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Introduction

Basic Setup

Let G := (V, E) be a finite graph with vertex set V and edge set E .

Typically V is a set of machines or agents or individuals who are
connected to each others through the edges in E .

G is nothing but the network created out of these.
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Introduction

Model Description

Fix a parameter (a probability) β ∈ (0, 1).

Let V0 ⊆ V be a fixed set of vertices which we will think are initial
infected machines/agents/individuals.

Imagine the time is discrete.

After an unit time each infected agent tries to infect all its uninfected
or healthy neighbors independently with probability β and then dies
out or gets removed from the network.

The process continues till all infected sites are removed.
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Introduction

Remarks

It is a very simple virus spread model.

In epidemiology such a model is called a Susceptible Infected
Removed (SIR) model.

This is model is related to i.i.d Bernoulli bond percolation model.

In fact, if we start with only one initial infected sites, say v0 then it is
easy to see that the collection of all the infected sites is nothing but
the vertices in the open connected component of v0 in the standard
i.i.d. bond percolation at parameter β.
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Introduction

Notations

Let Yt be the total number of infected sites till time t where
t ∈ {0, 1, 2, . . .}.

Note because it is a SIR model so Yt ↑ a.s. as t ↑ ∞.

Let Y G ,V0 := lim
t→∞

Yt be the total number of ever infected sites.

Note Y G ,V0 is also the total number of removed/dead sites ever.
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Introduction

Goal of the Study

To obtain some idea about E
[
Y G ,V0

]
as a function of β.

If the size of the network is “large”, which is typically the case, then
what can we say about E

[
Y G ,V0

]
?

We will like to find answers to above without fixing any specific
network structure.

However we may make assumptions on the qualitative properties of
the graph G .
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Background and Motivation

Where did it all start ? A Specific Earlier work

This model was proposed by Draief, Ganesh and Massoulie [Ann.
Appl. Probab. 2008] where they found an upper bound on E

[
Y G
]
.

They showed:

Theorem [Draief, Ganesh and Massoulie, 2008]

Let A be the adjacency matrix of the graph G and λ (A) be the eigenvalue
with the largest absolute value. Suppose βλ (A) < 1. Then

E
[
Y G ,V0

]
≤

√
n |V0|

1− βλ (A)
,

where n is the number of vertices. Moreover, if G is a regular graph with
degree d ≥ 2, then for β < 1

d

E
[
Y G
]
≤ |V0|

1− βd
.
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Background and Motivation

Where did it all start ? A Specific Earlier work

They prove this using very simple matrix based calculations.

The paper included several examples where this and similar theorems
were used to find the upper bound.
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Background and Motivation

A Constructive Criticism of the Draief et. al. Work

The work does not provide any idea about how good is the upper
bound!

Moreover the proposed upper bound only works for “small” values of
β.

The bound involves λ (A) which can be difficult to compute for a
general graph.

More importantly λ (A) may depend on n the number of vertices.
Thus not giving much idea about what happens for a “large”.
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Background and Motivation

Our Approach

We will provide a simple lower bound to E
[
Y G ,V0

]
which will work

for every β ∈ (0, 1).

Our lower bound can be computed using easy algorithm.

We will also prove that for a large class of graphs this lower bound is
a good approximation to the exact quantity if the network size is
“large”.
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Starting with Only One Infected Vertex Lower Bound for Starting with One Infected Site

Obtaining a Lower Bound

Theorem 1 [B. and Sajadi]

Let G be an arbitrary finite graph and v0 ∈ V be a fixed vertex of it. Let
T be a spanning tree of the connected component of G containing the
vertex v0 and rooted at v0. Let Y T ,{v0} be the total number of vertices
ever infected when the epidemic runs only on T and starting with exactly
one infection at v0. Then

E
[
Y T ,{v0}

]
≤ E

[
Y G ,{v0}

]
for all 0 < β < 1 .

Moreover, if T is a breadth-first search (BFS) spanning tree of the
connected component of v0 rooted at v0, then

E
[
Y T ,{v0}

]
≤ E

[
Y T ,{v0}

]
≤ E

[
Y G ,{v0}

]
for all 0 < β < 1 .
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Starting with Only One Infected Vertex Lower Bound for Starting with One Infected Site

Remarks

For a tree T it is easy to find E
[
XT ,{v0}

]
if the infection started only

at the root v0.

In fact it can be obtained simply by counting the number of
individuals in each generation. In other words using branching process
(not necessarily a Galton-Watson process though).
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Starting with Only One Infected Vertex Lower Bound for Starting with One Infected Site

Breadth-First-Search Algorithm (Example: Cube)

Antar Bandyopadhyay (ISI, Delhi & Kolkata) Virus Spread January 10, 2013 14 / 60



Starting with Only One Infected Vertex Lower Bound for Starting with One Infected Site

Breadth-First-Search Algorithm (Example: Cube)

Antar Bandyopadhyay (ISI, Delhi & Kolkata) Virus Spread January 10, 2013 15 / 60



Starting with Only One Infected Vertex Lower Bound for Starting with One Infected Site

Breadth-First-Search Algorithm (Example: Cube)

Antar Bandyopadhyay (ISI, Delhi & Kolkata) Virus Spread January 10, 2013 16 / 60



Starting with Only One Infected Vertex Lower Bound for Starting with One Infected Site

Breadth-First-Search Algorithm (Example: Cube)

Antar Bandyopadhyay (ISI, Delhi & Kolkata) Virus Spread January 10, 2013 17 / 60



Starting with Only One Infected Vertex Lower Bound for Starting with One Infected Site

Breadth-First-Search Algorithm (Example: Cube)

Antar Bandyopadhyay (ISI, Delhi & Kolkata) Virus Spread January 10, 2013 18 / 60



Starting with Only One Infected Vertex Lower Bound for Starting with One Infected Site

Breadth-First-Search Algorithm (Example: Cube)

Antar Bandyopadhyay (ISI, Delhi & Kolkata) Virus Spread January 10, 2013 19 / 60



Starting with Only One Infected Vertex Lower Bound for Starting with One Infected Site

Breadth-First-Search Algorithm (Example: Cube)

Antar Bandyopadhyay (ISI, Delhi & Kolkata) Virus Spread January 10, 2013 20 / 60



Starting with Only One Infected Vertex Lower Bound for Starting with One Infected Site

Breadth-First-Search Algorithm (Example: Cube)

Antar Bandyopadhyay (ISI, Delhi & Kolkata) Virus Spread January 10, 2013 21 / 60



Starting with Only One Infected Vertex Lower Bound for Starting with One Infected Site

Breadth-First-Search Algorithm (Example: Cube)

Antar Bandyopadhyay (ISI, Delhi & Kolkata) Virus Spread January 10, 2013 22 / 60



Starting with Only One Infected Vertex Lower Bound for Starting with One Infected Site

Breadth-First-Search (BFS) Spanning Tree of the Cube
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Starting with Only One Infected Vertex Lower Bound for Starting with One Infected Site

Proof of Theorem 1

Theorem 1 [B. and Sajadi]

Let G be an arbitrary finite graph and v0 ∈ V be a fixed vertex of it. Let
T be a spanning tree of the connected component of G containing the
vertex v0 and rooted at v0. Let Y T ,{v0} be the total number of vertices
ever infected when the epidemic runs only on T and starting with exactly
one infection at v0. Then

E
[
Y T ,{v0}

]
≤ E

[
Y G ,{v0}

]
for all 0 < β < 1 .

Moreover, if T is a BFS spanning tree of the connected component of v0

rooted at v0, then

E
[
Y T ,{v0}

]
≤ E

[
Y T ,{v0}

]
≤ E

[
Y G ,{v0}

]
for all 0 < β < 1 .
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Starting with Only One Infected Vertex Lower Bound for Starting with One Infected Site

Proof of Theorem 1

First of all any such T ⊆ G and since we start with only one infection
at v0 which is also the root of T so first inequality follows.

For any tree T rooted at v0 define DT (v) := graph distance between
v0 and v in T .

From definition E
[
Y T ,{v0}

]
=
∑
v∈T

βDT (v).

Also by construction if T is the breadth-first-search tree rooted at v0

then DT (v) ≤ DT (v).

This proves that E
[
Y T ,{v0}

]
≤ E

[
Y T ,{v0}

]
.
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Starting with Only One Infected Vertex Lower Bound for Starting with One Infected Site

Algorithm to Find the Lower Bound (Example: Cube)
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Starting with Only One Infected Vertex Comparison of Lower and Upper Bounds

Lower and Upper Bounds for Some Graphs

Graph Lower Bound Upper Bound

Regular Tree (Tr,m)
1−[(r−1)β]m+1

1−(r−1)β
−→ 1

1−(r−1)β
1

1−rβ
for β < 1

r

Cube in (R3) (1 + β)3 1
1−3β

for β < 1
3

Cycle(Cn) 1 + 2
bn/2c∑
i=1

β i + o(1) −→ 1+β
1−β

1
1−2β

for β < 1
2

Generalized Cycle(n, r) ≤ 1+β
1−β

1
1−(r+2)β

for β < 1
r+2

Complete (Kn) 1 + (n − 1)β 1
1−(n−1)β

for β < 1
n−1
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Starting with Only One Infected Vertex Comparison of Lower and Upper Bounds

Critical Review with Cycle Graph as the Example

Let G := Cn be the cycle of length n.

The upper bound is 1
1−2β which works for β < 1

2

What is our lower bound ?

Which one is better ?
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Starting with Only One Infected Vertex Comparison of Lower and Upper Bounds

Finding the Lower Bound for Cn

Lower Bound = 1 + · · ·
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Starting with Only One Infected Vertex Comparison of Lower and Upper Bounds

Finding the Lower Bound for Cn

Lower Bound = 1 + 2β + β2 + · · ·
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Starting with Only One Infected Vertex Comparison of Lower and Upper Bounds

Finding the Lower Bound for Cn

Lower Bound = 1 + 2β + 2β2 + · · ·+ 2β
n
2 − 1 + β

n
2
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Starting with Only One Infected Vertex Comparison of Lower and Upper Bounds

Finding the Lower Bound for Cn

So For n even our lower bound is

1 + 2

n
2
−1∑

i=1

βi + β
n
2 .

As n→∞ the lower bound converges to 1+β
1−β .

Note the upper bound is 1
1−2β which only works for β < 1

2 . Moreover

it also shows that even if β < 1
2 there is still a positive gap between

the upper and lower bound.
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Starting with Only One Infected Vertex Comparison of Lower and Upper Bounds

Finding the Exact Value of E
[
Y Cn

]
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Starting with Only One Infected Vertex Comparison of Lower and Upper Bounds

Finding the Exact Value of E
[
Y Cn

]

For any β > 0 it is now easy to see that for any d ≥ 1

Lower bound ≤ E
[
Y Cn

]
≤ Lower bound + 2βdn .

Thus by taking d = O (n) < n and letting n tends to infinity we can
conclude (

E
[
Y Cn

]
− Lower Bound

)
−→ 0 .
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Starting with Only One Infected Vertex Asymptotic Correctness of the Lower Bound

Asymptotic Correctness of the Lower Bound

Theorem 2 [B. and Sajadi]

Let {(Gn, v
n
0 )}n≥1 be a sequence of rooted graphs with roots {vn

0 }n≥1 such
that there exists a sequence αn = O (log n) with Nαn (Gn, v

n
0 ) is a tree for

all n ≥ 1. Then, there exists 0 < β0 ≤ 1, such that for all 0 < β < β0

E
[
Y Gn,{vn

0}
]

LBGn,{v0}
−→ 1 as n→∞ .
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Starting with Only One Infected Vertex Asymptotic Correctness of the Lower Bound

Asymptotic Correctness of the Lower Bound

Remarks:

Unfortunately, there is still this annoying β0. Fortunately it does not
depend on n.

The assumption though looks some what stringent but really means
that for “large” n the graph Gn locally looks like a tree from the point
of view of its root v0,n.

The assumption in the above theorem is stricter than just assuming
(Gn, v0,n)n≥1 converges to the rooted tree (T, φ) in the sense of local
weak convergence of Aldous and Steele.

But we can do better in a lot of cases!
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Starting with Only One Infected Vertex Asymptotic Correctness of the Lower Bound

Asymptotic Correctness of the Lower Bound

Theorem 3 [B. and Sajadi]

Let {(Gn, v
n
0 )}n≥1 be a sequence of rooted deterministic or random graphs with

deterministic or randomly chosen roots {vn
0 }n≥1. Suppose that for each Gn the

maximum degrees of a vertex is bounded by ∆. Suppose there is a rooted
deterministic or random tree T with root φ such that

(Gn, v
n
0 )

l.w .c.−−−→ (T, φ) as n→∞ .

Let LBGn,{v0} := E
[
Y T n,{vn

0 }
]

where T n is a BFS spanning tree rooted at vn
0 of

the graph Gn. Then for β < 1
∆(

E
[
Y Gn,{vn

0 }
]
− LBGn,{v0}

)
−→ 0 as n→∞ .

Moreover for β < 1
∆ we also get

lim
n→∞

LBGn,{v0} = lim
n→∞

E
[
Y Gn,{vn

0 }
]

= E
[
Y T,φ

]
.
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Starting with Only One Infected Vertex Asymptotic Correctness of the Lower Bound

Asymptotic Correctness of the Lower Bound

Theorem 4 [B. and Sajadi]

Suppose Gn is a graph selected uniformly at random from the set of all
r -regular graphs on n vertices where we assume nr is an even number. Let
vn

0 be an uniformly selected vertex of Gn. Then for β < 1
r

lim
n→∞

E
[
Y Gn,{vn

0}
]

=
1 + β

1− (r − 1)β
.
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Starting with More than One Initial Infected Vertices

Starting with More than One Initial Infected Vertices

Suppose we start with initial infected sites v1, v2, . . . , vk in the graph
G .

A cute trick is to consider a new graph G ∗ := (V∗, E∗) such that

V∗ := V ∪ {∆}

where ∆ is some “artificial” vertex and

E∗ := E ∪
{

(∆, vi )
∣∣∣ 1 ≤ i ≤ k

}
.

Now we run the process on G ∗ with ∆ as the initial infected site and
condition on the event that after unit time all the neighbors of ∆,
namely, {v1, v2, . . . , vk} got infected.

Then we can prove theorems similar to Theorem 1, 2, 3 and 4.
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Starting with More than One Initial Infected Vertices

Starting with More than One Initial Infected Vertices

In particular here is the corresponding theorem for random r -regular graph
...

Theorem 5 [B. and Sajadi]

Suppose Gn is a graph selected uniformly at random from the set of all
r -regular graphs on n vertices where we assume nr is an even number. Let

In :=
{

vn
0,1, v

n
0,2, · · · , vn

0,k

}
be k uniformly and independently selected

vertices of Gn. Then for β < 1
r

lim
n→∞

E
[
Y Gn,In

]
= k

1 + β

1− (r − 1)β
.
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Limitations

Limitations

If the graph does not locally looks like a tree then the lower bound is
not necessarily a good approximation to the exact quantity.

For example if G := Kn the complete graph then one can show that

lim sup
n→∞

E
[
Y Kn

]
− LBn

LBn
≥ 1

β

where LBn is the lower bound obtained on the graph Kn.

Interesting enough in this case even the upper bound does not give
good approximation!
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Limitations

Thank You
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