
Nearest neighbor classification in metric spaces:
universal consistency and rates of convergence

Sanjoy Dasgupta
University of California, San Diego



Nearest neighbor

The primeval approach to classification. Given:

I a training set {(x1, y1), . . . , (xn, yn)} consisting of data points
xi ∈ X and their labels yi ∈ {0, 1}

I a query point x

predict the label of x by looking at its nearest neighbor among the xi .
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How accurate is this method? What kinds of data is it well-suited to?



A nonparametric estimator

Contrast with linear classifiers, which are also simple and general-purpose.
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I Expressivity: what kinds of decision boundary can it produce?

I Consistency: as the number of points n increases, does the
decision boundary converge?

I Rates of convergence: how fast does this convergence occur, as a
function of n?

I Style of analysis.



The data space
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Data points lie in a space X with distance
function d : X × X → R.

I Most common scenario: X = Rp and d is Euclidean distance.

I Our setting: (X , d) is a metric space.

I `p distances
I Metrics obtained from user preferences/feedback

I Also of interest: more general distances.

I KL divergence
I Domain-specific dissimilarity measures



Statistical learning theory setup

Training points come from the same source as future query points:

I Underlying measure µ on X from which all points are generated.

I We call (X , d , µ) a metric measure space.

I Label of x is a coin flip with bias η(x) = Pr(Y = 1|X = x).

A classifier is a rule h : X → {0, 1}.
I Misclassification rate, or risk: R(h) = Pr(h(X ) 6= Y ).

I The Bayes-optimal classifier

h∗(x) =

{
1 if η(x) > 1/2
0 otherwise

,

has minimum risk, R∗ = R(h∗) = EX min(η(X ), 1− η(X )).



Questions of interest
Let hn be a classifier based on n labeled data points from the underlying
distribution. R(hn) is a random variable.

I Consistency: does R(hn) converge to R∗?

I Rates of convergence: how fast does convergence occur?

The smoothness of η(x) = Pr(Y = 1|X = x) matters:
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Questions of interest:

I Consistency without assumptions?

I A suitable smoothness assumption, and rates?

I Rates without assumptions, using distribution-specific quantities?



Talk outline

1. Consistency without assumptions

2. Rates of convergence under smoothness

3. General rates of convergence

4. Open problems



Consistency

Given n data points (x1, y1), . . . , (xn, yn), how to answer a query x?

I 1-NN returns the label of the nearest neighbor of x amongst the xi .

I k-NN returns the majority vote of the k nearest neighbors.

I kn-NN lets k grow with n.

1-NN and k-NN are not, in general, consistent.

E.g. X = R and η(x) ≡ ηo < 1/2. Every label is a coin flip with bias ηo .

I Bayes risk is R∗ = ηo (always predict 0).

I 1-NN risk: what is the probability that two coins of bias ηo disagree?

ER(hn) = 2ηo(1− ηo) > ηo .

I And k-NN has risk ER(hn) = ηo + f (k).

Henceforth hn denotes the kn-classifier, where kn →∞.



Consistency results under continuity
Assume η(x) = P(Y = 1|X = x) is continuous.
Let hn be the kn-classifier, with kn ↑ ∞ and kn/n ↓ 0.

I Fix and Hodges (1951): Consistent in Rp.

I Cover-Hart (1965, 1967, 1968): Consistent in any metric space.

Proof outline: Let x be a query point and let x(1), . . . , x(n) denote the
training points ordered by increasing distance from x .

Training points are drawn from µ, so the number of
them in any ball B is roughly nµ(B).

I Therefore x(1), . . . , x(kn) lie in a ball centered at x of probability
mass ≈ kn/n. Since kn/n ↓ 0, we have x(1), . . . , x(kn) → x .

I By continuity, η(x(1)), . . . , η(x(kn))→ η(x).

I By law of large numbers, when tossing many coins of bias roughly
η(x), the fraction of 1s will be approximately η(x). Thus the
majority vote of their labels will approach h∗(x).



Universal consistency in Rp

Stone (1977): consistency in Rp assuming only measurability.

Lusin’s thm: for any measurable η, for any ε > 0, there is a continuous
function that differs from it on at most ε fraction of points.

Training points in the red region can cause
trouble. What fraction of query points have
one of these as their nearest neighbor?

Geometric result: pick any set of points in Rp. Then any one point is the
NN of at most 5p other points.

An alternative sufficient condition for arbitrary metric measure spaces

(X , d , µ): that the fundamental theorem of calculus holds.



Universal consistency in metric spaces
Query x ; training points by increasing distance from x are x(1), . . . , x(n).

1. Earlier argument: under continuity, η(x(1)), . . . , η(x(kn))→ η(x).

In this case, the kn-NN are coins of roughly the same bias as x .

2. It suffices that average(η(x(1)), . . . , η(x(kn)))→ η(x).

3. x(1), . . . , x(kn) lie in some ball B(x , r).

For suitable r , they are random draws from µ restricted to B(x , r).

4. average(η(x(1)), . . . , η(x(kn))) is close to the average η in this ball:

1

µ(B(x , r))

∫
B(x,r)

η dµ.

5. As n grows, this ball B(x , r) shrinks. Thus it is enough that

lim
r↓0

1

µ(B(x , r))

∫
B(x,r)

η dµ = η(x).

In Rp, this is Lebesgue’s differentiation theorem.



Universal consistency in metric spaces

Let (X , d , µ) be a metric measure space in which the Lebesgue
differentiation property holds: for any bounded measurable f ,

lim
r↓0

1

µ(B(x , r))

∫
B(x ,r)

f dµ = f (x)

for almost all (µ-a.e.) x ∈ X .

I If kn →∞ and kn/n→ 0, then Rn → R∗ in probability.

I If in addition kn/ log n→∞, then Rn → R∗ almost surely.

Examples of such spaces: finite-dimensional normed spaces;
doubling metric measure spaces.
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Smoothness and margin conditions

I The usual smoothness condition in Rp: η is α-Holder continuous if
for some constant L, for all x , x ′,

|η(x)− η(x ′)| ≤ L‖x − x ′‖α.

I Mammen-Tsybakov β-margin condition: For some constant C , for
any t, we have µ ({x : |η(x)− 1/2| ≤ t}) ≤ Ctβ .

Width-t margin
around decision
boundary
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I Audibert-Tsybakov: Suppose these two conditions hold, and that µ
is supported on a regular set with 0 < µmin < µ < µmax . Then
ERn − R∗ is Ω(n−α(β+1)/(2α+p)).

Under these conditions, for suitable (kn), this rate is achieved by kn-NN.



A better smoothness condition for NN

How much does η change over
an interval?

⌘(x)

x x0

I The usual notions relate this to |x − x ′|.
I For NN: more sensible to relate to µ([x , x ′]).

We will say η is α-smooth in metric measure space (X , d , µ) if for
some constant L, for all x ∈ X and r > 0,

|η(x)− η(B(x , r))| ≤ Lµ(B(x , r))α,

where η(B) = average η in ball B = 1
µ(B)

∫
B
η dµ.

η is α-Holder continuous in Rp, µ bounded below ⇒ η is (α/p)-smooth.



Rates of convergence under smoothness

Let hn,k denote the k-NN classifier based on n training points.
Let h∗ be the Bayes-optimal classifier.

Suppose η is α-smooth in (X , d , µ). Then for any n, k ,

1. For any δ > 0, with probability at least 1− δ over the training set,

PrX (hn,k(X ) 6= h∗(X )) ≤ δ + µ({x : |η(x)− 1
2 | ≤ C1

√
1
k ln 1

δ})
under the choice k ∝ n2α/(2α+1).

2. En PrX (hn,k(X ) 6= h∗(X )) ≥ C2 µ({x : |η(x)− 1
2 | ≤ C3

√
1
k }).

These upper and lower bounds are qualitatively similar for all smooth

conditional probability functions:

the probability mass of the width- 1√
k

margin around the

decision boundary.
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General rates of convergence

For sample size n, can identify positive and
negative regions that will reliably be classified:

+

decision
boundary

-

I Probability-radius: Grow a ball around x until probability mass ≥ p:

rp(x) = inf{r : µ(B(x , r)) ≥ p}.

Probability-radius of interest: p = k/n.

I Reliable positive region:

X+
p,∆ = {x : η(B(x , r)) ≥ 1

2
+ ∆ for all r ≤ rp(x)}

where ∆ ≈ 1/
√
k. Likewise negative region, X−p,∆.

I Effective boundary: ∂p,∆ = X \ (X+
p,∆ ∪ X

−
p,∆).

Roughly, PrX (hn,k(X ) 6= h∗(X )) ≤ µ(∂p,∆).



Open problems

1. Necessary and sufficient conditions for universal consistency in
metric measure spaces.

2. Consistency in more general topological spaces.

3. Extension to countably infinite label spaces.

4. Applications of convergence rates: active learning, domain
adaptation, . . .
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