Random matrices with entries from a moving average process

Arijit Chakrabarty

Arijit Chakrabarty
Joint work with Rajat S. Hazra and Deepayan Sarkar
January 9, 2013

The problem

- $\left(Z_{i, j}: i, j \in \mathbb{Z}\right)$ is a stationary, mean zero, variance one Gaussian process.
- Stationarity means that for $k, I \in \mathbb{Z}$,

$$
\left(Z_{i+k, j+l}: i, j \in \mathbb{Z}\right) \stackrel{d}{=}\left(Z_{i, j}: i, j \in \mathbb{Z}\right) .
$$

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem
The result
Proof
Special cases
An edge problem

The problem

- $\left(Z_{i, j}: i, j \in \mathbb{Z}\right)$ is a stationary, mean zero, variance one Gaussian process.
- Stationarity means that for $k, l \in \mathbb{Z}$,

$$
\left(Z_{i+k, j+l}: i, j \in \mathbb{Z}\right) \stackrel{d}{=}\left(Z_{i, j}: i, j \in \mathbb{Z}\right) .
$$

- Define

$$
R(u, v):=E\left[Z_{1,1} Z_{1-u, 1+v}\right], u, v \in \mathbb{Z} .
$$

The problem

- $\left(Z_{i, j}: i, j \in \mathbb{Z}\right)$ is a stationary, mean zero, variance one Gaussian process.
- Define

$$
R(u, v):=E\left[Z_{1,1} Z_{1-u, 1+v}\right], u, v \in \mathbb{Z} .
$$

- For $i, j \geq 1$, set

$$
X_{i, j}:=Z_{i \wedge j, i \vee j}
$$

The problem (contd.)

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem
The result
Proof

- Denote

$$
\mu_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{\left\{\lambda_{i} / \sqrt{n}\right\}}
$$

The problem (contd.)

Random matrices with entries from a moving average process

```
Arijit Chakrabarty
```

- Let

$$
A_{n}:=\left(\left(X_{i, j}\right)\right)_{n \times n}, n \geq 1
$$

- Let $\lambda_{1} \leq \ldots \leq \lambda_{n}$ denote the eigenvalues of A_{n}.
- Denote

$$
\mu_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{\left\{\lambda_{i} / \sqrt{n}\right\}} .
$$

- The problem: to identify the weak limit of μ_{n} as $n \rightarrow \infty$.

Assumptions

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem
The result
Proof
Spectial cases
An edge problem

Assumptions

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem

- Assumption 2: $\sum_{u, v \in \mathbb{Z}}|R(u, v)|<\infty$.

Some combinatorics

- $N C_{2}(2 m)$ is the set of non-crossing pair partitions of $\{1,2, \ldots, 2 m\}$.

Some combinatorics

－$N C_{2}(2 m)$ is the set of non－crossing pair partitions of $\{1,2, \ldots, 2 m\}$ ．
－For $\sigma \in N C_{2}(2 m)$ ，denote by $K(\sigma)$ the maximal partition π of $\{\overline{1}, \ldots, \overline{2 m}\}$ such that $\sigma \vee \pi$ is a non－crossing partition of $\{1, \overline{1}, \ldots, 2 m, \overline{2 m}\}$ ．

Some combinatorics

- $N C_{2}(2 m)$ is the set of non-crossing pair partitions of $\{1,2, \ldots, 2 m\}$.
- For $\sigma \in N C_{2}(2 m)$, denote by $K(\sigma)$ the maximal partition π of $\{\overline{1}, \ldots, \overline{2 m}\}$ such that $\sigma \vee \pi$ is a non-crossing partition of $\{1, \overline{1}, \ldots, 2 m, \overline{2 m}\}$.
- For example, consider $\sigma:=\{(1,4),(2,3),(5,6)\}$.

Some combinatorics

- $N C_{2}(2 m)$ is the set of non-crossing pair partitions of $\{1,2, \ldots, 2 m\}$.
- For $\sigma \in N C_{2}(2 m)$, denote by $K(\sigma)$ the maximal partition π of $\{\overline{1}, \ldots, \overline{2 m}\}$ such that $\sigma \vee \pi$ is a non-crossing partition of $\{1, \overline{1}, \ldots, 2 m, \overline{2 m}\}$.
- For example, consider $\sigma:=\{(1,4),(2,3),(5,6)\}$.

Some combinatorics

- $N C_{2}(2 m)$ is the set of non-crossing pair partitions of $\{1,2, \ldots, 2 m\}$.
- For $\sigma \in N C_{2}(2 m)$, denote by $K(\sigma)$ the maximal partition π of $\{\overline{1}, \ldots, \overline{2 m}\}$ such that $\sigma \vee \pi$ is a non-crossing partition of $\{1, \overline{1}, \ldots, 2 m, \overline{2 m}\}$.
- For example, consider $\sigma:=\{(1,4),(2,3),(5,6)\}$.

Some combinatorics

- $N C_{2}(2 m)$ is the set of non-crossing pair partitions of $\{1,2, \ldots, 2 m\}$.
- For $\sigma \in N C_{2}(2 m)$, denote by $K(\sigma)$ the maximal partition π of $\{\overline{1}, \ldots, \overline{2 m}\}$ such that $\sigma \vee \pi$ is a non-crossing partition of $\{1, \overline{1}, \ldots, 2 m, \overline{2 m}\}$.
- For example, consider $\sigma:=\{(1,4),(2,3),(5,6)\}$.

Therefore, $K(\sigma)=\{(\overline{1}, \overline{3}),(\overline{2}),(\overline{4}, \overline{6}),(\overline{5})\}$.

- Fix $\sigma \in N C_{2}(2 m)$.
- Let $K(\sigma)=\left(V_{1}, \ldots, V_{k+1}\right)$.
- Fix $\sigma \in N C_{2}(2 m)$.
- Let $K(\sigma)=\left(V_{1}, \ldots, V_{k+1}\right)$.
- Denote

$$
V_{i}:=\left\{v_{1}^{i}, \ldots, v_{l_{i}}^{i}\right\}, 1 \leq i \leq k+1 .
$$

- Fix $\sigma \in N C_{2}(2 m)$.
- Let $K(\sigma)=\left(V_{1}, \ldots, V_{k+1}\right)$.
- Denote

$$
V_{i}:=\left\{v_{1}^{i}, \ldots, v_{l_{i}}^{i}\right\}, 1 \leq i \leq k+1 .
$$

- Define

$$
S(\sigma):=\left\{\left(k_{1}, \ldots, k_{2 m}\right) \in \mathbb{Z}^{2 m}: \sum_{j=1}^{I_{i}} k_{v_{j}^{i}}=0, i=1, \ldots, k+1\right\} .
$$

- Fix $\sigma \in N C_{2}(2 m)$.
- Let $K(\sigma)=\left(V_{1}, \ldots, V_{k+1}\right)$.
- Denote

$$
V_{i}:=\left\{v_{1}^{i}, \ldots, v_{l_{i}}^{i}\right\}, 1 \leq i \leq k+1 .
$$

- Define

$$
S(\sigma):=\left\{\left(k_{1}, \ldots, k_{2 m}\right) \in \mathbb{Z}^{2 m}: \sum_{j=1}^{I_{i}} k_{v_{j}^{i}}=0, i=1, \ldots, k+1\right\} .
$$

- For $m \geq 1$, denote

$$
\beta_{2 m}:=\sum_{\sigma \in N C_{2}(2 m)} \sum_{\left(k_{1}, \ldots, k_{2 m}\right) \in S(\sigma)} \prod_{(u, v) \in \sigma} R\left(k_{u}, k_{v}\right) .
$$

The main result

Theorem (C., Hazra and Sarkar)
There exists a unique symmetric distribution μ with bounded support, whose ($2 m$)-th moment is $\beta_{2 m}$ for $m=1,2, \ldots$. Furthermore, for all $a, b \in \mathbb{R}$,

$$
\mu_{n}([a, b]) \xrightarrow{P} \mu([a, b])
$$

as $n \rightarrow \infty$.

Wick's formula

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem

Fact
If $\left(Y_{1}, \ldots, Y_{2 k}\right)$ has a multivariate normal distribution with mean zero, then

$$
E\left(\prod_{i=1}^{2 k} Y_{i}\right)=\sum_{\pi} \prod_{(u, v) \in \pi} E\left(Y_{u} Y_{v}\right)
$$

where the sum runs over all pair partitions π of $\{1,2, \ldots, 2 k\}$.

- Fix $N \geq 1$.
- For $i, j, k, I \geq 1$, declare $(i, j) \sim(k, I)$ if

$$
|i \wedge j-k \wedge I| \vee|i \vee j-k \vee I| \leq N .
$$

Random matrices with entries from a moving average
process
Arijit Chakrabarty

The problem

The result
Proof
Special cases

- Fix $N \geq 1$.
- For $i, j, k, l \geq 1$, declare $(i, j) \sim(k, I)$ if

$$
|i \wedge j-k \wedge I| \vee|i \vee j-k \vee I| \leq N .
$$

- Let $\left(i_{1}, \ldots, i_{2 m}\right) \in\{1, \ldots, n\}^{2 m}$ be such that for any pair partition π of $\{1, \ldots, 2 m\}$, there exists $(j, k) \in \pi$ with

$$
\left(i_{j-1}, i_{j}\right) \nsim\left(i_{k-1}, i_{k}\right),
$$

where $i_{0}:=i_{2 m}$.

Random matrices with entries from a moving average process

Arijit Chakrabarty

- By Wick's formula,

$$
E\left[X_{i_{0} i_{1}} X_{i_{1} i_{2}} \ldots X_{i_{2 m-1} i_{2 m}}\right]
$$

is small if N is large.

Random matrices with entries from a moving average process

Arijit Chakrabarty

- By Wick's formula,

$$
E\left[X_{i_{0} i_{1}} X_{i_{1} i_{2}} \ldots X_{i_{2 m-1} i_{2 m}}\right]
$$

is small if N is large.

- Difficulty: There are $n^{2 m}$ such tuples, but we are scaling by n^{m+1}.

Random matrices with entries from a moving average process

Arijit Chakrabarty

- By Wick's formula,

$$
E\left[X_{i_{0} i_{1}} X_{i_{1} i_{2}} \ldots X_{i_{2 m-1} i_{2 m}}\right]
$$

is small if N is large.

- Difficulty: There are $n^{2 m}$ such tuples, but we are scaling by n^{m+1}.
- "Assumption 2: $\sum_{u, v \in \mathbb{Z}}|R(u, v)|<\infty$ " comes to our rescue.

Free product convloution

- Let (\mathcal{A}, ϕ) be a non-commutative probability space.
- Let μ be a probability measure on \mathbb{R} with all moments finite. An element $a \in \mathcal{A}$ has distribution μ if

$$
\phi\left(a^{n}\right)=\int_{\mathbb{R}} x^{n} \mu(d x), n \geq 1
$$

Random matrices with entries from a moving average process

Arijit Chakrabarty

The result

Special cases

Free product convloution

- Let (\mathcal{A}, ϕ) be a non-commutative probability space.
- Let μ be a probability measure on \mathbb{R} with all moments finite. An element $a \in \mathcal{A}$ has distribution μ if

$$
\phi\left(a^{n}\right)=\int_{\mathbb{R}} x^{n} \mu(d x), n \geq 1
$$

- $a, b \in \mathcal{A}$ are freely independent if for all $k \geq 1$ and polynomials $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}$,

$$
\phi\left(p_{1}(a) q_{1}(b) \ldots p_{k}(a) q_{k}(b)\right)=0
$$

whenever

$$
\phi\left(p_{i}(a)\right)=\phi\left(q_{i}(b)\right)=0, i=1, \ldots, k .
$$

Free product convloution

- Let (\mathcal{A}, ϕ) be a non-commutative probability space.
- Let μ be a probability measure on \mathbb{R} with all moments finite. An element $a \in \mathcal{A}$ has distribution μ if

$$
\phi\left(a^{n}\right)=\int_{\mathbb{R}} x^{n} \mu(d x), n \geq 1
$$

- $a, b \in \mathcal{A}$ are freely independent if for all $k \geq 1$ and polynomials $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}$,

$$
\phi\left(p_{1}(a) q_{1}(b) \ldots p_{k}(a) q_{k}(b)\right)=0
$$

whenever

$$
\phi\left(p_{i}(a)\right)=\phi\left(q_{i}(b)\right)=0, i=1, \ldots, k .
$$

- If a and b have distributions μ and ν respectively, and a and b are freely independent, then $\mu \boxtimes \nu$ is the distribution of $a b$.

Fact

Let μ be a distribution supported on a compact subset of $[0, \infty)$, whose k-th moment is $m_{k}, k=1,2, \ldots$. Let μ_{s} be the Wigner semicircular law (WSL), given by

$$
\mu_{s}(d x)=\frac{\sqrt{4-x^{2}}}{2 \pi} \mathbf{1}(|x| \leq 2) d x
$$

Then,

$$
\int_{\mathbb{R}} x^{2 k} \mu \boxtimes \mu_{s}(d x)=\sum_{\sigma \in N C_{2}(2 k)} \prod_{i=1}^{k+1} m_{l_{i}(\sigma)}
$$

where $I_{1}(\sigma), \ldots, I_{k+1}(\sigma)$ denote the block sizes of $K(\sigma)$.

Special case 1.

Theorem (C., Hazra and Sarkar)
Assume that

$$
R(k, I)=R(k, 0) R(I, 0), k, I \in \mathbb{Z}
$$

Random matrices with entries from a moving average process

Arijit Chakrabarty
The problem
The result
Proof
Special cases

Special case 1.

Theorem (C., Hazra and Sarkar)
Assume that

$$
R(k, I)=R(k, 0) R(I, 0), k, I \in \mathbb{Z}
$$

Define

$$
r(x):=\sum_{k=-\infty}^{\infty} R(k, 0) e^{2 \pi i k x}, x \in \mathbb{R}
$$

and let μ_{r} denote the law of $r(U)$ where U follows Uniform(0,1).

Special case 1.

Theorem (C., Hazra and Sarkar)
Assume that

$$
R(k, I)=R(k, 0) R(I, 0), k, I \in \mathbb{Z}
$$

Define

$$
r(x):=\sum_{k=-\infty}^{\infty} R(k, 0) e^{2 \pi i k x}, x \in \mathbb{R}
$$

and let μ_{r} denote the law of $r(U)$ where U follows Uniform $(0,1)$. Then the $L S D \mu$ is given by

$$
\mu=\mu_{r} \boxtimes \mu_{s}
$$

where μ_{s} is the WSL.

Example

 define$$
X_{i, j}:=\sum_{k=0}^{N} \sum_{l=0}^{N} G_{i+K, j+l}, i, j \geq 1
$$

Then, the hypothesis of the previous theorem is satisfied.

Special case 2

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem
The result
Proof
Special cases

Assume that

$$
R(k, 0)=0 \text { for all } k \neq 0 .
$$

Then, μ is the WSL.

Example

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem
The result
Proof
Special cases
An edge problem

Example

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem
The result
Proof
Special cases

Example

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem
The result
Proof
Special cases

- $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} C_{i j}^{2}=1$,

Example

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem
The result

Proof

Special cases

- $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} C_{i j}^{2}=1$,
- and for all $j \neq k$,

$$
\sum_{i=1}^{\infty} C_{i j} C_{i k}=0
$$

Example (contd.)

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem

Theresult

Proof

Special cases

$$
X_{i, j}:=\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} C_{k, l} G_{i+k, j+l}
$$

Example (contd.)

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem

Theresult
Proof
Special cases

$$
X_{i, j}:=\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} C_{k, l} G_{i+k, j+l}
$$

- Then, the LSD of the matrix $A_{n}:=\left(\left(X_{i, j}\right)\right)_{1 \leq i, j \leq n}$ is WSL.

Invariance

- Chatterjee's invariance principle allows us to claim that for a finite order moving average (MA) process, standard Gaussian can be replaced by any distribution with mean zero and variance one.

Invariance

- Chatterjee's invariance principle allows us to claim that for a finite order moving average (MA) process, standard Gaussian can be replaced by any distribution with mean zero and variance one.
- Would be nice if this can be generalized to infinite order MA processes.

The model

- Suppose that $\left\{X_{i, j}: i, j \geq 1\right\}$ is a family of i.i.d. random variables such that

$$
P\left(\left|X_{1,1}\right|>\cdot\right) \in R V(-\alpha) \text { for some } \alpha>0
$$

that is,

$$
\lim _{t \rightarrow \infty} \frac{P\left(\left|X_{1,1}\right|>t x\right)}{P\left(\left|X_{1,1}\right|>t\right.}=x^{-\alpha}, x>0
$$

The model

- Suppose that $\left\{X_{i, j}: i, j \geq 1\right\}$ is a family of i.i.d. random variables such that

$$
P\left(\left|X_{1,1}\right|>\cdot\right) \in R V(-\alpha) \text { for some } \alpha>0
$$

that is,

$$
\lim _{t \rightarrow \infty} \frac{P\left(\left|X_{1,1}\right|>t x\right)}{P\left(\left|X_{1,1}\right|>t\right.}=x^{-\alpha}, x>0
$$

- $\left\{c_{i j}: 0 \leq i, j \leq N\right\}$ are real numbers.

The model

Random matrices with entries from a moving average process

Arijit Chakrabarty random variables such that

$$
P\left(\left|X_{1,1}\right|>\cdot\right) \in R V(-\alpha) \text { for some } \alpha>0
$$

that is,

$$
\lim _{t \rightarrow \infty} \frac{P\left(\left|X_{1,1}\right|>t x\right)}{P\left(\left|X_{1,1}\right|>t\right.}=x^{-\alpha}, x>0
$$

- $\left\{c_{i j}: 0 \leq i, j \leq N\right\}$ are real numbers.
- Define

$$
Y_{k, l}:=\sum_{i=0}^{N} \sum_{j=0}^{N} c_{i j} X_{i+k, j+l}, 1 \leq k \leq 1
$$

The model (contd.)

- For $k>l$, set

$$
Y_{k, l}:=Y_{l, k} .
$$

Random matrices with entries from a moving average
process
Arijit Chakrabarty

The problem
Tile result

Proof

Special cases

An edge problem

The model (contd.)

Random matrices with entries from a moving average process

Arijit Chakrabarty

- For $k>l$, set

$$
Y_{k, l}:=Y_{l, k} .
$$

- For $n \geq 1$, let A_{n} denote the $n \times n$ matrix whose (i, j)-th entry is $Y_{i, j}$.

The model (contd.)

Random matrices with entries from a moving average process

Arijit Chakrabarty

- For $k>l$, set

$$
Y_{k, l}:=Y_{l, k} .
$$

- For $n \geq 1$, let A_{n} denote the $n \times n$ matrix whose (i, j)-th entry is $Y_{i, j}$.
- For a matrix B, let

$$
\sigma_{\max }(B):=\sqrt{\text { largest eigenvalue of } B^{\top} B} .
$$

The model (contd.)

- For $k>l$, set

$$
Y_{k, l}:=Y_{l, k} .
$$

- For $n \geq 1$, let A_{n} denote the $n \times n$ matrix whose (i, j)-th entry is $Y_{i, j}$.
- For a matrix B, let

$$
\sigma_{\max }(B):=\sqrt{\text { largest eigenvalue of } B^{T} B} .
$$

- Problem: To find the asymptotics of $\sigma_{\max }\left(A_{n}\right)$ as $n \rightarrow \infty$.

The result

Define

$$
\begin{aligned}
b(t) & :=\inf \left\{x: P\left(\left|X_{11}\right|>x\right) \leq t^{-1}\right\}, t>0 \\
C & :=\left[\begin{array}{cccccc}
0 & \ldots & 0 & c_{N N} & \ldots & c_{N 0} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & c_{0 N} & \ldots & c_{00} \\
c_{N N} & \cdots & c_{0 N} & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
c_{N 0} & \cdots & c_{00} & 0 & \ldots & 0
\end{array}\right]_{(2 N+1) \times(2 N+1)}
\end{aligned}
$$

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem

The result

Proof

Special cases
An edge problem

The result (contd.)

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem

$$
\frac{\sigma_{\max }\left(A_{n}\right)}{b\left(n^{2} / 2\right)} \Longrightarrow \sigma_{\max }(C) Z
$$

as $n \rightarrow \infty$, where Z, a Fréchet (α) random variable, has c.d.f.

$$
P(Z \leq x)=\exp \left(-x^{-\alpha}\right), x>0
$$

Random matrices with entries from a moving average

Arijit Chakrabarty

- It can be shown that

$$
\frac{\sigma_{\max }\left(A_{n}\right)}{\max _{1 \leq i \leq j \leq n}\left|X_{i, j}\right|} \stackrel{P}{\longrightarrow} \sigma_{\max }(C)
$$

The problem

The result

Proof

Special cases
An edge problem

Random matrices with entries from a moving average process

Arijit Chakrabarty

- It can be shown that

$$
\frac{\sigma_{\max }\left(A_{n}\right)}{\max _{1 \leq i \leq j \leq n}\left|X_{i, j}\right|} \xrightarrow{P} \sigma_{\max }(C) .
$$

```
The problem
```


The result

Proof
Special cases
An edge problem

- It is known that if Z_{1}, Z_{2}, \ldots are i.i.d. copies of X_{11}, then

$$
\frac{\max _{1 \leq j \leq n}\left|Z_{j}\right|}{b(n)} \Longrightarrow \text { Fréchet }(\alpha)
$$

Random matrices with entries from a moving average process

Arijit Chakrabarty
Theorem (Soshnikov(2004))
Let $\left\{X_{i j}: 1 \leq i \leq j\right\}$ be i.i.d. such that $P\left(\left|X_{11}\right|>\cdot\right) \in R V(-\alpha)$ for some $0<\alpha<2$. If W_{n} is the $n \times n$ Wigner matrix constructed from $X_{i j}$'s, then

$$
\frac{\sigma_{\max }\left(W_{n}\right)}{\max _{1 \leq i \leq j \leq n}\left|X_{i j}\right|} \xrightarrow{P} 1
$$

Idea of Soshnikov's proof

- If

$$
\left(i^{*}, j^{*}\right):=\arg \max _{1 \leq i \leq j \leq n}\left|X_{i j}\right|,
$$

then $X_{i^{*} j^{*}}^{-1} W_{n}$ is approximately equal to the matrix whose $\left(i^{*}, j^{*}\right)$-th and $\left(j^{*}, i^{*}\right)$-th entries are one, rest are zero.

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem

Theresult

Proof

An edge problem

Idea of Soshnikov's proof

- If

$$
\left(i^{*}, j^{*}\right):=\arg \max _{1 \leq i \leq j \leq n}\left|X_{i j}\right|,
$$

then $X_{i^{*} j^{*}}^{-1} W_{n}$ is approximately equal to the matrix whose $\left(i^{*}, j^{*}\right)$-th and $\left(j^{*}, i^{*}\right)$-th entries are one, rest are zero.

- Soshnikov showed that

$$
X_{i^{*} j^{*}}^{-1} \max _{1 \leq i \leq n}\left|\sum_{j=1}^{n} X_{i j}\right| \xrightarrow{P} 1
$$

- Consider a simple example

$$
Y_{i j}:=X_{i, j}+X_{i, j+1}, i \leq j
$$

Random matrices with entries from a moving average

Arijit Chakrabarty
The problem
The result
Proof
Special cases
An edge problem

- Consider a simple example

$$
Y_{i j}:=X_{i, j}+X_{i, j+1}, i \leq j
$$

- If

$$
\left(i^{*}, j^{*}\right):=\arg \max _{1 \leq i \leq j \leq n}\left|X_{i j}\right|,
$$

then $X_{i^{*}, j^{*}}^{-1} A_{n}$ is approximately

$$
\left[\begin{array}{l|ccc}
& i^{*} & j^{*} & j^{*}+1 \\
\hline i^{*} & 0 & 1 & 1 \\
j^{*} & 1 & 0 & 0 \\
j^{*}+1 & 1 & 0 & 0
\end{array}\right]
$$

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem

The result
Proof
Special cases
An edge problem
L^{1} norm is 2 while L^{2} norm is $\sqrt{2}$.

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem

The result
Proof
Special cases
An edge problem
L^{1} norm is 2 while L^{2} norm is $\sqrt{2}$.

- However, on squaring this matrix, the two norms equal.

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem

The result

Proof
Special cases
An edge problem
L^{1} norm is 2 while L^{2} norm is $\sqrt{2}$.

- However, on squaring this matrix, the two norms equal.
- In general, we looked at the r-th power, and let $r \rightarrow \infty$.

Future research

Random matrices with entries from a moving average
process
Arijit Chakrabarty

The problem
The lesult
Proof
Special cases
An edge problem

Future research

Random matrices with entries from a moving average process

Arijit Chakrabarty

The problem

The result
Proof

Special cases
An edge problem

THANK YOU

