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INTEGRABILITY

INTEGRABILITY

An ODE is said to be integrable if there exists a well-defined
solution about all movable singularities

No unified classical definition-only working definition

Integrability- more constrained (richer) than solvability

Example

(1 + w2)w ′′ + (1− 2w)(w ′)2 = 0,w = tan[α+ ln(z − z0)]

Integrability of an ODE-related to the singularity structure of
its solutions in the complex plane

Linear ODE’s are integrable-singularities are fixed-suitable
redefinition of solution is possible
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Nonlinear ODE-singularities are movable- the problem is
movable singularity

The most successful integrability detector for nonlinear ODE’s
is Painlevé property -successfully extended to PDE’s also

Painlevé Property

An ODE is said to possess the Painlevé property if all of its
solutions are single valued about all movable
singularities-equivalently the only movable singularities of solutions
are at most poles
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In 1884, Fuchs showed that if the first order equation

dw

dz
= F (z ,w)

where F is rational in ’w’ and analytic in z,does not contain
any movable critical points then, it should be of the form

dw

dz
= F (z ,w) = a(z) + b(z)w + c(z)w2

for some analytic functions a,b and c. This is called a
generalised Riccati equation.

Hence Riccati equation is the only first order ODE possessing
Painlevé property.



Painlevé and Gambier solved the problem of classifying all the
second order ordinary differential equations of the form

y ′′ = F (y ′, y , z) (1)

where F is rational in y, polynomial in y ′, and locally analytic
in z

They identified only 50 second order non-linear equation
possessing Painlevé property. Among the above 50-only six
are new- introducing new special functions -Painlevé
transcendents



DISCRETE INTEGRABLE SYSTEMS

Why discrete?-due to the characteristic time -many physical
models are discrete

Appearance of discrete systems is as early as1931 -identified
only after the knowledge of continuous limits in 1991

Discrete dynamical systems-more fundamental -continuous
systems through continuous limits

The explosive growth of interest in discrete integrable systems
forced to look for Integrability detectors for discrete systems

continum integrability is well established -Discrete integrability
is new much to explore

owing to the roaring success of Painlevé property-What is the
analogous of Painlevé property for discrete equations- a
number of methods are introduced in recent years



SINGULARITY CONFINEMENT

singularity confinement -first discrete integrability test-
Grammaticos et al is a simple elegant test

SINGULARITY CONFINEMENT CRITERION

If the dynamics leads to a singularity then after a finite number of
iterations the singularity should disappear without essential loss of
initial information
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Xn+1 + Xn−1 =
a

Xn

+
1

X 2
n

(2)

X−1 = u, X0 = ǫ

ǫ → 0,X1 ⇒ ∞,X2 ⇒ 0

and
X3 → u

The singularity pattern is {0,∞, 0, u}.



Salient features of singularity Confinement

It is simple and elegant- practically simple to check

Singularity confinement is used to derive discrete Painlevé
equations.

Singularity patterns are expected to be the same for
autonomous and non autonomous systems. So this test is
used to generate integrable non autonomous from integrable
autonomous systems.



SINGULARITY CONFINEMENT AND CHAOTIC

SYSTEMS

Jarmo Hietarinta and Claude Viallet countered that singularity
confinement test need not be sufficient for discrete
integrability.

consider the map ,

Xn+1 + Xn−1 = Xn +
a

X 2
n

(3)

The singularity pattern is 0,∞,∞, 0.

Passes the singularity confinement test without any problem
But it is a well known chaotic system
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The integrability of discrete systems depends on the
asymptotic structure of its solutions at ∞

Example

un+1 − un = 1/(n − c)N

un = u0 +
∑n−1

0
1/(i − c)N

y(z + 1)− y(z) = 1/(z − c)N

y(z) = (−1)N−1/(N − 1)!(d/dz)N log[Γ(z − c) + π(z)] where π is
a periodic function but dy/dz = 1/(z − c)N , logarithmic
singularity forN=1
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From Continuous To Discrete

Arbitrary periodic functions - analogous to arbitrary constants
in continuous systems

singularity structure for integrable and non integrable systems
reveal the secret-integrability of discrete systems is encoded
with the singularity structure of the solution at ∞

solutions of well known discrete integrable systems are of
finite order

counter example(Viallet)
y(z + 1) + y(z − 1) = y(z) + α/y2(z) solution exists but of
infinite order

solutions of finite order is a necessary condition for
discrete integrability and so the study at ∞ is important

Important observation- Arnold and Veselov -growth
properties -essential for integrability to discrete
equations



solutions of integrable as well as non integrable discrete
systems -meromorphic functions in the complex plane
Yanagihara
including y(z + 1)− y(z − 1) = µy(z)(1− y(z))
has non-trivial meromorphic solutions of finite order if
max(p, q) 6 1
Ablowitz et al
y(z + 1)− y(z − 1) = Rp,q(z , y) and
y(z + 1)y(z − 1) = Rp,q(z , y)
admit finite order meromorphic solutions if
max(p, q) 6 2
including
y(z + 1)− y(z − 1) = ((αz + β)y(z) + γ)/(1− y2(z))
singularity structure for integrable and non integrable systems
reveal the secret-integrability of discrete systems is encoded
with the singularity structure of the solution at ∞
Again examples -Finite order solution is necessary but not
sufficient for integrability



Why Nevanlinna?

The continuous limit for
y(z + 1)− y(z) = hF (y(z)), y(z) = u(x), x = hz

du/dx = F (u(x)), when F (u) = u3 the general solution is
branched -when x is finite,as h → 0 ,z → ∞
Behaviour of solutions at a finite point in the differential
equation is reflected at infinity for the corresponding solution
of the discrete system
For discrete system the study of the behaviour of its solution
at infinity is essential-the only way for this is the Nevanlinna
Theory
From differential to difference two major observations
are made-For integrability of discrete equations solutions
should be of finite order and it is only necessary but not
sufficient
Discrete equations can be represented as delay
equations in the complex plane



Ablowitz and Halburd introduced a novel,complex analysis
based - discrete integrability detector
difference equations - delay equations-used complex analysis
tools for the study
AHH hypothesis-Infinite order solution is is an indication for
nonintegrability indicating finite order solution is a necessary
condition for integrability-but not sufficient
what could be complemented with?
Absence of digamma functions in the series expansion of the
solution -according to Ablowitz et al but
Check for the absense of digamma function in the series
expansion of solution is practically difficult - how to make sure
the absence of other worse singularities
hence we(Grammaticos et al) blended Nevanlinna theory and
singularity confinement-a simple and powerful discrete
integrability detector
Aim of this lecture is to explore this discrete integrability
detector
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Fundamental Theorem of Algebra

Every nth degree polynomial has exactly ’n’ roots,

a0 + a1z + .... + anz
n = 0, an 6= 0;

a0 + a1z + .... + anz
n = α;

Value Distribution Theory

Every Polynomial assumes every complex value exactly the same
number of times including ∞ .
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This common number - Degree of the polynomial - order at
which M(r , P) grows,

M(r , P) = sup
|z|=r

|P(z)|

Essence

”The Value Distribution of a polynomial is the degree of the
polynomial - is also the degree of growth of Max function - is the

rate at which the number of zeros of the polynomial in a disc,
|z | < r grows as r −→ ∞”
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Polynomials

Entire Functions

Meromorphic Functions

What is the Value Distribution Theory for Entire Functions?
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Value Distribution Theory for Entire Functions

Entire functions

Taylor’s Theorem

Entire functions - Sort of Polynomials ”of degree ∞”.

Entire functions have exceptions e.g ez 6= 0

Little Picard’s Theorem - Analogous of Fundamental Theorem of
Algebra

”Every entire function assumes every complex number the same
number of times including ∞, infinitely many times with atmost
one exception.”
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Big Picard’s Theorem

Big Picard’s Theorem - Analogous of Liouville’s Theorem

”An Entire Function with two exceptions reduces to a constant.”

Liouville’s Theorem

”Every bounded Entire function is a constant.”

Growth of Entire functions

Non-constant Entire Functions have unbounded growth.
How to measure the rate of growth?
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Growth of Entire Functions - Type and Order

How to distinguish the growth of ez , e2z , e3z , ez
2

, ee
z

All are Entire Functions

All are totally different from the rest

One has to distinguish these functions

For this two important concepts: Exponential Type, Order are
introduced

Exponential Type of Entire Function

T (f ) = lim sup
r−→∞

log M(r , f )

log r
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Order of an Entire Function

σ(f ) = lim sup
r−→∞

log log M(r , f )

log r

Distinguishing growth in terms of Type and Order

P(z) ez e2z e3z ez2
eez

Type 0 1 2 3 ∞ ∞

Order 0 1 1 1 2 ∞
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Value Distribution for Meromorphic Functions

Value Distribution for Entire Function - 19th century work

What is the Value Distribution Theory for Meromorphic
Functions?

After 100 years this question was answered by Ralf Nevanlinna
- Complete work inclusive of everything
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Order of a Meromorphic function

Before we proceed, the following points should be taken care

Entire functions have exceptions e.g ez 6= 0

entire or meromorphic functions have only finitely many zeros
inside a disc

for meromorphic functions M(r , f ) → ∞ even in a finite disc

So it is better to consider the rate at which the number of
zeros in a disc of radius r grows as r → ∞



Order of a Meromorphic function

Before we proceed, the following points should be taken care

Entire functions have exceptions e.g ez 6= 0

entire or meromorphic functions have only finitely many zeros
inside a disc

for meromorphic functions M(r , f ) → ∞ even in a finite disc

So it is better to consider the rate at which the number of
zeros in a disc of radius r grows as r → ∞



Order of a Meromorphic function

Before we proceed, the following points should be taken care

Entire functions have exceptions e.g ez 6= 0

entire or meromorphic functions have only finitely many zeros
inside a disc

for meromorphic functions M(r , f ) → ∞ even in a finite disc

So it is better to consider the rate at which the number of
zeros in a disc of radius r grows as r → ∞



Order of a Meromorphic function

Before we proceed, the following points should be taken care

Entire functions have exceptions e.g ez 6= 0

entire or meromorphic functions have only finitely many zeros
inside a disc

for meromorphic functions M(r , f ) → ∞ even in a finite disc

So it is better to consider the rate at which the number of
zeros in a disc of radius r grows as r → ∞



Order of a Meromorphic function

Before we proceed, the following points should be taken care

Entire functions have exceptions e.g ez 6= 0

entire or meromorphic functions have only finitely many zeros
inside a disc

for meromorphic functions M(r , f ) → ∞ even in a finite disc

So it is better to consider the rate at which the number of
zeros in a disc of radius r grows as r → ∞



The proximity function is

m(r , f ) =
1

2π

∫
2π

0

log+ |f (reiθ)|dθ,

where
log+ x := max(log x , 0)

The enumerative function is

N(r , f ) : =

∫
r

0

n(t, f ) − n(0, f )

t
dt + n(0, f ) log r

=
n∑

k=1

log
r

|bk |
+ n(0, f ) log r , bk are poles

where n(r , f ) is the number of poles of f (counting
multiplicities) in |z | ≤ r
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The Nevanlinna characteristic function,

T (r , f ) = m(r , f ) + N(r , f )

measures ”the affinity” of f for infinity.



Poisson-Jensen’s Theorem - Analogous of Fundamental Theorem
of Algebra for Meromorphic Functions

Replace f by (f − a) Poisson -Jensen’s theorem assures that the
sum T (r , f , a) = N(r , f , a) + m(r , f , a) is independent of a and
hence the sum is simply denoted by T (r , f ).



Characteristic function

The characteristic function of a meromorphic function f will be

defined as, T (r , f ) = m(r , f ) + N(r , f )

Order of meromorphic function

The order σ(f ) of a meromorphic function f is defined by,

σ(f ) = lim sup
r−→∞

logT (r , f )

log r
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PROPERTIES OF NEVANLINNA CHARACTERISTIC

The two basic relations which reproduce the statement on the
affinity of f for ∞, 0 or a are:

T (r ; 1/f ) ≍ T (r ; f )

T (r ; f − a) ≍ T (r ; f )

Valiron: T
(

r ; P(f )
Q(f )

)

≍ sup(p, q)T (r ; f )

where P and Q are polynomials in f with constant
coefficients, of degrees p and q respectively, provided the
rational expression P/Q is irreducible
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T (r ; fg) � T (r ; f ) + T (r ; g)

T (r ; f + g) � T (r ; f ) + T (r ; g)

T (r ; fg + gh + hf ) � T (r ; f ) + T (r ; g) + T (r ; h)

T
(

r ;
∑

J⊆I αJ(
∏

j∈J fj)
)

�
∑

i∈I T (r ; fi ) for constant αJ ’s.

T (r ; f (z ± 1)) � (1 + ǫ)T (r + 1; f (z)) (Halburd et al)
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The three-tiered approach to discrete integrability

The criterion of non-infinite order of the solution of a given
difference equation can be complemented with singularity
confinement so as to become a discrete integrability detector

First step-Use Nevanlinna characteristic techniques-to
estimate the rate of growth-restricting to autonomous case
-reduce the complication of growth due to
coefficients-requirement of slow growth-severe restriction on
the difference equations

second step- sigularity confinement-all autonomous equations
that do not satisfy singularity confinement are rejected at this
second step.

The third step consists in the deautonomisation of the system-
using once again the singularity confinement criterion. We
obtain thus a mapping which satisfies the Nevanlinna criterion
for low-growth of the solutions +confined singularities
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The discrete equations we shall examine here are three-point
mappings of the general form:

A(xn, xn−1, xn+1) = B(xn)

A is polynomial and B is rational, with coefficients which do

not depend on the independent variable n -consider A linear
separately in xn±1.

Following AHH - delay equation in complex domain - evaluate
the Nevanlinna characteristic

u(1 + ǫ)T (r + 1; x) + vT (r ; x) � wT (r ; x)
(with u = 2 if A is linear in xn±1 , for appropriate values of v
and w

T (r + 1; x) � w−v

u(1+ǫ)T (r ; x)

Now if w > u + v , for r large and ǫ small λ ≡
w−v

u(1+ǫ) becomes

strictly greater than unity. T (r + 1; x) ≥ λT (r ; x)− c for
some c independent of r . The case c negative is trivial:
T (r + k ; x) ≥ λkT (r ; x).



The discrete equations we shall examine here are three-point
mappings of the general form:

A(xn, xn−1, xn+1) = B(xn)

A is polynomial and B is rational, with coefficients which do

not depend on the independent variable n -consider A linear
separately in xn±1.

Following AHH - delay equation in complex domain - evaluate
the Nevanlinna characteristic

u(1 + ǫ)T (r + 1; x) + vT (r ; x) � wT (r ; x)
(with u = 2 if A is linear in xn±1 , for appropriate values of v
and w

T (r + 1; x) � w−v

u(1+ǫ)T (r ; x)

Now if w > u + v , for r large and ǫ small λ ≡
w−v

u(1+ǫ) becomes

strictly greater than unity. T (r + 1; x) ≥ λT (r ; x)− c for
some c independent of r . The case c negative is trivial:
T (r + k ; x) ≥ λkT (r ; x).



The discrete equations we shall examine here are three-point
mappings of the general form:

A(xn, xn−1, xn+1) = B(xn)

A is polynomial and B is rational, with coefficients which do

not depend on the independent variable n -consider A linear
separately in xn±1.

Following AHH - delay equation in complex domain - evaluate
the Nevanlinna characteristic

u(1 + ǫ)T (r + 1; x) + vT (r ; x) � wT (r ; x)
(with u = 2 if A is linear in xn±1 , for appropriate values of v
and w

T (r + 1; x) � w−v

u(1+ǫ)T (r ; x)

Now if w > u + v , for r large and ǫ small λ ≡
w−v

u(1+ǫ) becomes

strictly greater than unity. T (r + 1; x) ≥ λT (r ; x)− c for
some c independent of r . The case c negative is trivial:
T (r + k ; x) ≥ λkT (r ; x).



The discrete equations we shall examine here are three-point
mappings of the general form:

A(xn, xn−1, xn+1) = B(xn)

A is polynomial and B is rational, with coefficients which do

not depend on the independent variable n -consider A linear
separately in xn±1.

Following AHH - delay equation in complex domain - evaluate
the Nevanlinna characteristic

u(1 + ǫ)T (r + 1; x) + vT (r ; x) � wT (r ; x)
(with u = 2 if A is linear in xn±1 , for appropriate values of v
and w

T (r + 1; x) � w−v

u(1+ǫ)T (r ; x)

Now if w > u + v , for r large and ǫ small λ ≡
w−v

u(1+ǫ) becomes

strictly greater than unity. T (r + 1; x) ≥ λT (r ; x)− c for
some c independent of r . The case c negative is trivial:
T (r + k ; x) ≥ λkT (r ; x).



For positive c

T (r + 1; x)− c

λ−1 ≥ λ
(

T (r ; x)− c

λ−1

)

Thus, whenever T (r ; x) is an unbounded growing function of
r (i.e. T ≻ 0), then for some r large enough
the right hand side of this inequality becomes strictly positive
and iterating T (r + k ; x) diverges at least as fast as λk

logT (r + k ; x)/logr is stricly increasing when λ > 1 and the
order σ of x is infinite.so the solution is of infinite order if
λ > 1 equivalently whenw > u + v

According to the AHH hypothesis the mapping is of finite order if
w ≤ u + v .
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APPLICATION OF THE INTEGRABILITY DETECTOR

d-PIV

(xn+1 + xn)(xn + xn−1) =
P(xn)

Q(xn)

Nevanlinna test will give u = 2 , v = 2 .For w > 4 , xn of
infinite order. P ,Q can be quartic at maximum.

xn+1xn−1 + xnxn+1 + xnxn−1 =
P(xn)− x2nQ(xn)

Q(xn)

u = 2 , v = 1 and so for finite order we have w ≤ 3 Thus we
can have at most q = 2 and P = x2Q + R where R is a
polynomial at most cubic in x . The well-known discrete PIV

falls precisely in this class.
singularity confinement to the mapping yields

(xn+1 + xn)(xn + xn−1) =
αx4n + ηx3n + κx2n + θxn + µ

αx2n + βxn + γ
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results to the QRT form when η = θ = 0.

deautonomisation of the mapping yields d-PIV

If q = 1 , we have p ≤ 3. The mapping then has the form:

(xn+1 + xn)(xn + xn−1) =
ηx3n + κx2n + θxn + µ

βxn + γ

Singularity confinement leads to either α = 0 or η = β ,
βµ = κθ the mapping yields again d-PIV

q = 0 - three possibilities η = β = 0 , κ = 0 or θ = 0 the
right hand side, must be either axn + b or ax2n + b or
x2n + axn + b deautonomisations of these mappings are d-PI

and d-PII-the third one linearisable with a free parameter
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CONCLUSION

Search for discrete analogue of Painlevé property

This is a practically simple discrete integrabilty detector in the
light of Nevanlinna theory

we beleive the requirement of slow growth is not disturbed in
deautonomization

This approach is extended to all QRT mappings which include
discrete Painlevé equations

For a large number of discrete Painlevé equations even Lax
Pairs are known

Algebraic entropy is a strong intgrability detector



For most of the discrete Painlevé equations geometrical
discriptions are given -Weyl Groups in particular the solutions
of discrete Painlevé equations are constructed from the
solutions of non-autonomous Hirota-Miwa equations So we
beleive a much strong group theoretical based discrete
integrability detector can come

our discrete integrability again confirms that dicrete Painlevé
equations are the only integrable sytems from QRT family

concerning special limits to dPIV and qPVI - yet to be explored

Problem is still open to lattice equation

we feel that this method can be used to tackle the above
problems

Lastly-finite order requirement was the missing ingredient in
singularity confinement and so

With this pre-requisite singularity confinement is a powerful
integrability detector
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equations are the only integrable sytems from QRT family

concerning special limits to dPIV and qPVI - yet to be explored

Problem is still open to lattice equation

we feel that this method can be used to tackle the above
problems

Lastly-finite order requirement was the missing ingredient in
singularity confinement and so

With this pre-requisite singularity confinement is a powerful
integrability detector



Thank you!
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