# Some New Results on the Geometry of Random Fields 

Sreekar Vadlamani, TIFR-CAM<br>(joint with Domenico Marinucci, U. of Rome-2)

September 9, 2014

## Buffon's needle

- A needle of length $L_{1}$ is dropped randomly on a ruled surface with $d$ being the distance between any two adjacent lines.


## Buffon's needle

- A needle of length $L_{1}$ is dropped randomly on a ruled surface with $d$ being the distance between any two adjacent lines. Let $X_{1}$ be the number of intersections of the needle with the ruled surface.


## Buffon's needle

- A needle of length $L_{1}$ is dropped randomly on a ruled surface with $d$ being the distance between any two adjacent lines.
Let $X_{1}$ be the number of intersections of the needle with the ruled surface.
- What is $\mathbb{E}\left(X_{1}\right)$ ?


## Buffon's needle

- A needle of length $L_{1}$ is dropped randomly on a ruled surface with $d$ being the distance between any two adjacent lines. Let $X_{1}$ be the number of intersections of the needle with the ruled surface.
- What is $\mathbb{E}\left(X_{1}\right)$ ? Clearly,

$$
\mathbb{E}\left(X_{1}\right)=\sum_{n \geq 0} n p_{n}=f\left(L_{1}\right) \quad \text { (the only parameter in the problem) }
$$

where $p_{n}$ is the probability of $n$ intersections.

## Buffon's needle

- A needle of length $L_{1}$ is dropped randomly on a ruled surface with $d$ being the distance between any two adjacent lines. Let $X_{1}$ be the number of intersections of the needle with the ruled surface.
- What is $\mathbb{E}\left(X_{1}\right)$ ? Clearly,

$$
\mathbb{E}\left(X_{1}\right)=\sum_{n \geq 0} n p_{n}=f\left(L_{1}\right) \quad \text { (the only parameter in the problem) }
$$

where $p_{n}$ is the probability of $n$ intersections.

- Repeat the experiment with another needle of length $L_{2}$, and let $X_{2}$ the number of its intersections with the ruled surface.


## Buffon's needle

- A needle of length $L_{1}$ is dropped randomly on a ruled surface with $d$ being the distance between any two adjacent lines. Let $X_{1}$ be the number of intersections of the needle with the ruled surface.
- What is $\mathbb{E}\left(X_{1}\right)$ ? Clearly,

$$
\mathbb{E}\left(X_{1}\right)=\sum_{n \geq 0} n p_{n}=f\left(L_{1}\right) \quad \text { (the only parameter in the problem) }
$$

where $p_{n}$ is the probability of $n$ intersections.

- Repeat the experiment with another needle of length $L_{2}$, and let $X_{2}$ the number of its intersections with the ruled surface. Question: what is the mean of total number of intersections of needles $L_{1}$ and $L_{2}$ ?


## Buffon's needle

- A needle of length $L_{1}$ is dropped randomly on a ruled surface with $d$ being the distance between any two adjacent lines. Let $X_{1}$ be the number of intersections of the needle with the ruled surface.
- What is $\mathbb{E}\left(X_{1}\right)$ ? Clearly,

$$
\mathbb{E}\left(X_{1}\right)=\sum_{n \geq 0} n p_{n}=f\left(L_{1}\right) \quad \text { (the only parameter in the problem) }
$$

where $p_{n}$ is the probability of $n$ intersections.

- Repeat the experiment with another needle of length $L_{2}$, and let $X_{2}$ the number of its intersections with the ruled surface. Question: what is the mean of total number of intersections of needles $L_{1}$ and $L_{2}$ ? Answer: $\mathbb{E}\left(X_{1}+X_{2}\right)=f\left(L_{1}\right)+f\left(L_{2}\right)$ (by linearity).


## Buffon's needle

- A needle of length $L_{1}$ is dropped randomly on a ruled surface with $d$ being the distance between any two adjacent lines. Let $X_{1}$ be the number of intersections of the needle with the ruled surface.
- What is $\mathbb{E}\left(X_{1}\right)$ ? Clearly,

$$
\mathbb{E}\left(X_{1}\right)=\sum_{n \geq 0} n p_{n}=f\left(L_{1}\right) \quad \text { (the only parameter in the problem) }
$$

where $p_{n}$ is the probability of $n$ intersections.

- Repeat the experiment with another needle of length $L_{2}$, and let $X_{2}$ the number of its intersections with the ruled surface. Question: what is the mean of total number of intersections of needles $L_{1}$ and $L_{2}$ ? Answer: $\mathbb{E}\left(X_{1}+X_{2}\right)=f\left(L_{1}\right)+f\left(L_{2}\right)$ (by linearity).
- What if the needles were welded together? Will the mean of the total number of intersections change?


## Buffon's needle

- A needle of length $L_{1}$ is dropped randomly on a ruled surface with $d$ being the distance between any two adjacent lines. Let $X_{1}$ be the number of intersections of the needle with the ruled surface.
- What is $\mathbb{E}\left(X_{1}\right)$ ? Clearly,

$$
\mathbb{E}\left(X_{1}\right)=\sum_{n \geq 0} n p_{n}=f\left(L_{1}\right) \quad \text { (the only parameter in the problem) }
$$

where $p_{n}$ is the probability of $n$ intersections.

- Repeat the experiment with another needle of length $L_{2}$, and let $X_{2}$ the number of its intersections with the ruled surface. Question: what is the mean of total number of intersections of needles $L_{1}$ and $L_{2}$ ? Answer: $\mathbb{E}\left(X_{1}+X_{2}\right)=f\left(L_{1}\right)+f\left(L_{2}\right)$ (by linearity).
- What if the needles were welded together? Will the mean of the total number of intersections change? No!


## Buffon's needle

- Generalization: Additivity + limiting argument $\Rightarrow$ the average number of intersections of a randomly dropped rigid piece of (curved) wire is directly proportional to the length of the wire.


## Buffon's needle

- Generalization: Additivity + limiting argument $\Rightarrow$ the average number of intersections of a randomly dropped rigid piece of (curved) wire is directly proportional to the length of the wire. Curvature does not play any role!


## Buffon's needle

- Generalization: Additivity + limiting argument $\Rightarrow$ the average number of intersections of a randomly dropped rigid piece of (curved) wire is directly proportional to the length of the wire. Curvature does not play any role! The proportionality constant can be found to be $\frac{2}{\pi d}$ (by choosing the piece of wire to be a circle with diameter $d$ ).


## Buffon's needle

- Generalization: Additivity + limiting argument $\Rightarrow$ the average number of intersections of a randomly dropped rigid piece of (curved) wire is directly proportional to the length of the wire. Curvature does not play any role! The proportionality constant can be found to be $\frac{2}{\pi d}$ (by choosing the piece of wire to be a circle with diameter $d$ ).
- This rather non-probabilistic proof of Buffon's needle problem was given by Barbier (1860)


## Buffon's needle

- Generalization: Additivity + limiting argument $\Rightarrow$ the average number of intersections of a randomly dropped rigid piece of (curved) wire is directly proportional to the length of the wire. Curvature does not play any role! The proportionality constant can be found to be $\frac{2}{\pi d}$ (by choosing the piece of wire to be a circle with diameter $d$ ).
- This rather non-probabilistic proof of Buffon's needle problem was given by Barbier (1860)

A little different setup: $\operatorname{Graff}(2,1)$ - the space of lines.

## Theorem (Sylvester (1890))

Consider a piecewise smooth curve $C$ of length L. Then,

$$
\int_{G r a f f(2,1)} \#(C \cap \ell) d \lambda_{2,1}(\ell) \propto L
$$

where $\lambda_{2,1}$ is the rigid motions invariant measure on $\operatorname{Graff}(2,1)$. Also, notice that if $C=\partial K$ for some compact $K \subset \mathbb{R}^{2}$ then writing $D$ for the set of all straight lines that meet $K$

$$
\int_{G r a f f(2,1)} \#(C \cap \ell) d \lambda_{2,1}(\ell)=2 \lambda_{2,1}(D)
$$

A little different setup: $\operatorname{Graff}(2,1)$ - the space of lines.

## Theorem (Sylvester (1890))

Consider a piecewise smooth curve $C$ of length L. Then,

$$
\int_{G r a f f(2,1)} \#(C \cap \ell) d \lambda_{2,1}(\ell) \propto L
$$

where $\lambda_{2,1}$ is the rigid motions invariant measure on $\operatorname{Graff}(2,1)$. Also, notice that if $C=\partial K$ for some compact $K \subset \mathbb{R}^{2}$ then writing $D$ for the set of all straight lines that meet $K$

$$
\int_{\operatorname{Graff}(2,1)} \#(C \cap \ell) d \lambda_{2,1}(\ell)=2 \lambda_{2,1}(D)
$$

What about generalizations of this to higher dimensions?
Crofton's formula

- In 2-dimensions we looked at the average number of intersections. What should be higher dimensional geometric functionals to consider?
- In 2-dimensions we looked at the average number of intersections. What should be higher dimensional geometric functionals to consider?
- Natural candidates: rigid motion invariant, additive and monotone set functionals.
- In 2-dimensions we looked at the average number of intersections. What should be higher dimensional geometric functionals to consider?
- Natural candidates: rigid motion invariant, additive and monotone set functionals.
- Hadwiger (1957): There exist $(n+1)$ geometric functionals which form a basis for all rigid motion invariant, additive, monotone set functionals. These geometric functionals are called Lipschitz-Killing curvatures (LKCs) / Minkowski functionals.


## The setup: some geometric functionals

- In 2-dimensions we looked at the average number of intersections. What should be higher dimensional geometric functionals to consider?
- Natural candidates: rigid motion invariant, additive and monotone set functionals.
- Hadwiger (1957): There exist $(n+1)$ geometric functionals which form a basis for all rigid motion invariant, additive, monotone set functionals. These geometric functionals are called Lipschitz-Killing curvatures (LKCs) / Minkowski functionals.
- How does one characterize LKCs? $\longrightarrow$ A tube formula
- Let $A$ be a smooth subset of $\mathbb{R}^{n}$, with $\lambda_{n}$ as the $n$-dimensional Euclidean measure.
- Let

$$
\text { Tube }(A, \rho)=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}(x, A) \leq \rho\right\}
$$

Then Weyl's tube formula is given by:


$$
\lambda_{n}(\operatorname{Tube}(A, \rho))=\sum_{i=0}^{\operatorname{dim}(A)} \omega_{n-i} \rho^{n-i} \mathcal{L}_{i}(A),
$$

$\left(\mathcal{L}_{i}(A)\right)_{i=1}^{\operatorname{dim}(A)}=$ Lipschitz-Killing curvatures, and $\omega_{n-i}$ is the volume of a unit ball in $\mathbb{R}^{n-i}$.

## Lipschitz-Killing curvatures (LKCs): examples

- A box $B$ with dimensions $(a, b, c): \mathcal{L}_{0}(B)=1$, $\mathcal{L}_{1}(B)=(a+b+c), \mathcal{L}_{2}(B)=(a b+b c+a c), \mathcal{L}_{3}(B)=a b c$.
- A ball $B_{n}(r)$ of radius $r$ in $\mathbb{R}^{n}$ :

$$
\mathcal{L}_{j}\left(B_{n}(r)\right)=r^{j}\binom{n}{j} \frac{\omega_{n}}{\omega_{n-j}}
$$

- A sphere $S^{n-1}(r)$ of radius $r$ in $\mathbb{R}^{n}$ :

$$
\mathcal{L}_{j}\left(S^{n-1}(r)\right)=2 r^{j}\binom{n}{j} \frac{\omega_{n}}{\omega_{n-j}}
$$

for even values of $(n-j-1)$, and 0 otherwise.

- For a unit codimensional manifold, every alternate $\mathcal{L}_{i}$ vanishes.


## LKCs: properties

- For an m-dimensional subset $A \subset \mathbb{R}^{n}, \mathcal{L}_{0}(A)$ is its Euler-Poincaré characteristic, and $\mathcal{L}_{m}(A)$ is its m-dimensional volume.
- $\mathcal{L}_{i}$, of say a set $A$, is an intrinsic, integral geometric characteristics of the set.
- LKCs for a smooth Riemannian manifold $M$ can be defined as

$$
\mathcal{L}_{k}(M)=\int_{M} \operatorname{Tr}\left(R^{\frac{n-k}{2}}\right) \operatorname{Vol}_{g}
$$

whenever $\frac{n-k}{2}$ is an integer, and it is zero otherwise.

- Scaling: $\mathcal{L}_{k}(\lambda A)=\lambda^{k} \mathcal{L}_{k}(A)$.


## Crofton's formula (1860s)

- $\operatorname{Graff}(n, k)$ : affine Grassmannian, set of all $k$-dimensional subspaces of $\mathbb{R}^{n}$.


## Crofton's formula (1860s)

- $\operatorname{Graff}(n, k)$ : affine Grassmannian, set of all $k$-dimensional subspaces of $\mathbb{R}^{n}$.
- Equip $\operatorname{Graff}(n, k)$ with a measure $\lambda_{n, k}$, which is invariant under the set of rigid motions $E(n)$.


## Crofton's formula (1860s)

- $\operatorname{Graff}(n, k)$ : affine Grassmannian, set of all $k$-dimensional subspaces of $\mathbb{R}^{n}$.
- Equip $\operatorname{Graff}(n, k)$ with a measure $\lambda_{n, k}$, which is invariant under the set of rigid motions $E(n)$.
- This measure can be factored as $\nu_{k}^{n}$ on $\operatorname{Gr}(n, k)$ and Lebesgue measure on $\mathbb{R}^{n}$, and can be normalized so that

$$
\nu_{k}^{n}(\operatorname{Gr}(n, k))=\left[\begin{array}{l}
n \\
k
\end{array}\right]=\binom{n}{k} \frac{\omega_{n}}{\omega_{k} \omega_{n-k}} .
$$

## Crofton's formula (1860s)

- $\operatorname{Graff}(n, k)$ : affine Grassmannian, set of all $k$-dimensional subspaces of $\mathbb{R}^{n}$.
- Equip $\operatorname{Graff}(n, k)$ with a measure $\lambda_{n, k}$, which is invariant under the set of rigid motions $E(n)$.
- This measure can be factored as $\nu_{k}^{n}$ on $\operatorname{Gr}(n, k)$ and Lebesgue measure on $\mathbb{R}^{n}$, and can be normalized so that

$$
\nu_{k}^{n}(\operatorname{Gr}(n, k))=\left[\begin{array}{l}
n \\
k
\end{array}\right]=\binom{n}{k} \frac{\omega_{n}}{\omega_{k} \omega_{n-k}} .
$$

- Let $M \subset \mathbb{R}^{n}$, nice and compact, then we have

$$
\int_{\operatorname{Graff}(n, n-k)} \mathcal{L}_{j}(M \cap V) d \lambda_{n-k}^{n}(V)=\left[\begin{array}{c}
k+j \\
j
\end{array}\right] \mathcal{L}_{k+j}(M)
$$

## A Kinematic Formula

## A kinematic formula

- Consider two piecewise smooth curves $C_{1}$ and $C_{2}$ in $\mathbb{R}^{2}$.
- Let $G_{2}$ group of rigid motions, which is equivalent to $\mathbb{R}^{2} \times O(2)$, and is equipped with the obvious product measure $\nu$.
- Let $\phi\left(C_{1} \bigcap g C_{2}\right)$ be the Euler-Poincaré characteristic, which, in this simple case is equivalent to the number of points of intersection of the curves $C_{1}$ and $g C_{2}$.


## Theorem (Kinematic formula for curves (1912))

$$
\int_{G_{2}} \phi\left(C_{1} \cap g C_{2}\right) d \nu(g)=4 \mathcal{L}_{1}\left(C_{1}\right) \mathcal{L}_{1}\left(C_{2}\right)
$$

## Euclidean Kinematic Fundamental Formula (KFF)

- $G_{n}$ : isometry group on $\mathbb{R}^{n}$; isomorphic to $\mathbb{R}^{n} \times O(n)$.
- $\nu_{n}$ : a normalized measure on $G_{n}$, such that $\nu_{n}\left(g_{n} \in G_{n}: g_{n} x \in A\right)=\mathcal{H}_{n}(A)$, for any $x \in \mathbb{R}^{n}$ and $A \in \mathcal{B}\left(\mathbb{R}^{n}\right)$.
- Then for smooth $M_{1}$ and $M_{2}$, we have

$$
\begin{aligned}
& \int_{G_{n}} \mathcal{L}_{i}\left(M_{1} \cap g_{n} M_{2}\right) d \nu_{n}\left(g_{n}\right) \\
&=\sum_{j=0}^{n-i} \frac{s_{i+1} s_{n+1}}{s_{i+j+1} s_{n-j+1}} \mathcal{L}_{i+j}\left(M_{1}\right) \mathcal{L}_{n-j}\left(M_{2}\right)
\end{aligned}
$$

Gaussian Kinematic Fundamental Formula

## Gaussian geometric characteristics via a Gaussian tube formula

## Gaussian Minkowski functionals (GMFs): $\mathcal{M}_{j}^{\gamma_{n}}$

- Let $A$ be smooth subset of $\mathbb{R}^{n}$, with $\gamma_{n}(d x)=(2 \pi)^{-n / 2} e^{-\|x\|^{2} / 2} d x$, then the GMFs can be defined as

$$
\gamma_{n}(\text { Tube }(A, \rho))=\sum_{j=0}^{\infty} \frac{\rho^{j}}{j!} \mathcal{M}_{j}^{\gamma_{n}}(A),
$$

where Tube $(A, \rho)$ is a tube of radius $\rho$ around $A$.

- One can also define the GMFs as integral of some Hermite polynomials with respect to the measures induced by $\mathcal{L}_{i}$ 's, called the generalized curvature measures.


## A Gaussian Kinematic Formula (GKF)

- Let $M$ be an $m$-dimensional smooth manifold.
- Let $y_{1}, \ldots, y_{k}$ be i.i.d. Gaussian random fields on $M$.
- Let $F: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be twice differentiable, and define $f=F\left(y_{1}, y_{2}, \ldots, y_{k}\right)$. Then [Taylor (2006)]

$$
\mathbb{E}\left(\mathcal{L}_{0}\left(M \cap f^{-1}[u, \infty)\right)\right)=\sum_{j=0}^{n} c_{j} \mathcal{L}_{j}^{y}(M) \mathcal{M}_{j}^{\gamma_{k}}\left(F^{-1}[u, \infty)\right)
$$

where $\mathcal{L}_{j}^{y}(\cdot)$ are the LKCs defined w.r.t. the induced metric given by

$$
g^{y}(X, Y)=\mathbb{E}\left(X y_{1} \cdot Y_{y_{1}}\right)
$$

The metric induced by any $y_{i}$ is the same due to i.i.d. nature of $y_{i}$ 's

## A sneak peek into the proof of GKF

Define

$$
\mu_{k}=\#\left\{x \in M: f(x) \geq u, \quad \nabla f(x)=0, \quad \operatorname{index}\left(\nabla^{2} f(x)\right)=k\right\}
$$

Then,

$$
\mathbb{E}\left(\mathcal{L}_{0}\left(M \cap f^{-1}[u, \infty)\right)\right)=\mathbb{E}\left(\sum_{k=0}^{m}(-1)^{k} \mu_{k}\right)
$$

## A sneak peek into the proof of GKF

Define

$$
\mu_{k}=\#\left\{x \in M: f(x) \geq u, \quad \nabla f(x)=0, \quad \operatorname{index}\left(\nabla^{2} f(x)\right)=k\right\}
$$

Then,

$$
\begin{aligned}
& \mathbb{E}\left(\mathcal{L}_{0}\left(M \cap f^{-1}[u, \infty)\right)\right)=\mathbb{E}\left(\sum_{k=0}^{m}(-1)^{k} \mu_{k}\right) \\
= & \int_{M} \mathbb{E}\left\{\operatorname{Tr}\left(-\nabla^{2} f(x)\right)^{m} 1_{(f(x) \geq u)} \mid \nabla f(x)=0\right\} p_{\nabla f(x)}(0) d x \\
= & \int_{M} \mathbb{E}\left[1_{(f(x) \geq u)^{2}} \mathbb{E}\left\{\operatorname{Tr}\left(-\nabla^{2} f(x)\right)^{m} \mid f(x), \nabla f(x)=0\right\}\right] \\
& \times p_{\nabla f(x)}(0) d x
\end{aligned}
$$

## Sneak peek contd...

- Notice that $\left\{\nabla^{2} f \mid y, \nabla y\right\}$ is a Gaussian $(1,1)$ form and we have neat formulae available for its moments.


## Sneak peek contd...

- Notice that $\left\{\nabla^{2} f \mid y, \nabla y\right\}$ is a Gaussian $(1,1)$ form and we have neat formulae available for its moments.
- In general, if $W$ is a $(1,1)$ Gaussian form with mean and covariance are $\mu$ and $C$ respectively, then

$$
\mathbb{E}\left[W^{k}\right]=\sum_{j=0}^{\left\lfloor\frac{k}{2}\right\rfloor} \frac{k!}{(k-2 j)!j!2^{j}} \mu^{k-2 j} C^{j}
$$

## Sneak peek contd...

- Notice that $\left\{\nabla^{2} f \mid y, \nabla y\right\}$ is a Gaussian $(1,1)$ form and we have neat formulae available for its moments.
- In general, if $W$ is a $(1,1)$ Gaussian form with mean and covariance are $\mu$ and $C$ respectively, then

$$
\mathbb{E}\left[W^{k}\right]=\sum_{j=0}^{\left\lfloor\frac{k}{2}\right\rfloor} \frac{k!}{(k-2 j)!j!2^{j}} \mu^{k-2 j} C^{j}
$$

- $\mathbb{E}\left\{\nabla^{2} f \mid y, \nabla y\right\}=y^{*} \nabla^{2} F+I\langle\nabla F(y), y\rangle$


## Sneak peek contd...

- Notice that $\left\{\nabla^{2} f \mid y, \nabla y\right\}$ is a Gaussian $(1,1)$ form and we have neat formulae available for its moments.
- In general, if $W$ is a $(1,1)$ Gaussian form with mean and covariance are $\mu$ and $C$ respectively, then

$$
\mathbb{E}\left[W^{k}\right]=\sum_{j=0}^{\left\lfloor\frac{k}{2}\right\rfloor} \frac{k!}{(k-2 j)!j!2^{j}} \mu^{k-2 j} C^{j}
$$

- $\mathbb{E}\left\{\nabla^{2} f \mid y, \nabla y\right\}=y^{*} \nabla^{2} F+I\langle\nabla F(y), y\rangle$
- The conditional covariance $=-\left(I^{2}+2 R\right)\|\nabla F\|^{2}$, where $R$ is the Riemannian curvature tensor with respect to the induced metric.


## Sneak peek contd...

- Notice that $\left\{\nabla^{2} f \mid y, \nabla y\right\}$ is a Gaussian $(1,1)$ form and we have neat formulae available for its moments.
- In general, if $W$ is a $(1,1)$ Gaussian form with mean and covariance are $\mu$ and $C$ respectively, then

$$
\mathbb{E}\left[W^{k}\right]=\sum_{j=0}^{\left\lfloor\frac{k}{2}\right\rfloor} \frac{k!}{(k-2 j)!j!2^{j}} \mu^{k-2 j} C^{j}
$$

- $\mathbb{E}\left\{\nabla^{2} f \mid y, \nabla y\right\}=y^{*} \nabla^{2} F+I\langle\nabla F(y), y\rangle$
- The conditional covariance $=-\left(I^{2}+2 R\right)\|\nabla F\|^{2}$, where $R$ is the Riemannian curvature tensor with respect to the induced metric.
- Then need to go from conditioning on $(y, \nabla y)$ to conditioning on ( $f, \nabla f$ ), which involves another Gaussian computation (majorly technical).


## Sneak peek contd...

- Then some rearranging and identifying leads us to the GKF.


## Sneak peek contd...

- Then some rearranging and identifying leads us to the GKF.
- To see this, take a simple example of $k=1$ and $F(x)=x$.


## Sneak peek contd...

- Then some rearranging and identifying leads us to the GKF.
- To see this, take a simple example of $k=1$ and $F(x)=x$.
- In this case, the majorly technical step is not needed.


## Sneak peek contd...

- Then some rearranging and identifying leads us to the GKF.
- To see this, take a simple example of $k=1$ and $F(x)=x$.
- In this case, the majorly technical step is not needed.
- Then notice that we are left with integrals of trace of polynomials of $R$, which can readily be identified with LKCs, and the rest matches with the GMFs in each term of the polynomial.

Testing the Limits of Gaussian Kinematic Fundamental Formula

- Motivation: In some applications like diffusion MRI, and cosmic microwave background radiation, one can use multivariate Gaussian random fields, but the components often are NOT i.i.d.
- Motivation: In some applications like diffusion MRI, and cosmic microwave background radiation, one can use multivariate Gaussian random fields, but the components often are NOT i.i.d.
- We take a simple case of $m=k=2$. In particular, we take $M=\mathbb{S}^{2}$, with $g$ as the usual spherical metric.
- Motivation: In some applications like diffusion MRI, and cosmic microwave background radiation, one can use multivariate Gaussian random fields, but the components often are NOT i.i.d.
- We take a simple case of $m=k=2$. In particular, we take $M=\mathbb{S}^{2}$, with $g$ as the usual spherical metric.
- We assume $y_{1}$ and $y_{2}$ are isotropic independent Gaussian fields, but they are not identically distributed.
- Motivation: In some applications like diffusion MRI, and cosmic microwave background radiation, one can use multivariate Gaussian random fields, but the components often are NOT i.i.d.
- We take a simple case of $m=k=2$. In particular, we take $M=\mathbb{S}^{2}$, with $g$ as the usual spherical metric.
- We assume $y_{1}$ and $y_{2}$ are isotropic independent Gaussian fields, but they are not identically distributed.
- We still have:

$$
\begin{aligned}
& \mathbb{E}\left(\mathcal{L}_{0}\left(M \cap f^{-1}[u, \infty)\right)\right) \\
= & \int_{\mathbb{S}^{2}} \mathbb{E}\left[1_{(f(x) \geq u)} \mathbb{E}\left\{\operatorname{Tr}\left(-\nabla^{2} f(x)\right)^{2} \mid f(x), \nabla f(x)=0\right\}\right] \\
& \times p_{\nabla f(x)}(0) d x
\end{aligned}
$$

$\left\{\nabla^{2} f \mid y, \nabla y\right\}$ is still a Gaussian $(1,1)$ form, with mean

$$
y^{*} \nabla^{2} F(y)-\left(\sum_{k=1}^{2} \lambda_{2, k} y_{k} \frac{\partial F(y)}{\partial y_{k}}\right) I_{2},
$$

and covariance

$$
-\sum_{k=1}^{2} \lambda_{2, k}^{2}\left(\frac{\partial F(y)}{\partial y_{k}}\right)^{2} I_{2}^{2}-2 \sum_{k=1}^{2} \lambda_{2, k}\left(\frac{\partial F(y)}{\partial y_{k}}\right)^{2} R
$$

where $R$ is the Riemannian curvature tensor w.r.t. the spherical metric.

## A partial result

$$
\begin{aligned}
& \mathbb{E}\left(\mathcal{L}_{0}\left(M \cap f^{-1}[u, \infty)\right)\right) \\
= & \left(\sum_{\nu=1}^{k} \frac{1}{\lambda_{2, \nu}} \mathbb{E}\left[1_{(f>u)}\left(\frac{\partial F(y)}{\partial y_{\nu}}\right)^{2}\right]\right) p_{\nabla f}(0) 4 \pi \mathcal{L}_{0}(M) \\
& +\frac{1}{2} \sum_{i, j=1}^{2} \mathbb{E}\left[1 _ { ( f > 0 ) } \left(\mu^{2}(y, \nabla y)\left(E_{i}, E_{j}, E_{i}, E_{j}\right)\right.\right. \\
& -S_{\nabla F}^{T}\left(E_{i}, E_{i}\right) \Sigma_{M,(y, \nabla y)} \Sigma_{(y, \nabla y)}^{-1} \Sigma_{(y, \nabla y), M} S_{\nabla F}\left(E_{j}, E_{j}\right) \\
& \left.\left.+S_{\nabla F}^{T}\left(E_{i}, E_{j}\right) \Sigma_{M,(y, \nabla y)} \Sigma_{(y, \nabla y)}^{-1} \Sigma_{(y, \nabla y), M} S_{\nabla F}\left(E_{j}, E_{i}\right)\right)\right] p_{\nabla f f}(0) \mathcal{L}_{2}(M
\end{aligned}
$$

## A partial result

$$
\begin{aligned}
& \mathbb{E}\left(\mathcal{L}_{0}\left(M \cap f^{-1}[u, \infty)\right)\right) \\
= & \left(\sum_{\nu=1}^{k} \frac{1}{\lambda_{2, \nu}} \mathbb{E}\left[1_{(f>u)}\left(\frac{\partial F(y)}{\partial y_{\nu}}\right)^{2}\right]\right) p_{\nabla f}(0) 4 \pi \mathcal{L}_{0}(M) \\
& +\frac{1}{2} \sum_{i, j=1}^{2} \mathbb{E}\left[1 _ { ( f > 0 ) } \left(\mu^{2}(y, \nabla y)\left(E_{i}, E_{j}, E_{i}, E_{j}\right)\right.\right. \\
& -S_{\nabla F}^{T}\left(E_{i}, E_{i}\right) \Sigma_{M,(y, \nabla y)} \Sigma_{(y, \nabla y)}^{-1} \Sigma_{(y, \nabla y), M} S_{\nabla F}\left(E_{j}, E_{j}\right) \\
& \left.\left.+S_{\nabla F}^{T}\left(E_{i}, E_{j}\right) \Sigma_{M,(y, \nabla y)} \Sigma_{(y, \nabla y)}^{-1} \Sigma_{(y, \nabla y), M} S_{\nabla F}\left(E_{j}, E_{i}\right)\right)\right] p_{\nabla f f}(0) \mathcal{L}_{2}(M
\end{aligned}
$$

Good news: we still have a breakup of the two spaces (by possibly a bit of cheating)

## A partial result

$$
\begin{aligned}
& \mathbb{E}\left(\mathcal{L}_{0}\left(M \cap f^{-1}[u, \infty)\right)\right) \\
= & \left(\sum_{\nu=1}^{k} \frac{1}{\lambda_{2, \nu}} \mathbb{E}\left[1_{(f>u)}\left(\frac{\partial F(y)}{\partial y_{\nu}}\right)^{2}\right]\right) p_{\nabla f}(0) 4 \pi \mathcal{L}_{0}(M) \\
& +\frac{1}{2} \sum_{i, j=1}^{2} \mathbb{E}\left[1 _ { ( f > 0 ) } \left(\mu^{2}(y, \nabla y)\left(E_{i}, E_{j}, E_{i}, E_{j}\right)\right.\right. \\
& -S_{\nabla F}^{T}\left(E_{i}, E_{i}\right) \Sigma_{M,(y, \nabla y)} \Sigma_{(y, \nabla y)}^{-1} \Sigma_{(y, \nabla y), M} S_{\nabla F}\left(E_{j}, E_{j}\right) \\
& \left.\left.+S_{\nabla F}^{T}\left(E_{i}, E_{j}\right) \Sigma_{M,(y, \nabla y)} \Sigma_{(y, \nabla y)}^{-1} \Sigma_{(y, \nabla y), M} S_{\nabla F}\left(E_{j}, E_{i}\right)\right)\right] p_{\nabla f f}(0) \mathcal{L}_{2}(M
\end{aligned}
$$

Good news: we still have a breakup of the two spaces (by possibly a bit of cheating) Bad news: we are yet to figure out meaning of the coefficients of the LKCs.

## Thank you!

