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Buffon’s needle

A needle of length L1 is dropped randomly on a ruled surface
with d being the distance between any two adjacent lines.

Let X1 be the number of intersections of the needle with the
ruled surface.

What is E(X1)? Clearly,

E(X1) =
∑
n≥0

npn = f (L1) (the only parameter in the problem),

where pn is the probability of n intersections.

Repeat the experiment with another needle of length L2, and
let X2 the number of its intersections with the ruled surface.
Question: what is the mean of total number of intersections
of needles L1 and L2?
Answer: E(X1 + X2) = f (L1) + f (L2) (by linearity).

What if the needles were welded together? Will the mean of
the total number of intersections change? No!
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Buffon’s needle

Generalization: Additivity + limiting argument ⇒ the average
number of intersections of a randomly dropped rigid piece of
(curved) wire is directly proportional to the length of the wire.

Curvature does not play any role!
The proportionality constant can be found to be 2

πd (by
choosing the piece of wire to be a circle with diameter d).

This rather non-probabilistic proof of Buffon’s needle problem
was given by Barbier (1860)
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A little different setup: Graff(2, 1) – the space of lines.

Theorem (Sylvester (1890))

Consider a piecewise smooth curve C of length L. Then,∫
Graff(2,1)

#(C ∩ `) dλ2,1(`) ∝ L

where λ2,1 is the rigid motions invariant measure on Graff(2, 1).
Also, notice that if C = ∂K for some compact K ⊂ R2 then
writing D for the set of all straight lines that meet K∫

Graff(2,1)
#(C ∩ `) dλ2,1(`) = 2λ2,1(D)

What about generalizations of this to higher dimensions?
Crofton’s formula
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The setup: some geometric functionals

In 2-dimensions we looked at the average number of
intersections. What should be higher dimensional geometric
functionals to consider?

Natural candidates: rigid motion invariant, additive and
monotone set functionals.

Hadwiger (1957): There exist (n + 1) geometric functionals
which form a basis for all rigid motion invariant, additive,
monotone set functionals. These geometric functionals are
called Lipschitz-Killing curvatures (LKCs) / Minkowski
functionals.

How does one characterize LKCs? −→ A tube formula
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Tube formula

Let A be a smooth subset of Rn, with λn

as the n-dimensional Euclidean measure.

Let

Tube(A, ρ) = {x ∈ Rn : dist(x ,A) ≤ ρ}

Then Weyl’s tube formula is given by:

λn(Tube(A, ρ)) =

dim(A)∑
i=0

ωn−iρ
n−i Li (A),

(Li (A))
dim(A)
i=1 = Lipschitz–Killing curvatures, and ωn−i is the

volume of a unit ball in Rn−i .
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Lipschitz–Killing curvatures (LKCs): examples

A box B with dimensions (a, b, c): L0(B) = 1,
L1(B) = (a + b + c), L2(B) = (ab + bc + ac), L3(B) = abc.

A ball Bn(r) of radius r in Rn:

Lj (Bn(r)) = r j

(
n
j

)
ωn

ωn−j

A sphere Sn−1(r) of radius r in Rn:

Lj (Sn−1(r)) = 2r j

(
n
j

)
ωn

ωn−j
,

for even values of (n − j − 1), and 0 otherwise.

For a unit codimensional manifold, every alternate Li vanishes.
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LKCs: properties

For an m-dimensional subset A ⊂ Rn, L0(A) is its
Euler–Poincaré characteristic, and Lm(A) is its m-dimensional
volume.

Li , of say a set A, is an intrinsic, integral geometric
characteristics of the set.

LKCs for a smooth Riemannian manifold M can be defined as

Lk (M) =

∫
M

Tr
(

R
n−k

2

)
Volg

whenever n−k
2 is an integer, and it is zero otherwise.

Scaling: Lk (λA) = λkLk (A).
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Crofton’s formula (1860s)

Graff(n, k): affine Grassmannian, set of all k-dimensional
subspaces of Rn.

Equip Graff(n, k) with a measure λn,k , which is invariant
under the set of rigid motions E (n).

This measure can be factored as νn
k on Gr(n, k) and Lebesgue

measure on Rn, and can be normalized so that

νn
k (Gr(n, k)) =

[
n
k

]
=

(
n
k

)
ωn

ωkωn−k
.

Let M ⊂ Rn, nice and compact, then we have∫
Graff(n,n−k)

Lj (M ∩ V ) dλn
n−k(V ) =

[
k + j

j

]
Lk+j (M).
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A Kinematic Formula
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A kinematic formula

Consider two piecewise smooth curves C1 and C2 in R2.

Let G2 group of rigid motions, which is equivalent to
R2 ×O(2), and is equipped with the obvious product measure
ν.

Let φ(C1
⋂

gC2) be the Euler–Poincaré characteristic, which,
in this simple case is equivalent to the number of points of
intersection of the curves C1 and gC2.

Theorem (Kinematic formula for curves (1912))∫
G2

φ(C1 ∩ gC2) dν(g) = 4L1(C1)L1(C2)
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Euclidean Kinematic Fundamental Formula (KFF)

Gn: isometry group on Rn; isomorphic to Rn × O(n).

νn: a normalized measure on Gn, such that
νn(gn ∈ Gn : gnx ∈ A) = Hn(A), for any x ∈ Rn and
A ∈ B(Rn).

Then for smooth M1 and M2, we have∫
Gn

Li (M1 ∩ gnM2) dνn(gn)

=
n−i∑
j=0

si+1sn+1

si+j+1sn−j+1
Li+j (M1)Ln−j (M2)
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Gaussian Kinematic Fundamental Formula
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Gaussian geometric characteristics via a Gaussian tube
formula

Gaussian Minkowski functionals (GMFs): Mγn

j

Let A be smooth subset of Rn, with
γn(dx) = (2π)−n/2e−‖x‖

2/2dx , then the GMFs can be defined
as

γn(Tube(A, ρ)) =
∞∑

j=0

ρj

j!
Mγn

j (A),

where Tube(A, ρ) is a tube of radius ρ around A.

One can also define the GMFs as integral of some Hermite
polynomials with respect to the measures induced by Li ’s,
called the generalized curvature measures .
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A Gaussian Kinematic Formula (GKF)

Let M be an m-dimensional smooth manifold.

Let y1, . . . , yk be i.i.d. Gaussian random fields on M.

Let F : Rk → R be twice differentiable, and define
f = F (y1, y2, . . . , yk ). Then [Taylor (2006)]

E
(
L0

(
M ∩ f −1[u,∞)

))
=

n∑
j=0

cj Ly
j (M) Mγk

j

(
F−1[u,∞)

)
where Ly

j (·) are the LKCs defined w.r.t. the induced metric given
by

g y (X ,Y ) = E (Xy1 · Yy1)

The metric induced by any yi is the same due to i.i.d. nature of yi ’s
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A sneak peek into the proof of GKF

Define

µk = #{x ∈ M : f (x) ≥ u, ∇f (x) = 0, index
(
∇2f (x)

)
= k}

Then,

E
(
L0

(
M ∩ f −1[u,∞)

))
= E

(
m∑

k=0

(−1)kµk

)

=

∫
M
E
{

Tr
(
−∇2f (x)

)m
1(f (x)≥u)

∣∣∣∇f (x) = 0
}

p∇f (x)(0) dx

=

∫
M
E
[
1(f (x)≥u)E

{
Tr
(
−∇2f (x)

)m
∣∣∣ f (x),∇f (x) = 0

}]
× p∇f (x)(0) dx
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Sneak peek contd...

Notice that {∇2f
∣∣ y ,∇y} is a Gaussian (1, 1) form and we

have neat formulae available for its moments.

In general, if W is a (1, 1) Gaussian form with mean and
covariance are µ and C respectively, then

E[W k ] =

b k
2
c∑

j=0

k!

(k − 2j)!j!2j
µk−2j C j .

E{∇2f
∣∣ y ,∇y} = y∗∇2F + I 〈∇F (y), y〉

The conditional covariance = −(I 2 + 2R)‖∇F‖2, where R is
the Riemannian curvature tensor with respect to the induced
metric.

Then need to go from conditioning on (y ,∇y) to conditioning
on (f ,∇f ), which involves another Gaussian computation
(majorly technical).
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Then need to go from conditioning on (y ,∇y) to conditioning
on (f ,∇f ), which involves another Gaussian computation
(majorly technical).
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Sneak peek contd...

Then some rearranging and identifying leads us to the GKF.

To see this, take a simple example of k = 1 and F (x) = x .

In this case, the majorly technical step is not needed.

Then notice that we are left with integrals of trace of
polynomials of R, which can readily be identified with LKCs,
and the rest matches with the GMFs in each term of the
polynomial.
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Testing the Limits of Gaussian Kinematic Fundamental Formula
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The non IID case

Motivation: In some applications like diffusion MRI, and
cosmic microwave background radiation, one can use
multivariate Gaussian random fields, but the components
often are NOT i.i.d.

We take a simple case of m = k = 2. In particular, we take
M = S2, with g as the usual spherical metric.

We assume y1 and y2 are isotropic independent Gaussian
fields, but they are not identically distributed.

We still have:

E
(
L0

(
M ∩ f −1[u,∞)

))
=

∫
S2

E
[
1(f (x)≥u)E

{
Tr
(
−∇2f (x)

)2
∣∣∣ f (x),∇f (x) = 0

}]
× p∇f (x)(0) dx
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The non IID case

{∇2f
∣∣ y ,∇y} is still a Gaussian (1, 1) form, with mean

y∗∇2F (y)−

(
2∑

k=1

λ2,k yk
∂F (y)

∂yk

)
I2,

and covariance

−
2∑

k=1

λ2
2,k

(
∂F (y)

∂yk

)2

I 2
2 − 2

2∑
k=1

λ2,k

(
∂F (y)

∂yk

)2

R

where R is the Riemannian curvature tensor w.r.t. the spherical
metric.
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A partial result

E
(
L0(M ∩ f −1[u,∞))

)
=

(
k∑
ν=1

1

λ2,ν
E

[
1(f>u)

(
∂F (y)

∂yν

)2
])

p∇f (0)4πL0(M)

+
1

2

2∑
i ,j=1

E
[
1(f>0)

(
µ2(y ,∇y)(Ei ,Ej ,Ei ,Ej )

−ST
∇F (Ei ,Ei )ΣM,(y ,∇y)Σ−1

(y ,∇y)Σ(y ,∇y),MS∇F (Ej ,Ej )

+ST
∇F (Ei ,Ej )ΣM,(y ,∇y)Σ−1

(y ,∇y)Σ(y ,∇y),MS∇F (Ej ,Ei )
)]

p∇f (0)L2(M)

Good news: we still have a breakup of the two spaces (by possibly
a bit of cheating) Bad news: we are yet to figure out meaning of
the coefficients of the LKCs.
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Thank you!
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