Limited choice and randomness in evolution of networks
 Limit Theorems in Probability IMI-IISC, January 2013

Shankar Bhamidi

Department of Statistics and Operations Research
University of North Carolina

January, 2013

Plan of the talk

Lecture content

- Power of choice in computer science
- Topic 1: Bounded size rules
- Critical scaling window and emergence of the giant (joint work with Amarjit Budhiraja and Xuan Wang)
- Topic 2: Twitter event networks
- Superstar model (joint work with J.Michael Steele and Tauhid Zaman)

Power of two choices

Application setting

- Consider n bins (servers) into which we are going to sequentially place n balls (jobs).
- Centralized scheme (asking bins current load) computationally expensive and time consuming
- Simplest scheme, each stage choose bin at random and place ball
- Each ball has $\sim \operatorname{Poi}(1) \#$ of balls at end

$$
\text { Max load } \sim \Theta(\log n / \log (\log n))
$$

- Limited choice Choose 2 bins u.a.r.
- Put ball in bin with minimal \# of balls at that stage

$$
\text { Max load } \sim \Theta(\log \log n)
$$

Network models

Motivation

- Last few years have seen an explosion in empirical data on real world networks.
- Has motivated an interdisciplinary study in understanding the emergence of properties of these network models.
- Formulation of many mathematical models of network formation.

Limited choice

- Incorporate effect of limited choice in network formation
- Simple variants of standard models give much better fit but hard to mathematically analyze

Erdos-Renyi random graph

Setting

- n vertices
- Edge probability t / n
- Phase transition at $t=1$

$$
\text { \# of edges } \sim n / 2
$$

- $t<1, \mathcal{C}_{1}(t) \sim \log n$
- $t>1, \mathcal{C}_{1} \sim f(t) n$
-

$$
t=1+\frac{1}{n^{1 / 3}}
$$

Beautiful math theory

Bounded size rules

The Erdős-Rényi random graph of $\mathcal{G}_{n}^{E R}$

- $\mathcal{G}_{n}(0)=\mathbf{0}_{n}$ the graph with n vertices but no edges
- Each step, choose one edge e uniformly among all $\binom{n}{2}$ possible edges, and add it to the graph.
- $\mathcal{G}_{n}(t)$: add edges at rate $n / 2$.

The Erdős-Rényi random graph process

The Erdős-Rényi random graph of $\mathcal{G}_{n}^{E R}$

- $\mathcal{G}_{n}(0)=\mathbf{0}_{n}$ the graph with n vertices but no edges
- Each step, choose one edge e uniformly among all $\binom{n}{2}$ possible edges, and add it to the graph.
- $\mathcal{G}_{n}(t)$: add edges at rate $n / 2$.

The Erdős-Rényi random graph process

The Erdős-Rényi random graph of $\mathcal{G}_{n}^{E R}$

- $\mathcal{G}_{n}(0)=\mathbf{0}_{n}$ the graph with n vertices but no edges
- Each step, choose one edge e uniformly among all $\binom{n}{2}$ possible edges, and add it to the graph.
- $\mathcal{G}_{n}(t)$: add edges at rate $n / 2$.

The Erdős-Rényi random graph process

The Erdős-Rényi random graph of $\mathcal{G}_{n}^{E R}$

- $\mathcal{G}_{n}(0)=\mathbf{0}_{n}$ the graph with n vertices but no edges
- Each step, choose one edge e uniformly among all $\binom{n}{2}$ possible edges, and add it to the graph.
- $\mathcal{G}_{n}(t)$: add edges at rate $n / 2$.

The Erdős-Rényi random graph process

The Erdős-Rényi random graph of $\mathcal{G}_{n}^{E R}$

- $\mathcal{G}_{n}(0)=\mathbf{0}_{n}$ the graph with n vertices but no edges
- Each step, choose one edge e uniformly among all $\binom{n}{2}$ possible edges, and add it to the graph.
- $\mathcal{G}_{n}(t)$: add edges at rate $n / 2$.

time

The Erdős-Rényi random graph process

The Erdős-Rényi random graph of $\mathcal{G}_{n}^{E R}$

- $\mathcal{G}_{n}(0)=\mathbf{0}_{n}$ the graph with n vertices but no edges
- Each step, choose one edge e uniformly among all $\binom{n}{2}$ possible edges, and add it to the graph.
- $\mathcal{G}_{n}(t)$: add edges at rate $n / 2$.

time

The Erdős-Rényi random graph process

The phase transition of $\mathcal{G}_{n}^{E R}(t)$

- The giant component: the component contains $\Theta(n)$ vertices.
- Let $\mathcal{C}_{n}^{(k)}(t)$ be the size of the $k^{\text {th }}$ largest component
- $t_{c}=t_{c}^{E R}=1$ is the critical time.
- (super-critical) when $t>1, \mathcal{C}_{n}^{(1)}=\Theta(n), \mathcal{C}_{n}^{(2)}=O(\log n)$.
- (sub-critical) when $t<1, \mathcal{C}_{n}^{(1)}=O(\log n), \mathcal{C}_{n}^{(2)}=O(\log n)$.
- (critical) when $t=1, \mathcal{C}_{n}^{(1)} \sim n^{2 / 3}, \mathcal{C}_{n}^{(2)} \sim n^{2 / 3}$.
- after initial work by [ER1960], further work by [JKLP1994], finally proved by [Aldous1997].
- Merging dynamics through the scaling window of the components described by a Markov Process called the multiplicative coalescent.
- Formal existence of multiplicative coalescent.

Bounded size rules: Effect of limited choice

[Bohman, Frieze 2001]The Bohman-Frieze random graph

- Motivated by very interesting question of D. Achlioptas. Delay emergence of giant
component using simple rules
- Each step, two candidate edges $\left(e_{1}, e_{2}\right)$ chosen uniformly among all $\binom{n}{2} \times\binom{ n}{2}$ possible pairs of edges. If e_{1} connects two singletons (component of size 1), add e_{1} to the graph; else
- Conside
- Consider continuous time version where between any pair of edges, poisson process with rate $2 / n^{3}$.

The Bohman-Frieze process

[Bohman, Frieze 2001] The delay of phase transition

Consider the continuous time version $\mathcal{G}_{n}^{B F}(t)$, then there exists $\epsilon>0$ such that at time $t_{c}^{E R}+\epsilon$,

$$
\mathcal{C}_{n}^{(1)}\left(t_{c}^{E R}+\epsilon\right)=o(n)
$$

[Spencer, Wormald 2004] The critical time

- $t_{c}^{B F} \approx 1.1763>t_{c}^{E R}=1$.
- (super-critical) when $t>t_{c}, \mathcal{C}_{n}^{(1)}=\Theta(n), \mathcal{C}_{n}^{(2)}=O(\log n)$.
- (sub-critical) when $t<t_{c}, \mathcal{C}_{n}^{(1)}=O(\log n), \mathcal{C}_{n}^{(2)}=O(\log n)$.

Near Criticality

- Janson and Spencer (2011) analyzed how $s_{2}(\cdot), s_{3}(\cdot) \rightarrow \infty$ as $t \uparrow t_{c}$.
- Kang, Perkins and Spencer (2011) analyze the near subcritical $\left(t_{c}-\epsilon\right)$ regime.

General bounded size rules

- Fix $K \geq 1$
- Let $\Omega_{K}=\{1,2, \ldots, K, \omega\}$
-

$$
c(v)= \begin{cases}|C(v)| & \text { if }|C(v)| \leq K \\ \omega & \text { otherwise }\end{cases}
$$

- General bounded size rule: subset $F \subset \Omega_{K}^{4}$.
- Pick two edges $\left(v_{1}, v_{2}\right)$ and $\left(v_{3}, v_{4}\right)$ at random. If $\left(c\left(v_{1}\right), c\left(v_{2}\right), c\left(v_{3}\right), c\left(v_{4}\right)\right) \in F$ then choose edge e_{1} else e_{2}

BF model

$K=1, F=\{(1,1, \alpha, \beta)\}$.

Main questions

- Question: when $t=t_{c}$, do we have $\mathcal{C}_{n}^{(1)} \sim n^{2 / 3}$? How do components merge? scaling window?
- What about the surplus of the largest components in the scaling window?

Notation

- $\mathcal{C}_{n}^{(i)}(t)$ size of i-th largest component at time t
- Surplus (Complexity) of a component

$$
\xi_{n}^{(i)}(t)=E\left(\mathcal{C}_{n}^{(i)}(t)\right)-\left(\mathcal{C}_{n}^{(i)}(t)-1\right)
$$

- $l_{\downarrow}^{2}=\left\{\left(x_{i}\right)_{i \geq 1}: x_{1} \geq x_{2} \geq \cdots \geq 0, \sum_{i} x_{i}^{2}<\infty\right\}$
- $l_{\downarrow}^{2, *}=\left\{\left(x_{i}, y_{i}\right)_{i \geq 1}:\left(x_{i}\right) \in l_{\downarrow}^{2}, y_{i} \in \mathbb{Z}_{+}, \sum_{i} x_{i} y_{i}<\infty\right\}$
- $d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\sqrt{\sum_{i}\left(x_{i}-x_{i}^{\prime}\right)^{2}}+\sum_{i}\left|x_{i} y_{i}-x_{i}^{\prime} y_{i}^{\prime}\right|+\sum_{i=1}^{\infty} \frac{\left|y_{i}-y_{i}^{\prime}\right|}{2^{i}}$

The Erdős-Rényi random graph

Theorem (Aldous 1997)

Let $\left(\mathcal{C}_{n}^{(1)}(t), \mathcal{C}_{n}^{(2)}(t), \ldots\right)$ be the component sizes of $\mathcal{G}_{n}^{E R}(t)$ in decreasing order and $\xi_{i}(t)$ the corresponding complexity (surplus). Define rescaled size vector $\mathbf{C}_{n}^{*}(\lambda),-\infty<\lambda<+\infty$ as

$$
\left(\left(\frac{1}{n^{2 / 3}} \mathcal{C}_{n}^{(i)}\left(t_{c}+\frac{\lambda}{n^{1 / 3}}\right), \xi_{n}^{(i)}\left(t_{c}+\frac{\lambda}{n^{1 / 3}}\right)\right): i \geq 1\right)
$$

Then $\mathbf{C}_{n}(\lambda) \xrightarrow{d} \mathbf{X}(\lambda)=(X(\lambda), \xi(\lambda))$. Here $(X(\lambda),-\infty<\lambda<+\infty)$ is the standard multiplicative coalescent, a continuous time Markov process on the state space l_{\downarrow}^{2}.

Distribution for fixed λ

- For fixed $\lambda \in \mathbb{R}$, let

$$
W_{\lambda}(t)=W(t)+\lambda t-\frac{t^{2}}{2}
$$

- $\bar{W}_{\lambda}(\cdot)$ is the above process reflected at 0.
- $X(\lambda)$ has same distribution as lengths of excursions away from 0 of $\bar{W}(\cdot)$ arranged in decreasing order

The standard multiplicative coalescent $\mathbf{X}(\lambda)$

Dynamics of $\mathbf{X}(\lambda)$

- suppose $\mathbf{X}(\lambda)=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$, each x_{l} is viewed as the size of a cluster.
- each pair of clusters of sizes $\left(x_{i}, x_{j}\right)$ merges at rate $x_{i} x_{j}$ into a cluster of size $x_{i}+x_{j}$.
- if x_{i}, x_{j} is merging, then $\left(x_{1}, x_{2}, x_{3}, \ldots\right) \rightsquigarrow\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, \ldots\right)$ where the latter is the re-ordering of $\left\{x_{i}+x_{j}, x_{l}: l \neq i, j\right\}$.

Bounded size rules

Theorem (Bhamidi, Budhiraja, Wang, 2012)

Let $\left(\mathcal{C}_{n}^{(1)}(t), \mathcal{C}_{n}^{(2)}(t), \ldots\right)$ be the component sizes of $\mathcal{G}_{n}^{B S R}(t)$ in decreasing order and $\xi_{i}(t)$ the corresponding surplus. Define the rescaled size vector $\mathbf{C}_{n}(\lambda)$, $-\infty<\lambda<+\infty$ as the vector

$$
\left(\left(\overline{\mathcal{C}}_{i}(\lambda), \xi_{i}(\lambda): i \geq 1\right)=\left(\frac{\beta^{1 / 3}}{n^{2 / 3}} \mathcal{C}_{n}^{(i)}\left(t_{c}+\frac{\beta^{2 / 3} \alpha \lambda}{n^{1 / 3}}\right), \xi_{i}\left(t_{c}+\frac{\beta^{2 / 3} \alpha \lambda}{n^{1 / 3}}\right): i \geq 1\right)\right.
$$

where α, β are constants determined by the BSR process. Then

$$
\mathbf{C}_{n}(\lambda) \xrightarrow{d} \mathbf{X}(\lambda)
$$

where $(\mathbf{X}(\lambda),-\infty<\lambda<+\infty)$ is the standard augmented multiplicative coalescent and convergence happens in $l_{\downarrow}^{2, *}$ with metric d.

Typical method of proof: Exploration

Typical method of proof: Exploration

Typical method of proof: Exploration

$$
\begin{aligned}
& c(1)=2 \\
& c(2)=2 \\
& c(3)=0
\end{aligned}
$$

Typical method of proof

Exploration of the graph

- Explore the components of the graph one by one
- choose a vertex. Let $c(1)$ be the number of children of this vertex
- choose one of the children of this vertex, let $c(2)$ be number of children of this vertex
- continue, when one component completed move onto another component
- Define $Z(0)=0, \quad Z(i)=Z(i-1)+c(i)-1$
- $Z(\cdot)=-1$ for the first time when we finish exploring component 1 , then hits -2 for first time when exploring component 2 and so on.
- Try to use Martingale functional limit theorem to show $\frac{1}{n^{1 / 3}} Z\left(n^{2 / 3} t\right) \rightarrow_{d} W^{\lambda}(t)$

Bounded size rules

- Hard to think about exploration process especially at criticality
- Turns out: Easier to analyze the entire process

Proof idea: The Bohman-Frieze process

Where does t_{c} come from ?

Define $X_{n}(t)=\#$ of singletons, $S_{2}(t)=\sum_{i}\left(\mathcal{C}_{n}^{(i)}(t)\right)^{2}, S_{3}(t)=\sum_{i}\left(\mathcal{C}_{n}^{(i)}\right)^{3}$. and $\bar{x}_{n}(t)=X_{n}(t) / n, \bar{s}_{2}(t)=S_{2} / n, \bar{s}_{3}(t)=S_{3} / n$.
Then [Spencer, Wormald 2004] for any fix $t>0$,

$$
\bar{x}_{n}(t) \xrightarrow{\mathbb{P}} x(t), \quad \bar{s}_{2}(t) \xrightarrow{\mathbb{P}} s_{2}(t), \quad \bar{s}_{3}(t) \xrightarrow{\mathbb{P}} s_{3}(t)
$$

Why?

Behavior of $x_{n}(t)$

- In small time interval $[t, t+\Delta(t)), x_{n}(t) \rightarrow x_{n}(t)-1 / n$ at rate

$$
\frac{2}{n^{3}}\left(\binom{n}{2}-\binom{X_{n}(t)}{2}\right) X_{n}(t)\left(n-X_{n}(t)\right) \sim n\left(1-x_{n}^{2}(t)\right) x_{n}(t)\left(1-x_{n}(t)\right)
$$

- $[t, t+\Delta(t)), x_{n}(t) \rightarrow x_{n}(t)-2 / n$ at rate

$$
\frac{2}{n^{3}}\left[\binom{X_{n}(t)}{2}\binom{n}{2}+\left(\binom{n}{2}-\binom{X_{n}(t)}{2}\right)\binom{X_{n}(t)}{2}\right] \sim \frac{1}{2}\left(x_{n}^{2}(t)+\left(1-x_{n}^{2}(t) x_{n}^{2}(t)\right)\right)
$$

- Suggests that $x_{n}(t) \rightarrow x(t)$ where

$$
x^{\prime}(t)=-x^{2}(t)-\left(1-x^{2}(t)\right) x(t) \quad \text { for } t \in[0, \infty,) \quad x(0)=1
$$

- Similar analysis suggests that for $\bar{s}_{2}(t), \bar{s}_{3}(t)$

$$
\begin{array}{lrr}
s_{2}^{\prime}(t)=x^{2}(t)+\left(1-x^{2}(t)\right) s_{2}^{2}(t) & \text { for } t \in\left[0, t_{c}\right), & s_{2}(0)=1 \\
s_{3}^{\prime}(t)=3 x^{2}(t)+3\left(1-x^{2}(t)\right) s_{2}(t) s_{3}(t) & \text { for } t \in\left[0, t_{c}\right), & s_{3}(0)=1
\end{array}
$$

The Bohman-Frieze process

Scaling exponents of s_{2} and s_{3} (Janson, Spencer 11)

- Functions $x(t), s_{2}(t), s_{3}(t)$ are determined by some differential equations
- Differential equations imply \exists constants α, β such that $t \uparrow t_{c}$

$$
\begin{aligned}
& s_{2}(t) \sim \frac{\alpha}{t_{c}-t} \\
& s_{3}(t) \sim \beta\left(s_{2}(t)\right)^{3} \sim \beta \frac{\alpha^{3}}{\left(t_{c}-t\right)^{3}}
\end{aligned}
$$

I: Regularity conditions of the component sizes at " $-\infty$ "

- Let $\overline{\mathbf{C}}(\lambda)=n^{-2 / 3} \mathbf{C}\left(t_{c}+\beta^{2 / 3} \alpha \lambda / n^{1 / 3}\right)$.
- For $\delta \in(1 / 6,1 / 5)$ let $t_{n}=t_{c}-n^{-\delta}=t_{c}+\beta^{2 / 3} \alpha \frac{\lambda_{n}}{n^{1 / 3}}$, then $\lambda_{n}=-\beta^{2 / 3} \alpha n^{1 / 3-\delta}$.
- Need to verify the three conditions

$$
\begin{array}{cl}
\frac{\sum_{i}\left(\overline{\mathcal{C}}_{i}\left(\lambda_{n}\right)\right)^{3}}{\left[\sum_{i}\left(\overline{\mathcal{C}}_{i}\left(\lambda_{n}\right)\right)^{2}\right]^{3}} \stackrel{\mathbb{P}}{\longrightarrow} 1 & \Leftrightarrow \frac{n^{2} S_{3}\left(t_{n}\right)}{S_{2}^{3}\left(t_{n}\right)} \stackrel{\mathbb{P}}{\xrightarrow{*} \beta} \\
\frac{1}{\sum_{i}\left(\overline{\mathcal{C}}_{i}\left(\lambda_{n}\right)\right)^{2}}+\lambda_{n} \stackrel{\mathbb{P}}{\longrightarrow} 0 & \Leftrightarrow \frac{n^{4 / 3}}{S_{2}\left(t_{n}\right)}-\frac{n^{-\delta+1 / 3}}{\alpha} \xrightarrow{\mathbb{P}} 0 \\
\frac{\overline{\mathcal{C}}_{1}\left(\lambda_{n}\right)}{\sum_{i}\left(\overline{\mathcal{C}}_{i}\left(\lambda_{n}\right)\right)^{2}} \xrightarrow{\mathbb{P}} 0 & \Leftrightarrow \frac{n^{2 / 3} \mathcal{C}_{n}^{(1)}\left(t_{n}\right)}{S_{2}\left(t_{n}\right)} \xrightarrow{\mathbb{P}} 0
\end{array}
$$

II: Dynamics of merging in the critical window

The dynamic of merging

- In any small time interval $[t, t+d t)$, two components i and j merge at rate

$$
\begin{aligned}
& \frac{2}{n^{3}}\left[\binom{n}{2}-\binom{X_{n}(t)}{2}\right] \mathcal{C}_{i}(t) \mathcal{C}_{j}(t) \\
& \sim \frac{1}{n}\left(1-\bar{x}^{2}(t)\right) \mathcal{C}_{i}(t) \mathcal{C}_{j}(t)
\end{aligned}
$$

Let $\lambda=\left(t-t_{c}\right) n^{1 / 3} / \alpha \beta^{2 / 3}$ be rescaled time paramter, rate at which two components merge

$$
\begin{aligned}
\gamma_{i j}(\lambda) & \sim \frac{\left(1-x^{2}\left(t_{c}+\beta^{2 / 3} \alpha \frac{\lambda}{n^{1 / 3}}\right)\right)}{n} \frac{\beta^{2 / 3} \alpha}{n^{1 / 3}} \mathcal{C}_{i}\left(t_{c}+\frac{\beta^{2 / 3} \alpha \lambda}{n^{1 / 3}}\right) \mathcal{C}_{j}\left(t_{c}+\frac{\beta^{2 / 3} \alpha \lambda}{n^{1 / 3}}\right) \\
& =\alpha\left(1-x^{2}\left(t_{c}+\beta^{2 / 3} \alpha \frac{\lambda}{n^{1 / 3}}\right)\right) \overline{\mathcal{C}}_{i}(\lambda) \overline{\mathcal{C}}_{j}(\lambda) \\
& =\overline{\mathcal{C}}_{i}(\lambda) \overline{\mathcal{C}}_{j}(\lambda) \quad \text { since } \alpha\left(1-x^{2}\left(t_{c}\right)\right)=1
\end{aligned}
$$

How to check regularity conditions

Analysis of $\mathcal{C}_{n}^{(1)}(t)$

Key point: need to get refined bounds on maximal component in barely subcritical regime.

Lemma (Bounds on the largest component)

Let $\delta \in(0,1 / 5)$, t_{c} be the critical time for the BF process, $\mathcal{C}_{n}^{(1)}(t)$ be the size of the largest component. Then there exists a constant $B=B(\delta)$ such that as $n \rightarrow+\infty$,

$$
\mathbb{P}\left\{\mathcal{C}_{n}^{(1)}(t) \leq \frac{B \log ^{4} n}{\left(t_{c}-t\right)^{2}} \text { for all } t<t_{c}-n^{-\delta}\right\} \rightarrow 1
$$

From the Retweet Graph to the Superstar Model

- Joint work with J Michael Steele (Wharton) and Tauhid Zaman (MIT).
- Retweet graph: Given a topic and a time frame - form all the (undirected) retweet arcs and look at the graph you get.

Some Empirical Retweet Graphs

- Retweet graphs were constructed for 13 different public events ${ }^{1}$
- Sports, breaking news stories, and entertainment events
- Time range for each topic was between 4-6 hours
- Graphs are very tree-like (few cycles)
- Graphs each have one giant component which we want to study
- We treat the graph as undirected

[^0]
The superstar model

BET Awards

The superstar model

BET Awards

The superstar model

- Max degree in retweet graph is on the order of graph size (i.e. $M_{G} \sim p n$)
- Preferential attachment predicts sub-linear max degree

The Superstar Model

- Attach to superstar with probability p
- Else with probability $1-p$ attach to one of the non-superstar vertices.
- Non-SS Attachment Rule: probability proportional to its degree (preferential attachment rule)

$$
(1-p) \operatorname{deg}\left(v_{1}, G_{2}\right)
$$

The only model parameter is p : The superstar parameter
This is a very simple model: But (1) it has empirical benefits and (2) it is tractable though not particularly easy.

Superstar Degree

Theorem

Let $\operatorname{deg}\left(v_{0}, G_{n}\right)$ be the superstar degree. Then we have that

$$
\frac{\operatorname{deg}\left(v_{0}, G_{n}\right)}{n} \rightarrow p \quad \text { with probability } 1 \text { as } n \rightarrow \infty
$$

- Empirically the Superstar degree is $\Theta(n)$ and the Superstar Model "Bakes this into the Cake"
- But that is ALL that is baked in...
- The value of p determines other features of the graph - the Superstar Model is testable.

Non-Superstar Degree

Theorem

Let $\operatorname{deg}_{\max }\left(G_{n}\right)$ be the maximal non-superstar degree:

$$
\operatorname{deg}_{\max }\left(G_{n}\right)=\max _{1 \leq i \leq n} \operatorname{deg}\left(v_{i}, G_{n}\right)
$$

and let

$$
\gamma=\frac{1-p}{2-p}
$$

Then there exists a non-degenerate, strictly positive random variable Δ^{*} such that

$$
\left.n^{-\gamma} \operatorname{deg}_{\max }\left(G_{n}\right)\right) \rightarrow \Delta^{*} \quad \text { with probability } 1 \text { as } n \rightarrow \infty
$$

- Maximal non-superstar degree $=\Theta\left(n^{\gamma}\right)$

Realized Degree Distribution in the Superstar Model

Theorem

Let $f\left(k, G_{n}\right)$ be the realized degree distribution of G_{n} under the Superstar model,

$$
f\left(k, G_{n}\right)=n^{-1}\left|\left\{1 \leq j \leq n: \operatorname{deg}\left(v_{j}, G_{n}\right)=k\right\}\right|
$$

and introduce the superstar model scaling constant

$$
f_{S M}(k, p)=\frac{2-p}{1-p}(k-1)!\prod_{i=1}^{k}\left(i+\frac{2-p}{1-p}\right)^{-1}
$$

We then have

$$
f\left(k, G_{n}\right) \rightarrow f_{S M}(k, p) \quad \text { with probability } 1 \text { as } n \rightarrow \infty
$$

- The degree distribution scales like $k^{-\beta}$, where $\beta=3+p /(1-p)$
- This contrasts with the preferential attachment model which scales like k^{-3}

Height result

Theorem

Let $W(\cdot)$ be the Lambert special function with $W(1 / e) \approx 0.2784$. Then with probability one we have

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \mathcal{H}\left(G_{n}\right)=\frac{1-p}{W(1 / e)(2-p)}
$$

Superstar Model vs Preferential Attachment

Model	Superstar Model	Preferential Attachment
Superstar Degree	$\Theta(n)$	$N A$
Maximal non-superstar degree exponent	$\frac{1-p}{2-p}$	$\frac{1}{2}$
Degree distribution power-law exponent	$3+\frac{p}{1-p}$	3

Superstar Model Predictions

- Use actual data to fit the superstar degree and predict the degree distribution
- Consider the observed degree distribution for each empirical retweet graph:

$$
f\left(k, G_{n}\right)=n^{-1}\left|\left\{1 \leq j \leq n: \operatorname{deg}\left(v_{j}, G_{n}\right)=k\right\}\right|
$$

- Consider the theoretical asymptotic degree distribution under the Superstar Model

$$
f_{S M}(k, p)=\frac{2-p}{1-p}(k-1)!\prod_{i=1}^{k}\left(i+\frac{2-p}{1-p}\right)^{-1} .
$$

- Bottom Line: We get a nice fit "observed vs predicted"

$$
f\left(k, G_{n}\right) \approx f_{S M}(k, \hat{p}) \quad \text { where } \quad \hat{p}=\frac{\text { observed superstar degree }}{n}
$$

- Comparison: Preferential Attachment always predicts...

$$
f_{P A}(k)=\frac{4}{k(k+1)(k+2)}
$$

Retweet Graph and Superstar Model

Main Results

Comparison with Preferential Attachment Model
Superstar Model: Tools for Analysis

Degree distribution

The Superstar Model and the Realized Degree Distribution: Bottom Line

- The Superstar Model implies a mathematical link between the superstar degree and the degree distribution of the non-superstars.
- When we look at Twitter data for actual events, we see (1) a superstar and (2) a degree distribution of non-superstars that is more compatible with the superstar model than with the preferential attachment model.
- The first property was "baked" into our model, but the second was not. It's an honest discovery.
- Next: How Can one Analyze the Superstar Model?

Basic Link: Branching Processes

- Proto-Idea: Branching processes have a natural role almost anytime one considers a stochastically evolving tree.
- More Concrete Observation: If the birth rates depend on the number of children, the arithmetic of the Poisson process relates nicely to the arithmetic of preferential attachment.
- Creating the Superstar: Yule processes don't come with a superstar. Still, not terribly hard to move to multi-type branching processes. In a world with multiple types, you have the possibility of doing some surgery that let you build a super star.
- Realistic Expectations: The paper is a dense 29 pages.
- News You Can Use? One can see the benefits of using multi-type branching processes. One can see that the connection between the Yule process and preferential attachment is natural.

Introduction of a Special Branching Process

- Two types of vertices: red and blue
- Each vertex gives birth to vertices according to a non-homogeneous Poisson process that has rate proportional to ($1+$ number of blue children)
$c_{B}(v, t)=$ number of blue children of v at t time units after the birth of v
- At birth vertex is painted red with probability p and painted blue with probability $1-p$
$c_{B}\left(v_{1}, t\right)=1$

v_{6}

Surgery: From BP Model to Superstar Model

- Add an exogenous superstar vertex v_{0} to the vertex set
- For each red vertex remove the edge from parent and create an undirected edge to the superstar vertex v_{0}
- With the surgery done, all edges are made undirected and all colors are erased

Relating the BP Construction with the Superstar Model

- Claim: $S\left(\tau_{n}\right)$ is "probabilistically the same" as G_{n+1}
- Base case:

$$
S\left(\tau_{1}\right)=G_{2}
$$

- Need to show that $S\left(\tau_{n}\right)$ and G_{n+1} have same probabilistic evolution
- Superstar: probability of joining superstar = probability of red vertex being born $=p$
- Same probability for S and G
- Non-superstars: degree of vertex $=$ number of blue children +1

$$
\operatorname{deg}\left(v_{k}, G_{n+1}\right)=c_{B}\left(v_{k}, \tau_{n}-\tau_{k}\right)+1
$$

Retweet Graph and Superstar Model

Further Linking of the BP Model and the Superstar Model

$$
\mathbb{P}\left(v_{n} \text { joins } v_{k} \mid G_{n}\right)=\mathbb{P}\left(v_{n} \text { is blue and born to } v_{k} \mid \mathcal{F}\left(\tau_{n-1}\right)\right)
$$

$$
\begin{aligned}
\mathbb{P}\left(v_{n} \text { joins } v_{k} \mid G_{n}\right) & =(1-p) \frac{\operatorname{deg}\left(v_{k}, G_{n}\right)}{\sum_{v_{j} \in G_{n} \backslash v_{0}} \operatorname{deg}\left(v_{j}, G_{n}\right)} \\
& =(1-p) \frac{\operatorname{deg}\left(v_{k}, G_{n}\right)}{2(n-1)-\operatorname{deg}\left(v_{0}, G_{n}\right)}
\end{aligned}
$$

$$
\mathbb{P}\left(v_{n} \text { is blue and born to } v_{k} \mid \mathcal{F}\left(\tau_{n-1}\right)\right)=(1-p) \frac{c_{B}\left(v_{k}, \tau_{n}-\tau_{k}\right)+1}{\sum_{v_{k} \in \mathcal{F}\left(\tau_{n-1}\right)} c_{B}\left(v_{k}, \tau_{n}-\tau_{k}\right)+1}
$$

Dynamic random graphs

- Lots of interesting questions
- Understanding what happens for general unbounded size rules such as product rule (explosive percolation).
- Small variants of standard models turn out to be technically much more challenging, requiring the development of new machinery.
- For the superstar model, a simple tweak gave much better fit to the data (one parameter p).

Thank you for your attention.

[^0]: ${ }^{1}$ Data courtesy of Microsoft Research, Cambridge, MA

