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Plan of the talk

Lecture content
Power of choice in computer science

Topic 1: Bounded size rules

Critical scaling window and emergence of the giant (joint work with Amarjit Budhiraja and
Xuan Wang)
Topic 2: Twitter event networks
Superstar model (joint work with J.Michael Steele and Tauhid Zaman)
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Power of two choices

Application setting

Consider n bins (servers) into which we are going to sequentially place n balls (jobs).
Centralized scheme (asking bins current load) computationally expensive and time
consuming

Simplest scheme, each stage choose bin at random and place ball

Each ball has ∼ Poi(1) # of balls at end

Max load ∼ Θ(logn/ log(logn))

Limited choice Choose 2 bins u.a.r.

Put ball in bin with minimal # of balls at that stage

Max load ∼ Θ(log log n)
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Network models

Motivation
Last few years have seen an explosion in empirical data on real world networks.
Has motivated an interdisciplinary study in understanding the emergence of properties of
these network models.
Formulation of many mathematical models of network formation.

Limited choice
Incorporate effect of limited choice in network formation
Simple variants of standard models give much better fit but hard to mathematically analyze
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Bounded size rules: definition and basic results
Main result

Erdos-Renyi random graph

Setting

n vertices

Edge probability t/n

Phase transition at t = 1
# of edges ∼ n/2

t < 1, C1(t) ∼ logn

t > 1, C1 ∼ f(t)n

t = 1 +
1

n1/3

Beautiful math theory
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Bounded size rules

The Erdős-Rényi random graph of GER
n

Gn(0) = 0n the graph with n vertices but no edges
Each step, choose one edge e uniformly among all

(
n
2

)
possible edges, and add it

to the graph.
Gn(t): add edges at rate n/2.
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The Erdős-Rényi random graph process
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The Erdős-Rényi random graph process

The phase transition of GER
n (t)

The giant component: the component contains Θ(n) vertices.

Let C(k)
n (t) be the size of the kth largest component

tc = tER
c = 1 is the critical time.

(super-critical) when t > 1, C(1)
n = Θ(n), C(2)

n = O(logn).

(sub-critical) when t < 1, C(1)
n = O(logn), C(2)

n = O(logn).

(critical) when t = 1, C(1)
n ∼ n2/3, C(2)

n ∼ n2/3.

after initial work by [ER1960], further work by [JKLP1994], finally proved by [Aldous1997].
Merging dynamics through the scaling window of the components described by a Markov
Process called the multiplicative coalescent.
Formal existence of multiplicative coalescent.
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Bounded size rules: Effect of limited choice

[Bohman, Frieze 2001]The Bohman-Frieze random graph

Motivated by very interesting question of D. Achlioptas. Delay emergence of giant
component using simple rules
Each step, two candidate edges (e1, e2) chosen uniformly among all

(n
2

)
×

(n
2

)
possible

pairs of edges. If e1 connects two singletons (component of size 1), add e1 to the graph; else
add e2.
Consider continuous time version where between any pair of edges, poisson process with
rate 2/n3.
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The Bohman-Frieze process

[Bohman, Frieze 2001] The delay of phase transition
Consider the continuous time version GBF

n (t), then there exists ε > 0 such that at time
tER
c + ε,

C(1)
n (tER

c + ε) = o(n)

[Spencer, Wormald 2004] The critical time
tBF
c ≈ 1.1763 > tER

c = 1.
(super-critical) when t > tc, C(1)

n = Θ(n), C(2)
n = O(logn).

(sub-critical) when t < tc, C(1)
n = O(logn), C(2)

n = O(logn).

Near Criticality
Janson and Spencer (2011) analyzed how s2(·), s3(·) → ∞ as t ↑ tc.
Kang, Perkins and Spencer (2011) analyze the near subcritical (tc − ε) regime.
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General bounded size rules

Fix K ≥ 1

Let ΩK = {1, 2, . . . ,K,ω}

c(v) =

{
|C(v)| if |C(v)| ≤ K
ω otherwise

General bounded size rule: subset F ⊂ Ω4
K .

Pick two edges (v1, v2) and (v3, v4) at random. If (c(v1), c(v2), c(v3), c(v4)) ∈ F then
choose edge e1 else e2

BF model
K = 1, F = {(1, 1,α,β)}.
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Main questions

Question: when t = tc, do we have C(1)
n ∼ n2/3? How do components merge? scaling

window?

What about the surplus of the largest components in the scaling window?

Shankar Bhamidi Limited choice in networks



Power of two choices
Bounded size rules

Twitter event networks and the superstar model
Conclusion

Bounded size rules: definition and basic results
Main result

Notation

C(i)
n (t) size of i-th largest component at time t

Surplus (Complexity) of a component

ξ(i)n (t) = E(C(i)
n (t))− (C(i)

n (t)− 1)

l2↓ =
{
(xi)i≥1 : x1 ≥ x2 ≥ · · · ≥ 0,

∑
i x

2
i < ∞

}

l2,∗↓ =
{
(xi, yi)i≥1 : (xi) ∈ l2↓, yi ∈ Z+,

∑
i xiyi < ∞

}

d((x, y), (x′, y′)) =
√∑

i(xi − x′
i)

2 +
∑

i |xiyi − x′
iy

′
i|+

∑∞
i=1

|yi−y′
i|

2i
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The Erdős-Rényi random graph

Theorem (Aldous 1997)

Let (C(1)
n (t), C(2)

n (t), ...) be the component sizes of GER
n (t) in decreasing order and ξi(t) the

corresponding complexity (surplus). Define rescaled size vector C∗
n(λ), −∞ < λ < +∞ as(

(
1

n2/3
C(i)
n (tc +

λ

n1/3
), ξ(i)n (tc +

λ

n1/3
)) : i ≥ 1

)

Then Cn(λ)
d−→ X(λ) = (X(λ), ξ(λ)). Here (X(λ),−∞ < λ < +∞) is the standard

multiplicative coalescent, a continuous time Markov process on the state space l2↓.

Distribution for fixed λ

For fixed λ ∈ R, let

Wλ(t) = W (t) + λt− t2

2
,

W̄λ(·) is the above process reflected at 0.
X(λ) has same distribution as lengths of excursions away from 0 of W̄ (·) arranged
in decreasing order
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The standard multiplicative coalescent X(λ)

Dynamics of X(λ)

suppose X(λ) = (x1, x2, x3, ...), each xl is viewed as the size of a cluster.
each pair of clusters of sizes (xi, xj) merges at rate xixj into a cluster of size
xi + xj .
if xi, xj is merging, then (x1, x2, x3, ...) ! (x′

1, x
′
2, x

′
3, ...) where the latter is the

re-ordering of {xi + xj , xl : l '= i, j}.
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Bounded size rules

Theorem (Bhamidi, Budhiraja, Wang, 2012)

Let (C(1)
n (t), C(2)

n (t), ...) be the component sizes of GBSR
n (t) in decreasing order and

ξi(t) the corresponding surplus. Define the rescaled size vector Cn(λ),
−∞ < λ < +∞ as the vector

((C̄i(λ), ξi(λ) : i ≥ 1) =

(
β1/3

n2/3
C(i)
n (tc +

β2/3αλ

n1/3
), ξi(tc +

β2/3αλ

n1/3
) : i ≥ 1

)

where α,β are constants determined by the BSR process. Then

Cn(λ)
d−→ X(λ)

where (X(λ),−∞ < λ< +∞) is the standard augmented multiplicative coalescent
and convergence happens in l2,∗↓ with metric d.
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Typical method of proof: Exploration
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Typical method of proof

Exploration of the graph

Explore the components of the graph one by one

choose a vertex. Let c(1) be the number of children of this vertex
choose one of the children of this vertex, let c(2) be number of children of this vertex

continue, when one component completed move onto another component
Define Z(0) = 0, Z(i) = Z(i− 1) + c(i)− 1

Z(·) = −1 for the first time when we finish exploring component 1, then hits −2 for first time
when exploring component 2 and so on.

Try to use Martingale functional limit theorem to show 1
n1/3 Z(n2/3t) →d Wλ(t)
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Bounded size rules

Hard to think about exploration process especially at criticality

Turns out: Easier to analyze the entire process
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Proof idea: The Bohman-Frieze process

Where does tc come from ?
Define Xn(t) = # of singletons, S2(t) =

∑
i(C

(i)
n (t))2, S3(t) =

∑
i(C

(i)
n )3.

and x̄n(t) = Xn(t)/n, s̄2(t) = S2/n, s̄3(t) = S3/n.
Then [Spencer, Wormald 2004] for any fix t > 0,

x̄n(t)
P−→ x(t), s̄2(t)

P−→ s2(t), s̄3(t)
P−→ s3(t)
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Why?

Behavior of xn(t)

In small time interval [t, t+∆(t)), xn(t) → xn(t)− 1/n at rate

2

n3

((n
2

)
−

(Xn(t)

2

))
Xn(t)(n−Xn(t)) ∼ n(1− x2

n(t))xn(t)(1− xn(t))

[t, t+∆(t)), xn(t) → xn(t)− 2/n at rate

2

n3

[(Xn(t)

2

)(n
2

)
+

((n
2

)
−

(Xn(t)

2

))(Xn(t)

2

)]
∼

1

2
(x2

n(t) + (1− x2
n(t)x

2
n(t)))

Suggests that xn(t) → x(t) where
x′(t) = −x2(t)− (1− x2(t))x(t) for t ∈ [0,∞, ) x(0) = 1

Similar analysis suggests that for s̄2(t), s̄3(t)

s′2(t) = x2(t) + (1− x2(t))s22(t) for t ∈ [0, tc), s2(0) = 1

s′3(t) = 3x2(t) + 3(1− x2(t))s2(t)s3(t) for t ∈ [0, tc), s3(0) = 1.

Shankar Bhamidi Limited choice in networks



Power of two choices
Bounded size rules

Twitter event networks and the superstar model
Conclusion

Bounded size rules: definition and basic results
Main result

The Bohman-Frieze process

Scaling exponents of s2 and s3 (Janson, Spencer 11)
Functions x(t), s2(t), s3(t) are determined by some differential equations
Differential equations imply ∃ constants α,β such that t ↑ tc

s2(t) ∼
α

tc − t

s3(t) ∼ β(s2(t))
3 ∼ β

α3

(tc − t)3
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I: Regularity conditions of the component sizes at “−∞”

Let C̄(λ) = n−2/3C
(
tc + β2/3αλ/n1/3

)
.

For δ ∈ (1/6, 1/5) let tn = tc − n−δ = tc + β2/3α λn

n1/3 , then λn = −β2/3αn1/3−δ .

Need to verify the three conditions
∑

i

(
C̄i(λn)

)3
[∑

i

(
C̄i(λn)

)2]3
P−→ 1 ⇔

n2S3(tn)

S3
2(tn)

P−→ β

1
∑

i

(
C̄i(λn)

)2 + λn
P−→ 0 ⇔

n4/3

S2(tn)
−

n−δ+1/3

α
P−→ 0

C̄1(λn)
∑

i

(
C̄i(λn)

)2
P−→ 0 ⇔

n2/3C(1)
n (tn)

S2(tn)
P−→ 0
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II: Dynamics of merging in the critical window

The dynamic of merging

In any small time interval [t, t+ dt), two components i and j merge at rate

2

n3

[(n
2

)
−

(Xn(t)

2

)]
Ci(t)Cj(t)

∼
1

n
(1− x̄2(t))Ci(t)Cj(t)

Let λ = (t− tc)n1/3/αβ2/3 be rescaled time paramter, rate at which two components merge

γij(λ) ∼
(1− x2(tc + β2/3α λ

n1/3 ))

n

β2/3α

n1/3
Ci

(
tc +

β2/3αλ

n1/3

)
Cj

(
tc +

β2/3αλ

n1/3

)

= α

(
1− x2

(
tc + β2/3α

λ

n1/3

))
C̄i(λ)C̄j(λ)

= C̄i(λ)C̄j(λ) since α(1− x2(tc)) = 1
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How to check regularity conditions

Analysis of C(1)
n (t)

Key point: need to get refined bounds on maximal component in barely subcritical regime.

Lemma (Bounds on the largest component)

Let δ ∈ (0, 1/5), tc be the critical time for the BF process, C(1)
n (t) be the size of the largest

component. Then there exists a constant B = B(δ) such that as n → +∞,

P{C(1)
n (t) ≤

B log4 n

(tc − t)2
for all t < tc − n−δ} → 1
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Retweet Graph and Superstar Model
Main Results
Comparison with Preferential Attachment Model
Superstar Model: Tools for Analysis

From the Retweet Graph to the Superstar Model

Joint work with J Michael Steele (Wharton) and Tauhid Zaman (MIT).

Retweet graph: Given a topic and a time frame — form all the (undirected) retweet
arcs and look at the graph you get.
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Some Empirical Retweet Graphs

Retweet graphs were constructed for 13 different public events 1

! Sports, breaking news stories, and entertainment events
! Time range for each topic was between 4-6 hours

Graphs are very tree-like
(few cycles)

Graphs each have one giant
component which we want to
study

We treat the graph as
undirected

1Data courtesy of Microsoft Research, Cambridge, MA
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The superstar model
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The superstar model

Max degree in retweet graph is on the order of graph size (i.e. MG ∼ pn)

Preferential attachment predicts sub-linear max degree
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The Superstar Model

G2

v0 (superstar)

v1

v2

p

(1− p)deg(v1, G2)

Attach to superstar with probability p

Else with probability 1− p attach to one of the
non-superstar vertices.

Non-SS Attachment Rule: probability proportional
to its degree (preferential attachment rule)

The only model parameter is p: The superstar parameter

This is a very simple model: But (1) it has empirical benefits and (2) it is tractable —
though not particularly easy.
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Superstar Degree

Theorem
Let deg(v0, Gn) be the superstar degree. Then we have that

deg(v0, Gn)
n

→ p with probability 1 as n → ∞

Empirically the Superstar degree is Θ(n) and the Superstar Model “Bakes this into
the Cake”

But that is ALL that is baked in...

The value of p determines other features of the graph — the Superstar Model is
testable.
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Non-Superstar Degree

Theorem
Let degmax(Gn) be the maximal non-superstar degree:

degmax(Gn) = max
1≤i≤n

deg(vi, Gn)

and let
γ =

1− p
2− p

.

Then there exists a non-degenerate, strictly positive random variable ∆∗ such that

n−γdegmax(Gn)) → ∆∗ with probability 1 as n → ∞

Maximal non-superstar degree = Θ(nγ)
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Realized Degree Distribution in the Superstar Model

Theorem
Let f(k,Gn) be the realized degree distribution of Gn under the Superstar model,

f(k,Gn) = n−1 |{1 ≤ j ≤ n : deg(vj , Gn) = k}|

and introduce the superstar model scaling constant

fSM (k, p) =
2− p
1− p

(k − 1)!
k∏

i=1

(
i+

2− p
1− p

)−1

.

We then have

f(k,Gn) → fSM (k, p) with probability 1 as n → ∞

The degree distribution scales like k−β , where β = 3 + p/(1− p)

This contrasts with the preferential attachment model which scales like k−3
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Height result

Theorem
Let W (·) be the Lambert special function with W (1/e) ≈ 0.2784. Then with probability
one we have

lim
n→∞

1
log n

H(Gn) =
1− p

W (1/e)(2− p)
.
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Superstar Model vs Preferential Attachment

Model Superstar Preferential
Model Attachment

Superstar Degree Θ(n) NA

Maximal non-superstar
degree exponent

1− p
2− p

1
2

Degree distribution
power-law exponent

3 +
p

1− p
3
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Superstar Model Predictions

Use actual data to fit the superstar degree and predict the degree distribution

Consider the observed degree distribution for each empirical retweet graph:

f(k,Gn) = n−1 |{1 ≤ j ≤ n : deg(vj , Gn) = k}|

Consider the theoretical asymptotic degree distribution under the Superstar Model

fSM (k, p) =
2− p
1− p

(k − 1)!
k∏

i=1

(
i+

2− p
1− p

)−1

.

Bottom Line: We get a nice fit “observed vs predicted”

f(k,Gn) ≈ fSM (k, p̂) where p̂ =
observed superstar degree

n

Comparison: Preferential Attachment always predicts...

fPA(k) =
4

k(k + 1)(k + 2)
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Degree distribution
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The Superstar Model and the Realized Degree Distribution: Bottom Line

The Superstar Model implies a mathematical link between the superstar degree
and the degree distribution of the non-superstars.

When we look at Twitter data for actual events, we see (1) a superstar and (2) a
degree distribution of non-superstars that is more compatible with the superstar
model than with the preferential attachment model.

The first property was “baked” into our model, but the second was not. It’s an
honest discovery.

Next: How Can one Analyze the Superstar Model?
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Basic Link: Branching Processes

Proto-Idea: Branching processes have a natural role almost anytime one
considers a stochastically evolving tree.

More Concrete Observation: If the birth rates depend on the number of children,
the arithmetic of the Poisson process relates nicely to the arithmetic of preferential
attachment.

Creating the Superstar: Yule processes don’t come with a superstar. Still, not
terribly hard to move to multi-type branching processes. In a world with multiple
types, you have the possibility of doing some surgery that let you build a super
star.

Realistic Expectations: The paper is a dense 29 pages.

News You Can Use? One can see the benefits of using multi-type branching
processes. One can see that the connection between the Yule process and
preferential attachment is natural.
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Introduction of a Special Branching Process

Two types of vertices: red and blue

Each vertex gives birth to vertices according to a non-homogeneous Poisson
process that has rate proportional to (1+ number of blue children)

cB(v, t) = number of blue children of v at t time units after the birth of v

At birth vertex is painted red with probability p and painted blue with probability
1− p

v1

v4

v6

v2 v3

v5

cB(v1, t) = 1

cB(v3, t− τ3) = 0
F(t) = Branching process at time t

τn = inf {t : |F(t)| = n}
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Surgery: From BP Model to Superstar Model

Add an exogenous superstar vertex v0 to the vertex set

For each red vertex remove the edge from parent and create an undirected edge
to the superstar vertex v0

With the surgery done, all edges are made undirected and all colors are erased

v0 (superstar)

v1F(τ6)

v4

v6

v2 v3

v5

v1F(τ6)

v4

v6

v2 v3

v5
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Relating the BP Construction with the Superstar Model

Claim: S(τn) is “probabilistically the same” as Gn+1

Base case: S(τ1) = G2
v0 v1

Need to show that S(τn) and Gn+1 have same probabilistic evolution
Superstar: probability of joining superstar = probability of red vertex being born = p
Same probability for S and G
Non-superstars: degree of vertex = number of blue children + 1

deg(vk, Gn+1) = cB(vk, τn − τk) + 1

v1F(τ6) cB(v1, τ6 − τ1) + 1 = 2

G7

v1deg(v1, G7) = 2
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Further Linking of the BP Model and the Superstar Model

P (vn joins vk|Gn) = P (vn is blue and born to vk|F(τn−1))

=

P (vn joins vk|Gn) = (1− p)
deg(vk, Gn)∑

vj∈Gn\v0 deg(vj , Gn)

= (1− p)
deg(vk, Gn)

2(n− 1)− deg(v0, Gn)
=

P (vn is blue and born to vk|F(τn−1)) = (1− p)
cB(vk, τn − τk) + 1∑

vk∈F(τn−1)
cB(vk, τn − τk) + 1

= (1− p)
deg(vk, Gn)

2(n− 1)− deg(v0, Gn)
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Dynamic random graphs

Lots of interesting questions
Understanding what happens for general unbounded size rules such as product
rule (explosive percolation).
Small variants of standard models turn out to be technically much more
challenging, requiring the development of new machinery.
For the superstar model, a simple tweak gave much better fit to the data (one
parameter p).

Thank you for your attention.

Shankar Bhamidi Limited choice in networks


	Power of two choices
	Bounded size rules
	Bounded size rules: definition and basic results
	Main result

	Twitter event networks and the superstar model 
	Retweet Graph and Superstar Model
	Main Results
	Comparison with Preferential Attachment Model
	Superstar Model: Tools for Analysis

	Conclusion

