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Donsker-Varadhan variational formula

Let X be a compact metric space and {T; : C(X) — C(X)|t > 0} be a
strongly continuous semigroup satisfying

f>0 = Tf>0,Ti1=1
For V € C(X), if Ay denote the principle eigen value of L + V, L is the

infinitsemal generator of { 7;}, then we have

= swp | | Viu(ax) —/(u)]
MEP(X)
where

o)== ot [ (57 0mta,

where D (L) is the set of all positive functions in D(L), the domain of L and
P(X) is the space of all probability measures on X.
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An example

Let Q c RY be an open bounded domain with a C® boundary 9Q and Q

denote its closure. Consider the diffusion in Q given by

aX(t) = b(X(1)) dt + o (X (1)) dW(t) — ~(X(1)) d¢(1)
ag(t) = HX(t) € 0Q} di(t)

for t > 0, with X(0) = x and £(0) = 0, y is co-normal, i.e.

By a solution of (1), a pair of processes (X(-),(-)) satisfying (1) where X(-)
is a Q-valued continuous process and £(-) is a non decreasing process.

The existence of a unique strong solution holds under the usual Lipschitz

conditions.

y(x) = a(x)n(X)L7 n(x) is outward unit normal.



An Example

Consider T; : C(Q) — C(Q) defined by
Tf(x) = E[f(Xt)‘X(O) = x],fe c(Q), t > 0.
One can also identify the principal eigen value Ay by

Av = limsup 11‘ log E [efot V(Xs)ds

t—oco

X(0) = x].



Risk-sensitive control problem

Consider a controlled diffusion X(-) taking values in a bounded domain Q
satisfying

aX(t) = b(X(1), v(1)) dt + o(X(t)) dW(t) — ~(X(1)) dE() ,
ag(t) = HX(2) € 9Q}yde(1)
for t > 0, with X(0) = x and £(0) = 0.



State dynamics- continued

(@) b: Q xV — RY, for a prescribed compact metric control space V), is
continuous and Lipschitz in its first argument uniformly with respect to
the second,

(b) ¢ : Q@ — R9*%is continuously differentiable, its derivatives are Hélder
continuous with exponent 5, > 0, and is uniformly non-degenerate

(¢) v:RY — RYis co-normal,
(d) W(-)is a d-dimensional standard Wiener process,

(e) v(-)is a V-valued measurable process satisfying the non-anticipativity
condition: for t > s > 0, W(t) — W(s) is independent of
{v(y), W(y) -y < s}.



Risk-sensitive cost

Let r: Q x V — R be a continuous ‘running cost’ function which is Lipschitz
in its first argument uniformly with respect to the second.
Risk-sensitive cost is

limsup — Iog E[ e, "’)d’]
T—o0

Risk-sensitive control problem is about minimizing the "cost” over all

addmissible controls.

Risk-sensitive value p is defined as

p =inflimsup = Iog E[efo (Xevt) df]
T—o0

Infimum is over all admissible controls, i.e. all controls v(-) satisfying the
condition (e).



Define

Gf(x) = %trace (a(x)v2f(x)) +H(x, f(x), V(X)) ,
(3)
H(x,1,p) == min [(b(x, v),p) +r(x, v)f] .

Set
C2..(Q) = {feC*Q): >0, Vf-v = 00ndQ}.

There exists a unique pair (p, ¢) € (0, co) X C$7+(C)) satisfying

pp=Gp, inQ, (Vp,7)=0 0ndQ,|¢leg=1.

Moreover p is characterized as the risk-sensitive value.




Theorem

The scalar p given in previous theorem satisfies

p = inf i sup gfd,u (4)
rec? Q) pem(@)
Jfdu=1
= sup inf /gfdu,
fec? (@) reM@
[fdu= 1
or equivalently
feC? (@), >0 Lep(Q) f
= sup inf_ gfd
recz (a),r>0 veP@ J f

where P(Q) denotes the space of probability measures on Qand M(Q) is
the space of all finite Borel measures.




Proof using nonlinear version of Collatz-Wielandt formula

The classical Collatz—Wielandt formula characterizes the principal (i.e., the
Perron-Frobenius) eigenvalue « of an irreducible non-negative matrix Q as

. <(QX),> _ . ((QX)/>
K = max min — ] = min max — .
{x=(x1,..., Xq):X;>0%} {i:x;>0} Xi {x=(x1,..., Xg):x;>0} {i:x;>0} Xi

Collatz, L.(1942), Mathematische Zeitschrift 48(1) pp.221-226
Wielandt, H. (1950) Mathematische Zeitschrift 52(1) pp.642-648.



Extension of Collatz-Wielandt Formula

Let X be a real Banach space with total order cone P, i.e., ¥ = P — P and
PN —P = {0}, where 0 denotes the zero vector. Let P = P\ {0}. Write
x Ry if y — x € P. Define the dual cone

P* = {xe X" :(x",x) >0Vx € P}.

Amap T : X — X is said to be increasing if x < y = T(x) < T(y), and
strictly increasing if x < y = T(x) < T(y).

If int(P) # 0, and T : P — int(P), then T is called strongly positive.

It is called positively 1-homogeneous if T(tx) = tT(x) forallt > 0and x € X.
T is super additive if

T(x4+y) =X T(X)+ T(y),Vx,y € X.



Extesion of Collatz-Wielandt

P i={x" e X" |(x",x) >0VxeP
P*(x) := {x" € P": (x",x) >0},

._ e XLTM))
r(T) = fgg x*EIrFﬁ‘(X) (x*,x) "’
(0, TO)

r(T) .= inf su
( ) xeP x*ePE(x) <X*7X>



Extension of Collatz-Wielandt

Theorem

(Non linear Krein Rutman theorem - K.C. Chang(2009)) Let T : X — X be a
strictly increasing, positively 1-homogeneous compact continuous map
satsifying u < MTu for some u € P and M > 0. Then there exists an eigen
pair (X, %) € (0, co) x P. If futher T is strongle positive and super addtitve,
then the eigen pair is unique in (0, co) X P.

Theorem

| A

LetT: X — X and (X, X) be as in nonlinear Krein-Rutman theorem. Then
A=r*(T)=r(T).

N,

X need not be principal eigen value. Example in a while.



Extension of Collatz-Wielandt

Theorem

Let X be a Banach space with total order cone P having non empty interior.
Let {S:|t > 0} be a strongly continuous semi group of strongly positive,
strictly increasing, positively 1-homogeneous, compact, continuous operators
on X. Then there extsts a unique p € R and a unique X € int(P), with
||X|| = 1 such that

Six = e”'x vt > 0.

@ By theorem on slide 14, there exists a unique pair (A(t), x;) € (0,00) x P
with ||x;|| = 1 such that

Sixe = A(t)Xt.
@ Now semi group property implies x; = X for t which are dyadic rationals,
for some X € P.
@ Now strong continuity implies \ is continuous

@ Semigroup property and positive 1-homogeneity implies
A(t+ s) = A(B)A(S).




Nisio Semi group

Define for each t > 0 the operator S : C(Q) — C(Q) by
Sif(x) = I?f) E, [efffr(X(s),v(s))dsf(X(t))] ’ (6)
infimum is over all admissible controls. Let
TYf = E, [efof r(xu(s),umsf(xu(t))] 7

XY(-) is the reflected diffusion (2) for the admissible control v(-) = u € V.

The (multiplicative)Dynamic programming principle implies that {S;|t > 0}
defines a semi group.



Nisio Semi group

{St,t > 0} satisfies the following properties:

@ Boundedness: ||Sif|lo.q < €™||fllo.5- Furthermore, e™»'S:1 > 1, where
1 is the constant function = 1, and ryin = Mingy, ) F(X, U).

© Semigroup property: Sy = | and St o Ss = St.s for s, t > 0.
© Monotonicity: f > (resp., >) g = Sif > (resp., >) Sig.
Q Lipschitz property: ||Sif — Sigllo.a < €™ [|f — 9llo.a-

@ Strong continuity: ||Sif — Ssfll,.q — 0 ast — s.

© Envelope property: T¢f > Sif for all u € U, and Sif > Sif for any other
{S;} satisfying this along with the foregoing properties.




Lets € (0, Bo). Foreacht > 0, the map St : C3*°(Q) — C2"°(Q) is compact.

@ Proof is based on PDE theory.
@ Consider the PDE
9
ot
with (0, x) = f(x) € C>*°(Q),d < fo.
@ The PDE has a unique solution Sif € C'+%/22+5(Qy).
@ A further regularity argument implies Sif € C2*#(Q) for each t > 0 and
for all 8 < Bo.

@ Now the lemma follows from the compact inclusion
CZ2(Q) — C2(Q).

P(t,x) = VIQL (Lvp + r(x,v)y) in (0, T] x Q, (7)



Lemma

There exists a unique pair (p, ¢) € R x C2 ,(Q) satisfying ||¢|lo.q = 1 such
that
Sip = e”p, t>0.

The pair (p, ) is a solution to the p.d.e.
pe(x) = Gp(x) inQ, (Ve,7)=0 onoQ, (8)

where (8) specifies p uniquely in R and ¢, with ||p||o.q = 1, uniquely in
3 .(Q).




Sketch of Proof

@ The PDE (7) implies S; is strongly positive.

@ Now Theorem on slide 17 implies the existence of a pair
(p, ) € R x C2 ,(Q) satisfying

Sip=elp, t>0.

@ The fact that (p, ¢) satisfies (8) follows from Envelop property of the
Nisio semi group.



An example

Define R; : C2*9(Q) — C2*9(Q) by Rif = —Si(—f). _
Then there exists a unique 3 € R and ¢ > 0 in C27°(Q) such that

Ry = e%y.

Hence the pair (€°!, —v) is an eigenvalue-function pair of S;.
Now the same arguments as in the proof of Lemma (previous slide) lead to
the conclusion that (3, v) is the unique positive solution pair of

B(x) = sup (Lvip(x) + r(x, V)i(x)) inQ, (Vi,7)=0 ondQ,
vey

Hence (3, —) is the unique solution pair of (8) satisfying —¢ < 0.

Moreover p < 8 and that s is the principal eigenvalue of both operators R;,

St.



A representation lemma

Lemma

Let M(Q) denote the space of all finite Borel measures on Q. Then

(C3(Q): = M(Q).

R
@ For A € (C3(Q))*, one can see that A is a bounded linear functional on
the linear subspace C?(Q) of C(Q).
@ Hahn-Banach theorem implies the extension of A to C*(Q).
@ Riesz representation theorem implies u € M(Q) satisfying A(f) = u(f).
@ Reverse is easy.

O




Lemma

Let§ € (0, o). Then for any f € C21(Q) we have

limsup inf _ /Stf(x fx) w(dx) = inf_ /_gf(x)p(dx)
Q

10 peEM(Q neM(Q)
[fdu= 1 [fdp=1
and
I|m |nf sup_ / S,f(x w(dx) = sup _ Gf(x) p(dx).
neEM(Q nem(@) Ja
[fdu= 1 [fdp=1

Proof is technical.



Proof of Main result

@ Using pp = Gy, we get

inf _ /Q@d,u

HEM(Q)
Jedu=1

sup inf _ /gfdu
f€Cz+5 @) HeEM(Q
[fdu= 1

p

IN

@ From Theorem on slide 14 and the representation lemma we get

e’ = sup inf /Stgdu
gECH‘S uEM(
fgdu 1

@ Using Lemma on slide 25, we get

p> inf /gfd,u

REM(Q)
Jfdu=1

forall f € C2(Q).



Proof continued

@ Thus we have
p > sup inf /gfdu.
fECHS ,uEM(Q
ffdu 1

@ This completes
sup inf / Gfdu.

p= IGCZ+5 uEM(Q
jfdu 1
@ A symmetric argument gives
p = inf sup Gfdp.

feC32(Q) pem(@)
[fdu=1



Proof continued

@ We get

inf sup /g du<p< sup inf g—fdu

feC? (@) pep(@) fecz ,(Q)HEP(@ f

@ If strict inequailty holds above, then there exists 7 € C2 . (Q) satisfying
inf_ /ngdv > p.
veP(Q) f
@ There exists g € C2(Q) such that
. gg
min == > p.
Qa g r

@ This contradicts last display on slide 25.



