : Wk(ω)� R−1a} = entrance time into

open upper orthant with vertex R−1a

Theorem

Assume (H1)-(H7). Let a ∈ G . Then

0 < P(%(a) <∞) = P(ϑR−1a < σbd) < 1. (12)

Moreover P(∆Y
(a)
n � 0) > 0 and hence P(σbd > n) > 0 for any

n ≥ 1. Also

lim
|a|→∞,a∈G

P(%(a) <∞) = 0. (13)
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Ladder height r.v.’s

Take τ0 ≡ 0. For n ≥ 1, define stopping times

τn(ω) = inf{k ≥ τn−1(ω) + 1 : ∆Y
(0)
k (ω)� 0}, if the set

{k ≥ τn−1(ω) + 1 : ∆Y
(0)
k (ω)� 0} 6= ∅; put τn(ω) = +∞ if there

is no k ≥ τn−1(ω) + 1 such that ∆Y
(0)
k (ω)� 0. For n ≥ 1, define

Ln(ω) = Y (0)(τn, ω)− Y (0)(τn−1, ω), if τn(ω) <∞,

= 0, if τn(ω) = +∞; (14)

L+
n (·) = Ln(·) restricted to {τn <∞}; (15)

in the above note that Y (0)(τ0) ≡ 0. Clearly Ln takes value in

{0} ∪ G , and L+
n in G . Call L+

1 the d−dimensional first strictly

ascending ladder height random variable, and L+
k the

d−dimensional k−th strictly ascending ladder height random

variable
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Ladder height distribution

α+(B) = P(L+
1 ∈ B), B ⊆ G , (16)

α0(B) =
1

α+(G )
α+(B), B ⊆ G . (17)

α+ is a defective distribution, while α0 a prob. distn. both

concentrated on G . Take M0 ≡ 0; define

Mn(ω) =
n∑

j=1

Lj(ω), M(ω) =
∞∑
j=1

Lj(ω)

note that Mn(ω) = Y (0)(τn(ω), ω), if τn(ω) <∞ and

Mn(ω) = Mn−1(ω) if τn(ω) =∞. Thanks to (NPC) (H7), M is

finite with prob. 1
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Pollaczek-Khinchine formula

β(ω) = inf{k ≥ 1 : τk(ω) = +∞} = inf{k ≥ 1 : Lk(ω) = 0}

Theorem

Assume (H1)-(H7). Denote p , P(Û1 ∈ G ) = P(−R−1U1 ∈ G );

note that 0 < p < 1. Then (β − 1) has Geom.(1− p) distn.,

α+(G ) = p, and M has geometric compound distn.

νM(B) = (1− p)δ0(B) +
∞∑
k=1

(1− p)pkα
∗(k)
0 (B), (18)

B ⊆ {0} ∪ G . Also ruin probability for insurance network is

P(%(a) <∞) = P(M � R−1a)

= (1− p)
∞∑
n=1

α
∗(n)
+ ({x � R−1a}), a ∈ G (19)
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P-K formula: contd.

Theorem

Assume (H1)-(H7). Set Û+
k = Ûk restricted to {Ûk ∈ G}

µ+(B) = P(Û+
1 ∈ B) = P(Û1 ∈ B), B ⊆ G (20)

µ+ is a defective distn. with 0 < p = µ+(G ) < 1. Let

µ0(·) = 1
pµ+(·). Define the compound geometric

ν(B) = (1− p)δ0(B) +
∞∑
k=1

(1− p)pkµ
∗(k)
0 (B). (21)

Then the following hold:

(i) (σbd − 1) has Geom.(1− p) distn.; hence σbd =d β.
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P-K formula: contd.

Theorem

(ii) ν is a prob. measure concentrated on {0} ∪ G , s.t.

(maxk<σbd Wk) =d W (σbd − 1) =d ν. Also, on [0, σbd), Wn

converges in distribution to W (σbd − 1).

(iii) M =d maxk<σbd Wk , and hence νM = ν.

(iv) Û+
1 =d L+

1 ; so µ+ is the d−diml ladder height distn. i.e.,

P(L+
1 ∈ B) = P(−R−1(cA1 − X1) ∈ B), B ⊆ G . (22)

(v) For a ∈ G ,

P(%(a) <∞) =
∞∑
k=1

(1− p)µ
∗(k)
+ ({x � R−1a}). (23)
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