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Introduction: Cognitive Radio

CR: perform radio environment analysis, identify spectral holes and
operate in those holes.

Licensed (primary) and Unlicensed (secondary) users
Spectrum Sensing

I Identify spectral holes and quickly detect the onset of primary
transmission

I Primary techniques: Matched filter, Cyclostationary detector and
Energy detector

I Challenges: Shadowing, Fading and low SNR (∼ −20dB), sensing
frequency and duration
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Model for Cognitive Radio
Non parametric sequential hypothesis testing problem

i.i.d. observations Xi , i = 1, 2, . . .

H0 : Xi = Ni ∼ P0( p.d.f. f0)

H1 : Xi = HiSi + Ni ∼ P1( p.d.f. f1)

Take N observations and use decision rule δN which

min
N,δN

E [N|H0] and min
N,δN

E [N|H1],

subject to PFA ≤ α and PMD ≤ β
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Issues in Spectrum sensing

-20 dB SNR, shadowing, fading ⇒ Distributed detection required.

Fast detection ⇒ Sequential detection preferred.

Transmit power, channel gains, modulation, coding schemes etc. of
PU transmissions are not known (SNR uncertainty)
⇒ (Generalised) Energy detection optimal.

HiSi distribution not known
⇒ Non parametric/Semi parametric and composite hypothesis.

Fast fading - Rayleigh, Rician, Nakagami.
Slow fading - Log normal.

Time varying electromagnetic interference ⇒ Distribution of SINR Ni

may not be known and noise power time varying.

Outliers present ⇒ Robust tests desired.

Hence, Non parametric, distributed, robust, sequential tests preferred.
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Existing methods - a discussion

P0 and P1 fully known - SPRT optimal for discrete and continuous alphabet,
For 0 < α, β < 1

N
∆
= inf{n : W̃n =

n∑
k=1

log
P1(Xk)

P0(Xk)
/∈ (log β,− logα)},

δN = H1 if W̃N ≥ − logα; H0 if W̃N ≤ log β

P0 is known, P1 is not known - our algorithm (KTSLRT).
I Discrete alphabet case: Ln(X n

1 ), codelength of a universal lossless
source code for X n

1 . We replace W̃n by

Ŵn = −Ln(X n
1 )− logP0(X n

1 )− n
λ

2
, λ > 0.

I λ chosen to make it Order 1 asymptotically optimal
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Existing methods - a discussion

Continuous alphabet case:

I Quantize Xk to X∆
k = [Xk/∆]∆ (Uniform scalar quantization)

I Range of quantization according to f0’s tail probabilities less than a
small specific value.

I Use Universal lossless coding on X∆
1 ,X

∆
2 , . . . ,X

∆
n

Performs better than the asymptotically optimal Hoeffding test for finite
alphabet sources, Kolmogorov-Smirnoff test and some other non parametric
tests.
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Our new algorithm - entropy test
Discussion of the test

P0 is known, P1 is not known.

I Replace Ŵn by

Wn = Wn−1 + [− logP0(Xn)−H(P0)−λ
2

], λ > 0.

where H(P0) is entropy (differential entropy for continuous case) of P0.

I Average drift under H1: D(P1||P0) + H(P1)− H(P0)− λ/2

Thus we take under H1, {P1 : D(P1||P0) ≥ λ,H(P1) ≥ H(P0)}

I Average drift under H0: −λ/2.

I Does not require quantization for continuous case.

I Does not require a Universal source encoder.
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Other non parametric tests

Rank Test

i. Let Yi = Xi − µ0+µ1

2 , where Xi s are the observations.

ii. Calculate Ri , the rank of Yi in Y1, ...,Yn when arranged in ascending
order of their absolute values.

iii. Test statistic is given by, W =
∑n

i=1 Yi
Ri

n+1 .

iv. Non parametric, for symmetric distributions.

v. Use its sequential version.
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Other non parametric tests

Sequential t test

i. We extend the usual t test to make it a two sided test.

ii. Test statistic is given by, Tn = n
X̄n−

µ0+µ1
2

sn
.

Random walk

i. Test statistic is given by, Tn =
∑n

i=1(X̄n − µ0+µ1

2 ).

ii. The test statistic is iteratively computable.
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Performance Comparison
Comparison with different tests: P0 ∼ Bin(8, 0.2), P1 ∼ Bin(8, 0.5)
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Rank test
SPRT
SEQ T
Hoeffding test
KT−SPRT
Entropy test
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Performance Comparison
Laplace and Gaussian distributions example

f1 ∼ Laplace(1, 5)
f0 ∼ Laplace(0, 1)
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Entropy test
Random Walk
Seq T test
Rank Test
SLRT

f1 ∼ N (1, 5)
f0 ∼ N (0, 1)
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Comparison for N(0,1) vs N(1,5)

 

 

Random Walk
Entropy test
T test
SLRT

Entropy test outperforms well known tests in all these cases.
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Performance Comparison
Case of no variance change
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Entropy test
Seq t test
SPRT
Rank test
Random walk

SNR: 0 dB

Entropy test is not good when only mean difference tested.

Rank test, t test and random walk perform much better.
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Performance Comparison
Energy detection

Energy samples are computed as: Yj =
∑L

i=1 Xi
2
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T test

Entropy test for chi squared distribution

H0 :  X = Z ~ N(0,1)

H1 :  X = HS + Z
         where
         Z ~ N(0,1)
         H ~ LogN(0,3)
         S ~ Unif{−a,a}
a, such that SNR=−5dB

Entropy test performs best when there is difference in variances;
naturally arises in energy detection.
Energy detection (adding up |Xi |2) is a special case of summing up
|Xi |p to form test statistics. The traditional method (p = 2) is
optimal for additive Gaussian noise.
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Asymptotic Properties of entropy test

Theorem

(1) P0(N <∞) = 1 and P1(N <∞) = 1.

(2) lim supt→∞
N0(t)

t ≤ 1
λ(1/2+c) a.s. and in L1 (under H0)

(3) lim supt→∞
N1(t)

t ≤ 2
λ a.s. and in L1 (under H1)

(4) PFA
∆
= P0(ŴN ≥ t1) ≤ c1e

−Γ∗t1

where log E0[eΓ∗Z1 ] = 0;
Zk = − logP0(Xk)− H(P0)− λ/2.

(5) PMD
∆
= P1(ŴN ≤ t0) ≤ c0e

−Γ∗t0

where log E1[eΓ∗Z1 ] = 0;
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Asymptotic Properties of t test

Theorem

(1) P0(N <∞) = 1 and P1(N <∞) = 1.

(2) Under Hi ,
N(t)
t →

2σ
µ1−µ0

a.s., for i = 0, 1. Also, if Ei [|X1|] <∞ for
i = 0, 1, then the convergence holds in L1.

(3) PFA ≤ αs where s is the solution of E0[es(X−µ0+µ1
2

)] = 1

(4) PMD ≤ βs
∗

where s∗ is the solution of E0[e−s
∗(X−µ0+µ1

2
)] = 1
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Asymptotic Properties of random walk

Theorem

(1) P0(N <∞) = 1 and P1(N <∞) = 1.

(2) Under Hi ,
N(t)
t →

2
µ1−µ0

a.s., for i = 0, 1. Also, if Ei [|X1|] <∞ for
i = 0, 1, then the convergence holds in L1.

(3) PFA ≤ αs where s is the solution of E0[es(X−µ0+µ1
2

)] = 1

(4) PMD ≤ βs
∗

where s∗ is the solution of E0[e−s
∗(X−µ0+µ1

2
)] = 1
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Robust Tests
Use α-trimmed mean for t test and random walk.
M test - A robust version of t test insensitive to the tails of the
distribution.

Tn =

∑n
i=1 ψ(Xi − (µ0+µ1)

2 )

(
∑n

i=1 ψ
2(Xi − X n))

1
2

ψ : R 7→ R, non decreasing, continuous, odd and bounded function

Huber suggested,

ψ0(z) =


k , if z > k ,
z , if |z | ≤ k ,
−k , if z < −k .

Applying M trimming to random walk gives

Tn =
n∑

i=1

ψ(Xi −
(µ0 + µ1)

2
).

This is iterative unlike α-trimmed random walk/t test or M test.
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Robust tests
Performance Comparison

F (x) = (1− ε)Φ(x) + εH(x)

where H(x) ∼ Unif(7,8) or Unif(-8,-7) w.e.p.
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Distributed set up
General algorithm

Wk,l = − log P0(X n
1 )− nH(P0)− n λ

2
, λ > 0. (Entropy)

Yk,l = b1I{Wk,l ≥ − logαl}+ b0I{Wk,l ≤ log βl}.

Yk =
L∑

l=1

Yk,l + Zk .

Fk = Fk−1 + log
gµ1

(Yk )

gµ0
(Yk )

, F0 = 0. (SPRT)

Node l receives Xk,l and
computes Wk,l .

Node l transmits Yk,l to
the Fusion node.

Fusion node receives Yk

and computes Fk .

Fusion node decides
H0 if Fk ≤ log β,
H1 if Fk ≥ − logα;

otherwise continues.
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Comments

Noise at FC usually not considered in literature.

- With noise, usual fusion decision rules AND, OR, Majority etc. do not
work.

- Our algorithm implicitly does it.
- We use physical layer fusion (no MAC transmission delays)

Noise + interference distribution at FC may not be known
⇒ Non parametric test desired.

EMI at FC ⇒ Outliers will be there ⇒ Robustness desired.
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Performance analysis of distributed algorithm
Sample Path argument
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Different algorithms at FC and secondary nodes
for computing Wk,l and Fk
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Distributed case: Laplace(0,1) vs Laplace(1,5)

 

 

Entropy test at secondary & SPRT at FC
Entropy test at secondary & rank at FC
Entropy test at secondary & t test at FC
T test at secondary & t test at FC
T test at secondary & rank at FC
T test at secondary & SPRT at FC

T test at secondary

Entropy test at secondary

Entropy test performs best for energy detection (at secondary nodes).
At the FC, only mean change, hence rank test/t test/random walk
more appropriate.
Rank test good only for symmetric distributions.
Choose robust versions of random walk or t test.
Conclusion: At local nodes, entropy test with energy detector.

At FC, M-random walk/M test.
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Performance Comparison
Gaussian noise (at FC) in the presence of Uniform outliers
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Distributed case: Gaussian noise in the presence of Uniform outliers

 

 

M − random walk
Alpha (= 0.3) trimmed t test
SPRT
Alpha (= 0.1) trimmed t test
Alpha (= 0) t test

At local nodes,

H0 :  X = Z ~ N(0,1)

H1 :  X = HS + Z
         where
         Z ~ N(0,1)
         H ~ LogN(0,3)
         S ~ Unif{−a,a}
a, such that SNR = 0dB

MAC noise =  Z   w.p. 0.8  
                  =  U   w.p. 0.2
where 
Z ~ N(0,1)
U ~ Unif(7,8) or Unif(−8,−7) w.e.p.
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Performance Comparison
Laplacian noise (at FC) in the presence of Uniform outliers
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Distributed case: Laplacian noise in the presence of Uniform outliers

 

 

alpha(=0.2) trimmed t test
SPRT
M − random walk
alpha(=0) t test

At local nodes,

H0 :  X = Z ~ N(0,1)

H1 :  X = HS + Z
         where
         Z ~ N(0,1)
         H ~ LogN(0,3)
         S ~ Unif{−a,a}
a, such that SNR = 0dB

MAC noise =  Z   w.p. 0.8  
                  =  U   w.p. 0.2
where 
Z ~ Laplace(0,1)
U ~ Unif(7,8) or Unif(−8,−7) w.e.p.
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More examples - heavy tailed without outliers
Log normal noise (at FC) in the presence of Uniform outliers
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Distributed case: Log normal noise; no outliers

 

 

alpha(=0.2) trimmed t test
M − random walk
alpha(=0) t test

MAC noise ~ logN(0,1)

At local nodes,

H0 :  X = Z ~ N(0,1)

H1 :  X = HS + Z
         where
         Z ~ N(0,1)
         H ~ LogN(0,3)
         S ~ Unif{−a,a}
a, such that SNR = 0dB
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More examples - heavy tailed with 1% outliers
Pareto noise (at FC) in the presence of Uniform outliers
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Distributed case: Pareto noise in the presence of Uniform outliers

 

 

alpha(=0.1) trimmed t test
M−random walk
alpha(=0) t test

At local nodes,

H0 :  X = Z ~ N(0,1)

H1 :  X = HS + Z
         where
         Z ~ N(0,1)
         H ~ LogN(0,3)
         S ~ Unif{−a,a}
a, such that SNR = 0dB

MAC noise = Z w.p. 0.99
                  = U w.p. 0.01

where 
Z ~ Pareto(3,2)
U ~ Unif(7,8) or Unif(−8,−7) w.e.p.
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Asymptotics for distributed algorithm

N = Time when FC makes decision
PFA = Probability of False alarm.
PMD = Probability of Missed
Detection.
Γ1,l = ρl |logc |, Γ0,l = −Γl |logc |
β0 = −|logc |, β1 = |logc |

D i
tot =

∑L
i=1 E1[Xk,i − µ0+µ1

2 ]
ζ∗1 = Lb1 + Zk − µ0+µ1

2
∆i = Lbi − µ0+µ1

2 , i=0,1.

Γl =
E0[X1,l−

µ0+µ1
2

]

D0
tot

ρl =
E1[X1,l−

µ0+µ1
2

]

D1
tot

Theorem

(1) P0(N <∞) = 1 and P1(N <∞) = 1 for any positive Γ1,l , β1 and any
negative Γ0,l , β0.

(2) Under Hi , limc→0
N
|logc| ≤

2
Lλ + 1

∆0
(1 +

Ei [|ζ∗1 |]
D i

tot
), for i=0,1.

(3) If m.g.f. of Z1 exists in a neighbourhood of 0, then
limc→0

PFA
c = 0

limc→0
PMD
c = 0.
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Summary

Developed distributed, non parametric, sequential spectrum sensing
algorithms for tackling SNR uncertainty issues.

Studied the performance (via simulations and asymptotics) of different
algorithms at secondary nodes for energy detection and FC MAC.

Proposed appropriate choice of algorithms for spectrum sensing for
the CR system overall.

Extended the design to handle outliers at the FC receiver.
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Thank You!
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