Nearest neighbor classification in metric spaces: universal consistency and rates of convergence

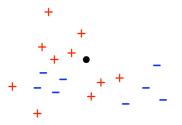
> Sanjoy Dasgupta University of California, San Diego

Nearest neighbor

The primeval approach to classification. Given:

- ▶ a training set $\{(x_1, y_1), \dots, (x_n, y_n)\}$ consisting of data points $x_i \in \mathcal{X}$ and their labels $y_i \in \{0, 1\}$
- a query point x

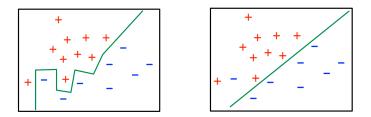
predict the label of x by looking at its nearest neighbor among the x_i .



How accurate is this method? What kinds of data is it well-suited to?

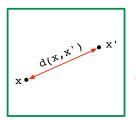
A nonparametric estimator

Contrast with *linear classifiers*, which are also simple and general-purpose.



- Expressivity: what kinds of decision boundary can it produce?
- Consistency: as the number of points n increases, does the decision boundary converge?
- Rates of convergence: how fast does this convergence occur, as a function of n?
- Style of analysis.

The data space



Data points lie in a space \mathcal{X} with distance function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.

- Most common scenario: $\mathcal{X} = \mathbb{R}^p$ and *d* is Euclidean distance.
- Our setting: (\mathcal{X}, d) is a *metric space*.
 - ℓ_p distances
 - Metrics obtained from user preferences/feedback
- Also of interest: more general distances.
 - KL divergence
 - Domain-specific dissimilarity measures

Statistical learning theory setup

Training points come from the same source as future query points:

- Underlying measure μ on \mathcal{X} from which all points are generated.
- We call (\mathcal{X}, d, μ) a metric measure space.
- Label of x is a coin flip with bias $\eta(x) = \Pr(Y = 1 | X = x)$.

A classifier is a rule $h : \mathcal{X} \to \{0, 1\}$.

- Misclassification rate, or risk: $R(h) = \Pr(h(X) \neq Y)$.
- The Bayes-optimal classifier

$$h^*(x) = \left\{ egin{array}{cc} 1 & ext{if } \eta(x) > 1/2 \ 0 & ext{otherwise} \end{array}
ight.$$

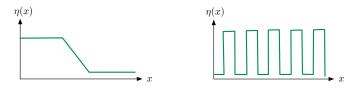
has minimum risk, $R^* = R(h^*) = \mathbb{E}_X \min(\eta(X), 1 - \eta(X)).$

Questions of interest

Let h_n be a classifier based on n labeled data points from the underlying distribution. $R(h_n)$ is a random variable.

- **Consistency**: does $R(h_n)$ converge to R^* ?
- Rates of convergence: how fast does convergence occur?

The smoothness of $\eta(x) = \Pr(Y = 1 | X = x)$ matters:



Questions of interest:

- Consistency without assumptions?
- A suitable smoothness assumption, and rates?
- Rates without assumptions, using distribution-specific quantities?

Talk outline

- 1. Consistency without assumptions
- 2. Rates of convergence under smoothness
- 3. General rates of convergence
- 4. Open problems

Consistency

Given n data points $(x_1, y_1), \ldots, (x_n, y_n)$, how to answer a query x?

- ▶ 1-NN returns the label of the nearest neighbor of x amongst the x_i .
- k-NN returns the majority vote of the k nearest neighbors.
- k_n -NN lets k grow with n.

1-NN and k-NN are not, in general, consistent.

E.g. $\mathcal{X} = \mathbb{R}$ and $\eta(x) \equiv \eta_o < 1/2$. Every label is a coin flip with bias η_o .

- Bayes risk is $R^* = \eta_o$ (always predict 0).
- ▶ 1-NN risk: what is the probability that two coins of bias η_o disagree? $\mathbb{E}R(h_n) = 2\eta_o(1 - \eta_o) > \eta_o$.
- And k-NN has risk $\mathbb{E}R(h_n) = \eta_o + f(k)$.

Henceforth h_n denotes the k_n -classifier, where $k_n \rightarrow \infty$.

Consistency results under continuity Assume $\eta(x) = P(Y = 1 | X = x)$ is continuous. Let h_n be the k_n -classifier, with $k_n \uparrow \infty$ and $k_n/n \downarrow 0$.

- Fix and Hodges (1951): Consistent in \mathbb{R}^{p} .
- ► Cover-Hart (1965, 1967, 1968): Consistent in any metric space.

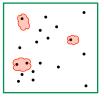
Proof outline: Let x be a query point and let $x_{(1)}, \ldots, x_{(n)}$ denote the training points ordered by increasing distance from x.

- Therefore x₍₁₎,..., x_(kn) lie in a ball centered at x of probability mass ≈ k_n/n. Since k_n/n↓0, we have x₍₁₎,..., x_(kn) → x.
- ▶ By continuity, $\eta(x_{(1)}), \ldots, \eta(x_{(k_n)}) \rightarrow \eta(x)$.
- By law of large numbers, when tossing many coins of bias roughly η(x), the fraction of 1s will be approximately η(x). Thus the majority vote of their labels will approach h^{*}(x).

Universal consistency in \mathbb{R}^p

Stone (1977): consistency in \mathbb{R}^p assuming only measurability.

Lusin's thm: for any measurable η , for any $\epsilon > 0$, there is a continuous function that differs from it on at most ϵ fraction of points.



Training points in the red region can cause trouble. What fraction of query points have one of these as their nearest neighbor?

Geometric result: pick any set of points in \mathbb{R}^p . Then any one point is the NN of at most 5^p other points.

An alternative sufficient condition for arbitrary metric measure spaces (\mathcal{X}, d, μ) : that the fundamental theorem of calculus holds.

Universal consistency in metric spaces

Query x; training points by increasing distance from x are $x_{(1)}, \ldots, x_{(n)}$.

- 1. Earlier argument: under continuity, $\eta(x_{(1)}), \ldots, \eta(x_{(k_n)}) \to \eta(x)$. In this case, the k_n -NN are coins of roughly the same bias as x.
- 2. It suffices that $\operatorname{average}(\eta(x_{(1)}), \ldots, \eta(x_{(k_n)})) \to \eta(x)$.
- x₍₁₎,..., x_(k_n) lie in some ball B(x, r).
 For suitable r, they are random draws from μ restricted to B(x, r).
- 4. $\operatorname{average}(\eta(x_{(1)}), \ldots, \eta(x_{(k_n)}))$ is close to the average η in this ball:

$$\frac{1}{\mu(B(x,r))}\int_{B(x,r)}\eta \ d\mu.$$

5. As *n* grows, this ball B(x, r) shrinks. Thus it is enough that

$$\lim_{r\downarrow 0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} \eta \ d\mu = \eta(x).$$

In \mathbb{R}^{p} , this is Lebesgue's differentiation theorem.

Universal consistency in metric spaces

Let (\mathcal{X}, d, μ) be a metric measure space in which the Lebesgue differentiation property holds: for any bounded measurable f,

$$\lim_{r\downarrow 0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}f d\mu = f(x)$$

for almost all (μ -a.e.) $x \in \mathcal{X}$.

- If $k_n \to \infty$ and $k_n/n \to 0$, then $R_n \to R^*$ in probability.
- If in addition $k_n / \log n \to \infty$, then $R_n \to R^*$ almost surely.

Examples of such spaces: finite-dimensional normed spaces; doubling metric measure spaces.

Talk outline

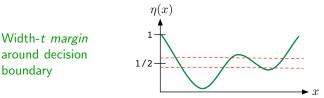
- 1. Consistency without assumptions
- 2. Rates of convergence under smoothness
- 3. General rates of convergence
- 4. Open problems

Smoothness and margin conditions

The usual smoothness condition in R^p: η is α-Holder continuous if for some constant L, for all x, x',

$$|\eta(x) - \eta(x')| \le L ||x - x'||^{lpha}.$$

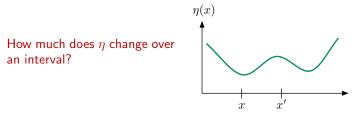
Mammen-Tsybakov β-margin condition: For some constant C, for any t, we have µ({x : |η(x) − 1/2| ≤ t}) ≤ Ct^β.



Audibert-Tsybakov: Suppose these two conditions hold, and that μ is supported on a *regular* set with 0 < μ_{min} < μ < μ_{max}. Then ER_n − R^{*} is Ω(n^{-α(β+1)/(2α+p)}).

Under these conditions, for suitable (k_n) , this rate is achieved by k_n -NN.

A better smoothness condition for NN



- The usual notions relate this to |x x'|.
- ► For NN: more sensible to relate to µ([x, x']).

We will say η is α -smooth in metric measure space (\mathcal{X}, d, μ) if for some constant *L*, for all $x \in \mathcal{X}$ and r > 0,

$$|\eta(x) - \eta(B(x,r))| \leq L \mu(B(x,r))^{lpha},$$

where $\eta(B) = \text{average } \eta$ in ball $B = \frac{1}{\mu(B)} \int_B \eta \ d\mu$.

 η is α -Holder continuous in \mathbb{R}^p , μ bounded below $\Rightarrow \eta$ is (α/p) -smooth.

Rates of convergence under smoothness

Let $h_{n,k}$ denote the k-NN classifier based on n training points. Let h^* be the Bayes-optimal classifier.

Suppose η is α -smooth in (\mathcal{X}, d, μ) . Then for any n, k,

1. For any $\delta > 0$, with probability at least $1 - \delta$ over the training set, $\Pr_X(h_{n,k}(X) \neq h^*(X)) \leq \delta + \mu(\{x : |\eta(x) - \frac{1}{2}| \leq C_1 \sqrt{\frac{1}{k} \ln \frac{1}{\delta}}\})$ under the choice $k \propto n^{2\alpha/(2\alpha+1)}$.

2.
$$\mathbb{E}_n \Pr_X(h_{n,k}(X) \neq h^*(X)) \geq C_2 \mu(\{x : |\eta(x) - \frac{1}{2}| \leq C_3 \sqrt{\frac{1}{k}}\}).$$

These upper and lower bounds are qualitatively similar for *all* smooth conditional probability functions:

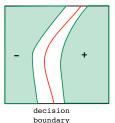
the probability mass of the width- $\frac{1}{\sqrt{k}}$ margin around the decision boundary.

Talk outline

- 1. Consistency without assumptions
- 2. Rates of convergence under smoothness
- 3. General rates of convergence
- 4. Open problems

General rates of convergence

For sample size *n*, can identify positive and negative regions that will reliably be classified:



Probability-radius: Grow a ball around x until probability mass ≥ p:

$$r_p(x) = \inf\{r : \mu(B(x,r)) \ge p\}.$$

Probability-radius of interest: p = k/n.

Reliable positive region:

$$\mathcal{X}^+_{
ho,\Delta} = \{x: \eta(B(x,r)) \geq rac{1}{2} + \Delta ext{ for all } r \leq r_
ho(x)\}$$

where $\Delta \approx 1/\sqrt{k}$. Likewise negative region, $\mathcal{X}^{-}_{p,\Delta}$.

• Effective boundary: $\partial_{\rho,\Delta} = \mathcal{X} \setminus (\mathcal{X}^+_{\rho,\Delta} \cup \mathcal{X}^-_{\rho,\Delta}).$

Roughly, $\Pr_X(h_{n,k}(X) \neq h^*(X)) \leq \mu(\partial_{p,\Delta})$.

Open problems

- 1. Necessary and sufficient conditions for universal consistency in metric measure spaces.
- 2. Consistency in more general topological spaces.
- 3. Extension to countably infinite label spaces.
- 4. Applications of convergence rates: active learning, domain adaptation, ...

Thanks

To my co-author Kamalika Chaudhuri and to the National Science Foundation for support under grant IIS-1162581.