Expected Total Number of Infections for Virus Spread on a Finite Network

Antar Bandyopadhyay

(Joint work with Farkhondeh Sajadi)

Theoretical Statistics and Mathematics Unit Indian Statistical Institute, New Delhi and Kolkata http://www.isid.ac.in/~antar

Conference on Limit Theorems in Probability IISc Mathematics Initiative (IMI) January 10, 2013

Antar Bandyopadhyay (ISI, Delhi & Kolkata)

Virus Spread

Introduction

- 3 Background and Motivation
- 4 Starting with Only One Infected Vertex
 - Lower Bound for Starting with One Infected Site
 - Comparison of Lower and Upper Bounds
 - Asymptotic Correctness of the Lower Bound
 - 5 Starting with More than One Initial Infected Vertices

6 Limitations

• Let $G := (\mathcal{V}, \mathcal{E})$ be a finite graph with vertex set \mathcal{V} and edge set \mathcal{E} .

- Let $G := (\mathcal{V}, \mathcal{E})$ be a finite graph with vertex set \mathcal{V} and edge set \mathcal{E} .
- Typically V is a set of *machines* or *agents* or *individuals* who are connected to each others through the edges in \mathcal{E} .

- Let $G := (\mathcal{V}, \mathcal{E})$ be a finite graph with vertex set \mathcal{V} and edge set \mathcal{E} .
- Typically V is a set of *machines* or *agents* or *individuals* who are connected to each others through the edges in \mathcal{E} .
- *G* is nothing but the *network* created out of these.

• Fix a parameter (a probability) $\beta \in (0,1)$.

- Fix a parameter (a probability) $\beta \in (0,1)$.
- Let V₀ ⊆ V be a fixed set of vertices which we will think are initial infected machines/agents/individuals.

- Fix a parameter (a probability) $\beta \in (0,1)$.
- Let V₀ ⊆ V be a fixed set of vertices which we will think are initial infected machines/agents/individuals.
- Imagine the time is discrete.

- Fix a parameter (a probability) $\beta \in (0,1)$.
- Let V₀ ⊆ V be a fixed set of vertices which we will think are initial infected machines/agents/individuals.
- Imagine the time is discrete.
- After an unit time each infected agent tries to infect all its uninfected or healthy neighbors independently with probability β and then dies out or gets removed from the network.

- Fix a parameter (a probability) $\beta \in (0,1)$.
- Let V₀ ⊆ V be a fixed set of vertices which we will think are initial infected machines/agents/individuals.
- Imagine the time is discrete.
- After an unit time each infected agent tries to infect all its uninfected or healthy neighbors independently with probability β and then dies out or gets removed from the network.
- The process continues till all infected sites are removed.

• It is a very simple *virus spread* model.

- It is a very simple *virus spread* model.
- In *epidemiology* such a model is called a *Susceptible Infected Removed* (*SIR*) model.

- It is a very simple *virus spread* model.
- In *epidemiology* such a model is called a *Susceptible Infected Removed* (*SIR*) model.
- This is model is related to *i.i.d Bernoulli bond percolation* model.

- It is a very simple *virus spread* model.
- In *epidemiology* such a model is called a *Susceptible Infected Removed* (*SIR*) model.
- This is model is related to *i.i.d Bernoulli bond percolation* model.
- In fact, if we start with only one initial infected sites, say v₀ then it is easy to see that the collection of all the infected sites is nothing but the vertices in the open connected component of v₀ in the standard i.i.d. bond percolation at parameter β.

• Let Y_t be the total number of infected sites till time t where $t \in \{0, 1, 2, ...\}$.

- Let Y_t be the total number of infected sites till time t where $t \in \{0, 1, 2, ...\}$.
- Note because it is a SIR model so $Y_t \uparrow$ a.s. as $t \uparrow \infty$.

- Let Y_t be the total number of infected sites till time t where $t \in \{0, 1, 2, ...\}$.
- Note because it is a SIR model so $Y_t \uparrow a.s.$ as $t \uparrow \infty$.
- Let $Y^{G,V_0} := \lim_{t o \infty} Y_t$ be the total number of ever infected sites.

- Let Y_t be the total number of infected sites till time t where $t \in \{0, 1, 2, ...\}$.
- Note because it is a SIR model so $Y_t \uparrow a.s.$ as $t \uparrow \infty$.
- Let $Y^{G,V_0} := \lim_{t \to \infty} Y_t$ be the total number of ever infected sites.
- Note Y^{G,V_0} is also the total number of removed/dead sites ever.

Goal of the Study

• To obtain some idea about $\mathbf{E}[Y^{G,V_0}]$ as a function of β .

Goal of the Study

- To obtain some idea about $\mathbf{E}[Y^{G,V_0}]$ as a function of β .
- If the size of the network is "*large*", which is typically the case, then what can we say about $\mathbf{E} \left[Y^{G,V_0} \right]$?

- To obtain some idea about $\mathbf{E}[Y^{G,V_0}]$ as a function of β .
- If the size of the network is "*large*", which is typically the case, then what can we say about $\mathbf{E} \left[Y^{G,V_0} \right]$?
- We will like to find answers to above without fixing any specific network structure.

- To obtain some idea about $\mathbf{E}[Y^{G,V_0}]$ as a function of β .
- If the size of the network is "*large*", which is typically the case, then what can we say about $\mathbf{E} \left[Y^{G,V_0} \right]$?
- We will like to find answers to above without fixing any specific network structure.
- However we may make assumptions on the qualitative properties of the graph *G*.

Where did it all start ? A Specific Earlier work

 This model was proposed by Draief, Ganesh and Massoulie [Ann. Appl. Probab. 2008] where they found an *upper bound* on E [Y^G].

Where did it all start ? A Specific Earlier work

- This model was proposed by Draief, Ganesh and Massoulie [Ann. Appl. Probab. 2008] where they found an *upper bound* on E [Y^G].
- They showed:

Where did it all start ? A Specific Earlier work

- This model was proposed by Draief, Ganesh and Massoulie [Ann. Appl. Probab. 2008] where they found an *upper bound* on E [Y^G].
- They showed:

Theorem [Draief, Ganesh and Massoulie, 2008]

Let A be the adjacency matrix of the graph G and $\lambda(A)$ be the eigenvalue with the largest absolute value. Suppose $\beta\lambda(A) < 1$. Then

$$\mathsf{E}\left[Y^{G,V_{0}}\right] \leq \frac{\sqrt{n\left|V_{0}\right|}}{1 - \beta\lambda\left(A\right)},$$

where *n* is the number of vertices. Moreover, if *G* is a regular graph with degree $d \ge 2$, then for $\beta < \frac{1}{d}$

$$\mathsf{E}\left[Y^{\mathsf{G}}\right] \leq rac{|V_0|}{1-eta d}.$$

Where did it all start ? A Specific Earlier work

• They prove this using very simple matrix based calculations.

Where did it all start ? A Specific Earlier work

- They prove this using very simple matrix based calculations.
- The paper included several examples where this and similar theorems were used to find the *upper bound*.

• The work does not provide any idea about *how good is the upper bound*!

- The work does not provide any idea about *how good is the upper bound*!
- Moreover the proposed upper bound only works for "small" values of β .

- The work does not provide any idea about *how good is the upper bound*!
- Moreover the proposed upper bound only works for "small" values of β .
- The bound involves λ(A) which can be difficult to compute for a general graph.

- The work does not provide any idea about *how good is the upper bound*!
- Moreover the proposed upper bound only works for "small" values of β .
- The bound involves λ(A) which can be difficult to compute for a general graph.
- More importantly \(\lambda\) (A) may depend on n the number of vertices. Thus not giving much idea about what happens for a "large".

Our Approach

• We will provide a simple *lower bound* to $\mathbf{E}[Y^{G,V_0}]$ which will work for every $\beta \in (0,1)$.

- We will provide a simple *lower bound* to E [Y^{G,V0}] which will work for every β ∈ (0,1).
- Our lower bound can be computed using easy algorithm.

- We will provide a simple *lower bound* to E [Y^{G,V0}] which will work for every β ∈ (0,1).
- Our lower bound can be computed using easy algorithm.
- We will also prove that for a large class of graphs this lower bound is a good approximation to the exact quantity if the network size is *"large"*.

Obtaining a Lower Bound

Theorem 1 [B. and Sajadi]

Let *G* be an arbitrary finite graph and $v_0 \in V$ be a fixed vertex of it. Let *T* be a spanning tree of the connected component of *G* containing the vertex v_0 and rooted at v_0 . Let $Y^{T,\{v_0\}}$ be the total number of vertices ever infected when the epidemic runs only on *T* and starting with exactly one infection at v_0 . Then

$$\mathbf{E}\left[Y^{\mathcal{T},\{\mathbf{v}_0\}}\right] \leq \mathbf{E}\left[Y^{\mathcal{G},\{\mathbf{v}_0\}}\right] \text{ for all } 0 < \beta < 1.$$

Moreover, if \mathcal{T} is a *breadth-first search (BFS) spanning tree* of the connected component of v_0 rooted at v_0 , then

$$\mathsf{E}\left[Y^{\mathcal{T},\{\mathsf{v}_0\}}\right] \leq \mathsf{E}\left[Y^{\mathcal{T},\{\mathsf{v}_0\}}\right] \leq \mathsf{E}\left[Y^{\mathcal{G},\{\mathsf{v}_0\}}\right] \ \text{ for all } \ 0 < \beta < 1 \, .$$

Remarks

• For a tree T it is easy to find $\mathbf{E}[X^{T,\{v_0\}}]$ if the infection started only at the root v_0 .
- For a tree T it is easy to find $\mathbf{E}[X^{T,\{v_0\}}]$ if the infection started only at the root v_0 .
- In fact it can be obtained simply by counting the number of individuals in each generation. In other words using *branching process* (not necessarily a Galton-Watson process though).

Breadth-First-Search (BFS) Spanning Tree of the Cube

Theorem 1 [B. and Sajadi]

Let *G* be an arbitrary finite graph and $v_0 \in V$ be a fixed vertex of it. Let *T* be a spanning tree of the connected component of *G* containing the vertex v_0 and rooted at v_0 . Let $Y^{T,\{v_0\}}$ be the total number of vertices ever infected when the epidemic runs only on *T* and starting with exactly one infection at v_0 . Then

$$\mathbf{E}\left[Y^{\mathcal{T},\{\mathbf{v}_0\}}\right] \leq \mathbf{E}\left[Y^{\mathcal{G},\{\mathbf{v}_0\}}\right] \ \text{ for all } \ 0 < \beta < 1 \,.$$

Moreover, if ${\cal T}$ is a BFS spanning tree of the connected component of v_0 rooted at $v_0,$ then

$$\mathsf{E}\left[Y^{\mathcal{T},\{\mathsf{v}_0\}}\right] \leq \mathsf{E}\left[Y^{\mathcal{T},\{\mathsf{v}_0\}}\right] \leq \mathsf{E}\left[Y^{\mathcal{G},\{\mathsf{v}_0\}}\right] \ \text{ for all } \ 0 < \beta < 1 \, .$$

• First of all any such $T \subseteq G$ and since we start with only one infection at v_0 which is also the root of T so first inequality follows.

- First of all any such $T \subseteq G$ and since we start with only one infection at v_0 which is also the root of T so first inequality follows.
- For any tree T rooted at v_0 define $D_T(v) :=$ graph distance between v_0 and v in T.

- First of all any such $T \subseteq G$ and since we start with only one infection at v_0 which is also the root of T so first inequality follows.
- For any tree T rooted at v_0 define $D_T(v) :=$ graph distance between v_0 and v in T.
- From definition $\mathbf{E}\left[Y^{T,\{v_0\}}\right] = \sum_{v \in T} \beta^{D_T(v)}$.

- First of all any such T ⊆ G and since we start with only one infection at v₀ which is also the root of T so first inequality follows.
- For any tree T rooted at v_0 define $D_T(v) :=$ graph distance between v_0 and v in T.

• From definition
$$\mathbf{E}\left[Y^{\mathcal{T},\{v_0\}}\right] = \sum_{v \in \mathcal{T}} \beta^{D_{\mathcal{T}}(v)}.$$

• Also by construction if \mathcal{T} is the breadth-first-search tree rooted at v_0 then $D_{\mathcal{T}}(v) \leq D_{\mathcal{T}}(v)$.

- First of all any such T ⊆ G and since we start with only one infection at v₀ which is also the root of T so first inequality follows.
- For any tree T rooted at v_0 define $D_T(v) :=$ graph distance between v_0 and v in T.

• From definition
$$\mathbf{E}\left[Y^{\mathcal{T},\{v_0\}}\right] = \sum_{v \in \mathcal{T}} \beta^{D_{\mathcal{T}}(v)}.$$

- Also by construction if *T* is the breadth-first-search tree rooted at v₀ then D_T(v) ≤ D_T(v).
- This proves that $\mathbf{E}\left[Y^{\mathcal{T},\{v_0\}}\right] \leq \mathbf{E}\left[Y^{\mathcal{T},\{v_0\}}\right].$

Algorithm to Find the Lower Bound (Example: Cube)

Antar Bandyopadhyay (ISI, Delhi & Kolkata)

Graph	Lower Bound	Upper Bound
-------	-------------	-------------

Graph	Lower Bound	Upper Bound
Regular Tree (T _{r,m})	$\frac{1-[(r-1)\beta]^{m+1}}{1-(r-1)\beta} \longrightarrow \frac{1}{1-(r-1)\beta}$	$\frac{1}{1-r\beta}$ for $\beta < \frac{1}{r}$

Graph	Lower Bound	Upper Bound
Regular Tree (T _{r,m})	$\frac{1-[(r-1)\beta]^{m+1}}{1-(r-1)\beta} \longrightarrow \frac{1}{1-(r-1)\beta}$	$\frac{1}{1-r\beta}$ for $\beta < \frac{1}{r}$
Cube in (\mathbb{R}^3)	$(1+eta)^3$	$rac{1}{1-3eta}$ for $eta < rac{1}{3}$

Graph	Lower Bound	Upper Bound
Regular Tree (T _{r,m})	$\frac{1-[(r-1)\beta]^{m+1}}{1-(r-1)\beta} \longrightarrow \frac{1}{1-(r-1)\beta}$	$\frac{1}{1-r\beta}$ for $\beta < \frac{1}{r}$
Cube in (\mathbb{R}^3)	$(1+eta)^3$	$rac{1}{1-3eta}$ for $eta < rac{1}{3}$
Cycle(C _n)	$1+2\sum_{i=1}^{\lfloor n/2 floor}eta^i+o(1)\longrightarrow rac{1+eta}{1-eta}$	$rac{1}{1-2eta}$ for $eta<rac{1}{2}$

Graph	Lower Bound	Upper Bound
Regular Tree (T _{r,m})	$\frac{1-[(r-1)\beta]^{m+1}}{1-(r-1)\beta} \longrightarrow \frac{1}{1-(r-1)\beta}$	$\frac{1}{1-r\beta}$ for $\beta < \frac{1}{r}$
Cube in (\mathbb{R}^3)	$(1+eta)^3$	$rac{1}{1-3eta}$ for $eta < rac{1}{3}$
Cycle(C _n)	$1+2\sum_{i=1}^{\lfloor n/2 floor}eta^i+o(1)\longrightarrow rac{1+eta}{1-eta}$	$rac{1}{1-2eta}$ for $eta<rac{1}{2}$
Generalized Cycle(n, r)	$\leq \frac{1+\beta}{1-\beta}$	$rac{1}{1-(r+2)eta}$ for $eta < rac{1}{r+2}$

Graph	Lower Bound	Upper Bound
Regular Tree (T _{r,m})	$\frac{1-[(r-1)\beta]^{m+1}}{1-(r-1)\beta} \longrightarrow \frac{1}{1-(r-1)\beta}$	$\frac{1}{1-r\beta}$ for $\beta < \frac{1}{r}$
Cube in (\mathbb{R}^3)	$(1+eta)^3$	$rac{1}{1-3eta}$ for $eta < rac{1}{3}$
Cycle(C _n)	$1+2\sum_{i=1}^{\lfloor n/2 floor}eta^i+o(1)\longrightarrow rac{1+eta}{1-eta}$	$rac{1}{1-2eta}$ for $eta<rac{1}{2}$
Generalized Cycle(n, r)	$\leq \frac{1+\beta}{1-\beta}$	$rac{1}{1-(r+2)eta}$ for $eta < rac{1}{r+2}$
Complete (K _n)	$1+(n-1)\beta$	$\frac{1}{1-(n-1)\beta}$ for $\beta < \frac{1}{n-1}$

Starting with Only One Infected Vertex Comparison of Lower and Upper Bounds

Critical Review with Cycle Graph as the Example

• Let $G := C_n$ be the cycle of length n.

Starting with Only One Infected Vertex Comparison of Lower and Upper Bounds

Critical Review with Cycle Graph as the Example

- Let $G := C_n$ be the cycle of length n.
- \bullet The upper bound is $\frac{1}{1-2\beta}$ which works for $\beta < \frac{1}{2}$

Starting with Only One Infected Vertex Comparison of Lower and Upper Bounds

Critical Review with Cycle Graph as the Example

- Let $G := C_n$ be the cycle of length n.
- \bullet The upper bound is $\frac{1}{1-2\beta}$ which works for $\beta < \frac{1}{2}$
- What is our lower bound ?
Critical Review with Cycle Graph as the Example

- Let $G := C_n$ be the cycle of length n.
- \bullet The upper bound is $\frac{1}{1-2\beta}$ which works for $\beta < \frac{1}{2}$
- What is our lower bound ?
- Which one is better ?

Finding the Lower Bound for C_n

 $\mathsf{Lower} \; \mathsf{Bound} = 1 + \cdots$

Finding the Lower Bound for C_n

Lower Bound $= 1 + \cdots$

Finding the Lower Bound for C_n

Lower Bound $= 1 + 2\beta + \cdots$

Finding the Lower Bound for C_n

Lower Bound $= 1 + 2\beta + \cdots$

Finding the Lower Bound for C_n

Lower Bound = $1 + 2\beta + \beta^2 + \cdots$

Finding the Lower Bound for C_n

Lower Bound = $1 + 2\beta + \beta^2 + \cdots$

Finding the Lower Bound for C_n

Lower Bound = $1 + 2\beta + 2\beta^2 + \cdots$

Finding the Lower Bound for C_n

Lower Bound =
$$1 + 2\beta + 2\beta^2 + \dots + 2\beta^{\frac{n}{2}} - 1 + \beta^{\frac{n}{2}}$$

Finding the Lower Bound for C_n

• So For *n* even our lower bound is

$$1 + 2\sum_{i=1}^{\frac{n}{2}-1}\beta^{i} + \beta^{\frac{n}{2}}.$$

Finding the Lower Bound for C_n

• So For *n* even our lower bound is

$$1 + 2\sum_{i=1}^{\frac{n}{2}-1} \beta^{i} + \beta^{\frac{n}{2}} \,.$$

• As $n \to \infty$ the lower bound converges to $\frac{1+\beta}{1-\beta}$.

Finding the Lower Bound for C_n

• So For *n* even our lower bound is

$$1 + 2\sum_{i=1}^{\frac{n}{2}-1} \beta^{i} + \beta^{\frac{n}{2}} \,.$$

- As $n \to \infty$ the lower bound converges to $\frac{1+\beta}{1-\beta}$.
- Note the upper bound is $\frac{1}{1-2\beta}$ which only works for $\beta < \frac{1}{2}$. Moreover it also shows that even if $\beta < \frac{1}{2}$ there is still a positive *gap* between the upper and lower bound.

Finding the Exact Value of $\mathbf{E}\left[Y^{C_n}\right]$

• For any $\beta > 0$ it is now easy to see that for any $d \ge 1$

Lower bound
$$\leq \mathbf{E}\left[Y^{C_n}\right] \leq \text{Lower bound} + 2\beta^d n$$
.

Finding the Exact Value of $\mathbf{E}[Y^{C_n}]$

• For any $\beta > 0$ it is now easy to see that for any d > 1

Lower bound
$$\leq \mathbf{E}\left[Y^{C_n}\right] \leq \text{Lower bound} + 2\beta^d n$$
.

• Thus by taking d = O(n) < n and letting *n* tends to infinity we can conclude

$$\left(\mathsf{E}\left[Y^{C_n}\right] - \mathsf{Lower Bound}\right) \longrightarrow 0$$
.

Theorem 2 [B. and Sajadi]

Let $\{(G_n, v_0^n)\}_{n\geq 1}$ be a sequence of rooted graphs with roots $\{v_0^n\}_{n\geq 1}$ such that there exists a sequence $\alpha_n = O(\log n)$ with $N_{\alpha_n}(G_n, v_0^n)$ is a tree for all $n \geq 1$. Then, there exists $0 < \beta_0 \leq 1$, such that for all $0 < \beta < \beta_0$

$$\frac{\mathsf{E}\left[Y^{G_n,\left\{v_0^n\right\}}\right]}{\mathsf{LB}^{G_n,\left\{v_0\right\}}} \longrightarrow 1 \text{ as } n \to \infty.$$

Remarks:

• Unfortunately, there is still this annoying β_0 . Fortunately it does not depend on *n*.

Remarks:

- Unfortunately, there is still this annoying β_0 . Fortunately it does not depend on *n*.
- The assumption though looks some what stringent but really means that for "*large*" n the graph G_n *locally looks like a tree* from the point of view of its root $v_{0,n}$.

Remarks:

- Unfortunately, there is still this annoying β_0 . Fortunately it does not depend on *n*.
- The assumption though looks some what stringent but really means that for "*large*" n the graph G_n *locally looks like a tree* from the point of view of its root $v_{0,n}$.
- The assumption in the above theorem is stricter than just assuming $(G_n, v_{0,n})_{n \ge 1}$ converges to the rooted tree (\mathcal{T}, ϕ) in the sense of *local* weak convergence of Aldous and Steele.

Remarks:

- Unfortunately, there is still this annoying β_0 . Fortunately it does not depend on *n*.
- The assumption though looks some what stringent but really means that for "*large*" n the graph G_n *locally looks like a tree* from the point of view of its root $v_{0,n}$.
- The assumption in the above theorem is stricter than just assuming $(G_n, v_{0,n})_{n \ge 1}$ converges to the rooted tree (\mathcal{T}, ϕ) in the sense of *local* weak convergence of Aldous and Steele.
- But we can do better in a lot of cases!

Theorem 3 [B. and Sajadi]

Let $\{(G_n, v_0^n)\}_{n \ge 1}$ be a sequence of rooted deterministic or random graphs with deterministic or randomly chosen roots $\{v_0^n\}_{n \ge 1}$. Suppose that for each G_n the maximum degrees of a vertex is bounded by Δ . Suppose there is a rooted deterministic or random tree \mathcal{T} with root ϕ such that

$$(G_n, v_0^n) \xrightarrow{l.w.c.} (\mathfrak{T}, \phi) \text{ as } n \to \infty.$$

Let $LB^{G_n, \{v_0\}} := \mathbf{E} \left[Y^{\mathcal{T}_n, \{v_0^n\}} \right]$ where \mathcal{T}_n is a BFS spanning tree rooted at v_0^n of the graph G_n . Then for $\beta < \frac{1}{\Delta}$

$$\left(\mathbf{E}\left[\mathbf{Y}^{G_n,\{\mathbf{v}_0^n\}}\right] - \mathsf{LB}^{G_n,\{\mathbf{v}_0\}}\right) \longrightarrow 0 \text{ as } n \to \infty.$$

Moreover for $\beta < \frac{1}{\Delta}$ we also get

$$\lim_{n\to\infty} \mathsf{LB}^{G_n,\{\mathsf{v}_0\}} = \lim_{n\to\infty} \mathsf{E}\left[Y^{G_n,\{\mathsf{v}_0^n\}}\right] = \mathsf{E}\left[Y^{\mathfrak{I},\phi}\right]$$

Antar Bandyopadhyay (ISI, Delhi & Kolkata)

Theorem 4 [B. and Sajadi]

Suppose G_n is a graph selected uniformly at random from the set of all r-regular graphs on n vertices where we assume nr is an even number. Let v_0^n be an uniformly selected vertex of G_n . Then for $\beta < \frac{1}{r}$

$$\lim_{n\to\infty} \mathbf{E}\left[Y^{G_n,\left\{v_0^n\right\}}\right] = \frac{1+\beta}{1-(r-1)\beta}.$$

Starting with More than One Initial Infected Vertices

• Suppose we start with initial infected sites v_1, v_2, \ldots, v_k in the graph *G*.

- Suppose we start with initial infected sites v_1, v_2, \ldots, v_k in the graph *G*.
- A cute trick is to consider a new graph $G^* := (\mathcal{V}^*, \mathcal{E}^*)$ such that

$$\mathcal{V}^*:=\mathcal{V}\cup\{\Delta\}$$

where Δ is some "artificial" vertex

- Suppose we start with initial infected sites v_1, v_2, \ldots, v_k in the graph *G*.
- A cute trick is to consider a new graph $G^* := (\mathcal{V}^*, \mathcal{E}^*)$ such that

$$\mathcal{V}^*:=\mathcal{V}\cup\{\Delta\}$$

where Δ is some "artificial" vertex and

$$\mathcal{E}^* := \mathcal{E} \cup \left\{ (\Delta, v_i) \mid 1 \leq i \leq k \right\} \,.$$

- Suppose we start with initial infected sites v_1, v_2, \ldots, v_k in the graph *G*.
- A cute trick is to consider a new graph $G^* := (\mathcal{V}^*, \mathcal{E}^*)$ such that

$$\mathcal{V}^* := \mathcal{V} \cup \{\Delta\}$$

where Δ is some "artificial" vertex and

$$\mathcal{E}^* := \mathcal{E} \cup \left\{ (\Delta, v_i) \mid 1 \leq i \leq k \right\}$$
.

Now we run the process on G* with Δ as the initial infected site and condition on the event that after unit time all the neighbors of Δ, namely, {v₁, v₂,..., v_k} got infected.

- Suppose we start with initial infected sites v_1, v_2, \ldots, v_k in the graph *G*.
- A cute trick is to consider a new graph $G^* := (\mathcal{V}^*, \mathcal{E}^*)$ such that

$$\mathcal{V}^* := \mathcal{V} \cup \{\Delta\}$$

where Δ is some "artificial" vertex and

$$\mathcal{E}^* := \mathcal{E} \cup \left\{ (\Delta, v_i) \mid 1 \leq i \leq k \right\} \,.$$

- Now we run the process on G* with Δ as the initial infected site and condition on the event that after unit time all the neighbors of Δ, namely, {v₁, v₂,..., v_k} got infected.
- $\bullet\,$ Then we can prove theorems similar to Theorem 1, 2, 3 and 4.

In particular here is the corresponding theorem for random r-regular graph

. . .

In particular here is the corresponding theorem for random r-regular graph ...

Theorem 5 [B. and Sajadi]

Suppose G_n is a graph selected uniformly at random from the set of all r-regular graphs on n vertices where we assume nr is an even number. Let $I_n := \left\{ v_{0,1}^n, v_{0,2}^n, \cdots, v_{0,k}^n \right\}$ be k uniformly and independently selected vertices of G_n . Then for $\beta < \frac{1}{r}$

$$\lim_{n\to\infty} \mathbf{E}\left[Y^{G_n,I_n}\right] = k \frac{1+\beta}{1-(r-1)\beta}.$$

• If the graph **does not** *locally looks like a tree* then the lower bound is not necessarily a good approximation to the exact quantity.

- If the graph **does not** *locally looks like a tree* then the lower bound is not necessarily a good approximation to the exact quantity.
- For example if $G := K_n$ the *complete graph* then one can show that

$$\limsup_{n \to \infty} \frac{\mathsf{E}\left[Y^{K_n}\right] - LB_n}{LB_n} \geq \frac{1}{\beta}$$

where LB_n is the lower bound obtained on the graph K_n .

- If the graph **does not** *locally looks like a tree* then the lower bound is not necessarily a good approximation to the exact quantity.
- For example if $G := K_n$ the *complete graph* then one can show that

$$\limsup_{n \to \infty} \frac{\mathbf{E}\left[Y^{K_n}\right] - LB_n}{LB_n} \geq \frac{1}{\beta}$$

where LB_n is the lower bound obtained on the graph K_n .

• Interesting enough in this case even the upper bound does not give good approximation!
Limitations

Thank You