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Donsker-Varadhan variational formula

Let X be a compact metric space and {Tt : C(X )→ C(X )|t ≥ 0} be a
strongly continuous semigroup satisfying

f ≥ 0 =⇒ Tt f ≥ 0,Tt1 = 1

For V ∈ C(X ), if λV denote the principle eigen value of L + V , L is the
infinitsemal generator of {Tt}, then we have

λV = sup
µ∈P(X)

[ ∫
X

V (x)µ(dx)− I(µ)
]
,

where
I(µ) = − inf

u∈D+(L)

∫
X

(Lu
u

)
(x)µ(dx),

where D+(L) is the set of all positive functions in D(L), the domain of L and
P(X ) is the space of all probability measures on X .
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An example

Let Q ⊂ Rd be an open bounded domain with a C3 boundary ∂Q and Q̄
denote its closure. Consider the diffusion in Q given by

dX (t) = b(X (t)) dt + σ(X (t)) dW (t)− γ(X (t)) dξ(t) ,

dξ(t) = I{X (t) ∈ ∂Q} dξ(t)
(1)

for t ≥ 0, with X (0) = x and ξ(0) = 0, γ is co-normal, i.e.

γ(x) = a(x)n(x)⊥, n(x) is outward unit normal.

By a solution of (1), a pair of processes (X (·), ξ(·)) satisfying (1) where X (·)
is a Q̄-valued continuous process and ξ(·) is a non decreasing process.

The existence of a unique strong solution holds under the usual Lipschitz
conditions.



An Example

Consider Tt : C(Q̄)→ C(Q̄) defined by

Tt f (x) = E
[
f (Xt )

∣∣∣X (0) = x
]
, f ∈ C(Q̄), t ≥ 0.

One can also identify the principal eigen value λV by

λV = lim sup
t→∞

1
t

log E
[
e
∫ t

0 V (Xs)ds
∣∣∣X (0) = x

]
.



Risk-sensitive control problem

Consider a controlled diffusion X (·) taking values in a bounded domain Q̄
satisfying

dX (t) = b(X (t), v(t)) dt + σ(X (t)) dW (t)− γ(X (t)) dξ(t) ,

dξ(t) = I{X (t) ∈ ∂Q} dξ(t)
(2)

for t ≥ 0, with X (0) = x and ξ(0) = 0.



State dynamics- continued

(a) b : Q̄ × V → Rd , for a prescribed compact metric control space V, is
continuous and Lipschitz in its first argument uniformly with respect to
the second,

(b) σ : Q̄ → Rd×d is continuously differentiable, its derivatives are Hölder
continuous with exponent β0 > 0, and is uniformly non-degenerate

(c) γ : Rd → Rd is co-normal,

(d) W (·) is a d-dimensional standard Wiener process,

(e) v(·) is a V-valued measurable process satisfying the non-anticipativity
condition: for t > s ≥ 0, W (t)−W (s) is independent of
{v(y),W (y) : y ≤ s}.



Risk-sensitive cost

Let r : Q̄ × V → R be a continuous ‘running cost’ function which is Lipschitz
in its first argument uniformly with respect to the second.
Risk-sensitive cost is

lim sup
T→∞

1
T

log E
[
e
∫ T

0 r(Xt ,vt )dt
]
.

Risk-sensitive control problem is about minimizing the ”cost” over all
addmissible controls.
Risk-sensitive value ρ is defined as

ρ = inf lim sup
T→∞

1
T

log E
[
e
∫ T

0 r(Xt ,vt )dt
]
.

Infimum is over all admissible controls, i.e. all controls v(·) satisfying the
condition (e).



Main Results

Define

Gf (x) :=
1
2

trace
(

a(x)∇2f (x)
)

+H
(
x , f (x),∇f (x)

)
,

H(x , f , p) := min
v∈V

[
〈b(x , v), p〉+ r(x , v)f

]
.

(3)

Set
C2
γ,+(Q̄) := {f ∈ C2(Q̄) : f ≥ 0 , ∇f · γ = 0 on ∂Q} .

Theorem

There exists a unique pair (ρ, ϕ) ∈ (0, ∞)× C2
γ,+(Q̄) satisfying

ρϕ = Gϕ, in Q , 〈∇ϕ, γ〉 = 0 on ∂Q , ‖ϕ‖0;Q̄ = 1.

Moreover ρ is characterized as the risk-sensitive value.



Main Results

Theorem

The scalar ρ given in previous theorem satisfies

ρ = inf
f∈C2

γ,+(Q̄)
sup

µ∈M(Q̄)∫
f dµ=1

∫
Gf dµ (4)

= sup
f∈C2

γ,+(Q̄)

inf
µ∈M(Q̄)∫

f dµ=1

∫
Gf dµ ,

or equivalently

ρ = inf
f∈C2

γ,+(Q̄), f>0
sup

ν∈P(Q̄)

∫
Gf
f

dν (5)

= sup
f∈C2

γ,+(Q̄), f>0
inf

ν∈P(Q̄)

∫
Gf
f

dν ,

where P(Q̄) denotes the space of probability measures on Q̄andM(Q̄) is
the space of all finite Borel measures.



Proof using nonlinear version of Collatz-Wielandt formula

The classical Collatz–Wielandt formula characterizes the principal (i.e., the
Perron-Frobenius) eigenvalue κ of an irreducible non-negative matrix Q as

κ = max
{x=(x1,...,xd ):xi≥0}

min
{i:xi>0}

(
(Qx)i

xi

)
= min
{x=(x1,...,xd ):xi>0}

max
{i:xi>0}

(
(Qx)i

xi

)
.

Collatz, L.(1942), Mathematische Zeitschrift 48(1) pp.221-226
Wielandt, H. (1950) Mathematische Zeitschrift 52(1) pp.642-648.



Extension of Collatz-Wielandt Formula

Let X be a real Banach space with total order cone P, i.e., X = P − P and
P ∩ −P = {0}, where 0 denotes the zero vector. Let Ṗ = P\ {0}. Write
x � y if y − x ∈ P. Define the dual cone

P∗ = {x ∈ X ∗ : 〈x∗, x〉 ≥ 0 ∀x ∈ P} .

A map T : X → X is said to be increasing if x � y =⇒ T (x) � T (y), and
strictly increasing if x ≺ y =⇒ T (x) ≺ T (y).
If int(P) 6= ∅, and T : Ṗ → int(P), then T is called strongly positive.
It is called positively 1-homogeneous if T (tx) = tT (x) for all t > 0 and x ∈ X .
T is super additive if

T (x + y) � T (x) + T (y), ∀x , y ∈ X .



Extesion of Collatz-Wielandt

P∗ := {x∗ ∈ X ∗|〈x∗, x〉 ≥ 0 ∀ x ∈ P

P∗(x) := {x∗ ∈ P∗ : 〈x∗, x〉 > 0} ,

r∗(T ) := sup
x∈Ṗ

inf
x∗∈P∗(x)

〈x∗,T (x)〉
〈x∗, x〉 ,

r∗(T ) := inf
x∈Ṗ

sup
x∗∈P∗(x)

〈x∗,T (x)〉
〈x∗, x〉 .



Extension of Collatz-Wielandt

Theorem

(Non linear Krein Rutman theorem - K.C. Chang(2009)) Let T : X → X be a
strictly increasing, positively 1-homogeneous compact continuous map
satsifying u � MTu for some u ∈ Ṗ and M > 0. Then there exists an eigen
pair (λ̂, x̂) ∈ (0, ∞)× P. If futher T is strongle positive and super addtitve,
then the eigen pair is unique in (0, ∞)× P.

Theorem

Let T : X → X and (λ̂, x̂) be as in nonlinear Krein-Rutman theorem. Then
λ̂ = r∗(T ) = r∗(T ).

λ̂ need not be principal eigen value. Example in a while.



Extension of Collatz-Wielandt

Theorem

Let X be a Banach space with total order cone P having non empty interior.
Let {St |t ≥ 0} be a strongly continuous semi group of strongly positive,
strictly increasing, positively 1-homogeneous, compact, continuous operators
on X . Then there extsts a unique ρ ∈ R and a unique x̂ ∈ int(P), with
‖x̂‖ = 1 such that

St x̂ = eρt x̂ ∀t ≥ 0.

Proof.

By theorem on slide 14, there exists a unique pair (λ(t), xt ) ∈ (0,∞)× P
with ‖xt‖ = 1 such that

Stxt = λ(t)xt .

Now semi group property implies xt = x̂ for t which are dyadic rationals,
for some x̂ ∈ P.

Now strong continuity implies λ is continuous

Semigroup property and positive 1-homogeneity implies
λ(t + s) = λ(t)λ(s).



Nisio Semi group

Define for each t ≥ 0 the operator St : C(Q̄)→ C(Q̄) by

St f (x) := inf
v(·)

Ex

[
e
∫ t

0 r(X(s),v(s))dsf (X (t))
]
, (6)

infimum is over all admissible controls. Let

T u
t f := Ex

[
e
∫ t

0 r(Xu(s),u)dsf (X u(t))
]
,

X u(·) is the reflected diffusion (2) for the admissible control v(·) = u ∈ V.

The (multiplicative)Dynamic programming principle implies that {St |t ≥ 0}
defines a semi group.



Nisio Semi group

Theorem

{St , t ≥ 0} satisfies the following properties:
1 Boundedness: ‖St f‖0;Q̄ ≤ ermaxt‖f‖0;Q̄ . Furthermore, ermintSt1 ≥ 1, where

1 is the constant function ≡ 1, and rmin = min(x,u) r̄(x , u).
2 Semigroup property: S0 = I and St ◦ Ss = St+s for s, t ≥ 0.
3 Monotonicity: f ≥ (resp., >) g =⇒ St f ≥ (resp., >) Stg.
4 Lipschitz property: ‖St f − Stg‖0;Q̄ ≤ ermaxt‖f − g‖0;Q̄ .
5 Strong continuity: ‖St f − Ssf‖0;Q̄ → 0 as t → s.
6 Envelope property: T u

t f ≥ St f for all u ∈ U, and St f ≥ S′t f for any other
{S′t } satisfying this along with the foregoing properties.



Lemma

Let δ ∈ (0, β0). For each t > 0, the map St : C2+δ
γ (Q̄)→ C2+δ

γ (Q̄) is compact.

Proof is based on PDE theory.

Consider the PDE

∂

∂t
ψ(t , x) = inf

v∈V
(Lvψ + r(x , v)ψ) in (0,T ]×Q, (7)

with ψ(0, x) = f (x) ∈ C2+δ
γ (Q̄), δ < β0.

The PDE has a unique solution St f ∈ C1+δ/2,2+δ(Q̄T ).

A further regularity argument implies St f ∈ C2+β
γ (Q̄) for each t > 0 and

for all β < β0.

Now the lemma follows from the compact inclusion
C2+β
γ (Q̄) ↪→ C2+δ

γ (Q̄).



Lemma

There exists a unique pair (ρ, ϕ) ∈ R× C2
γ,+(Q̄) satisfying ‖ϕ‖0;Q̄ = 1 such

that
Stϕ = eρtϕ , t ≥ 0 .

The pair (ρ, ϕ) is a solution to the p.d.e.

ρϕ(x) = Gϕ(x) in Q , 〈∇ϕ, γ〉 = 0 on ∂Q , (8)

where (8) specifies ρ uniquely in R and ϕ, with ‖ϕ‖0;Q̄ = 1, uniquely in
C2
γ,+(Q̄).



Sketch of Proof

The PDE (7) implies St is strongly positive.

Now Theorem on slide 17 implies the existence of a pair
(ρ, ϕ) ∈ R× C2

γ,+(Q̄) satisfying

Stϕ = eρtϕ, t ≥ 0.

The fact that (ρ, ϕ) satisfies (8) follows from Envelop property of the
Nisio semi group.



An example

Define Rt : C2+δ
γ (Q̄)→ C2+δ

γ (Q̄) by Rt f = −St (−f ).
Then there exists a unique β ∈ R and ψ > 0 in C2+δ

γ (Q̄) such that

Rtψ = eβtψ .

Hence the pair (eβt ,−ψ) is an eigenvalue-function pair of St .
Now the same arguments as in the proof of Lemma (previous slide) lead to
the conclusion that (β, ψ) is the unique positive solution pair of

β ψ(x) = sup
v∈V

(
Lvψ(x) + r(x , v)ψ(x)

)
in Q , 〈∇ψ, γ〉 = 0 on ∂Q ,

Hence (β,−ψ) is the unique solution pair of (8) satisfying −ψ < 0.
Moreover ρ ≤ β and that β is the principal eigenvalue of both operators Rt ,
St .



A representation lemma

Lemma

LetM(Q̄) denote the space of all finite Borel measures on Q̄. Then

(C2
γ(Q̄)∗+ =M(Q̄).

Proof.

For Λ ∈ (C2
γ(Q̄))∗, one can see that Λ is a bounded linear functional on

the linear subspace C2
γ(Q̄) of C(Q̄).

Hahn-Banach theorem implies the extension of Λ to C∗(Q̄).

Riesz representation theorem implies µ ∈M(Q̄) satisfying Λ(f ) = µ(f ).

Reverse is easy.



Lemma

Let δ ∈ (0, β0). Then for any f ∈ C2+δ
γ,+ (Q̄) we have

lim sup
t↓0

inf
µ∈M(Q̄)∫

f dµ=1

∫
Q̄

St f (x)− f (x)

t
µ(dx) = inf

µ∈M(Q̄)∫
f dµ=1

∫
Q̄
Gf (x)µ(dx)

and

lim inf
t↓0

sup
µ∈M(Q̄)∫

f dµ=1

∫
Q̄

St f (x)− f (x)

t
µ(dx) = sup

µ∈M(Q̄)∫
f dµ=1

∫
Q̄
Gf (x)µ(dx) .

Proof is technical.



Proof of Main result

Using ρϕ = Gϕ, we get

ρ = inf
µ∈M(Q̄)∫
ϕ dµ=1

∫
Gϕdµ

≤ sup
f∈C2+δ

γ,+ (Q̄)

inf
µ∈M(Q̄)∫

f dµ=1

∫
Gfdµ

From Theorem on slide 14 and the representation lemma we get

eρt = sup
g∈C2+δ

γ,+ (Q̄)

inf
µ∈M(Q̄)∫

g dµ=1

∫
Stg dµ .

Using Lemma on slide 25, we get

ρ ≥ inf
µ∈M(Q̄)∫

f dµ=1

∫
Gfdµ

for all f ∈ C2+δ
γ,+ (Q̄).



Proof continued

Thus we have
ρ ≥ sup

f∈C2+δ
γ,+ (Q̄)

inf
µ∈M(Q̄)∫

f dµ=1

∫
Gfdµ.

This completes

ρ = sup
f∈C2+δ

γ,+ (Q̄)

inf
µ∈M(Q̄)∫

f dµ=1

∫
Gfdµ.

A symmetric argument gives

ρ = inf
f∈C2+δ

γ,+ (Q̄)

sup
µ∈M(Q̄)∫

f dµ=1

∫
Gfdµ.



Proof continued

We get

inf
f∈C2

γ,+(Q̄)
sup

µ∈P(Q̄)

∫
Gf
f

dµ ≤ ρ ≤ sup
f∈C2

γ,+(Q̄)

inf
µ∈P(Q̄)

∫
Gf
f

dµ

If strict inequailty holds above, then there exists f̂ ∈ C2
γ,+(Q̄) satisfying

inf
ν∈P(Q̄)

∫
G f̂
f̂

dν > ρ.

There exists g ∈ C2+δ
γ,+ (Q̄) such that

min
Q̄

Gg
g

> ρ.

This contradicts last display on slide 25.


