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The problem

I (Zi ,j : i , j ∈ Z) is a stationary, mean zero, variance one
Gaussian process.

I Stationarity means that for k, l ∈ Z,

(Zi+k,j+l : i , j ∈ Z)
d
= (Zi ,j : i , j ∈ Z) .

I Define

R(u, v) := E [Z1,1Z1−u,1+v ] , u, v ∈ Z .

I For i , j ≥ 1, set
Xi ,j := Zi∧j ,i∨j .
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The problem (contd.)

I Let
An := ((Xi ,j))n×n, n ≥ 1 .

I Let λ1 ≤ . . . ≤ λn denote the eigenvalues of An.

I Denote

µn :=
1

n

n∑
i=1

δ{λi/
√
n} .

I The problem: to identify the weak limit of µn as
n→∞.
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Assumptions

I Assumption 1: R(·, ·) is symmetric, that is,

R(u, v) = R(v , u) for all u, v ∈ Z .

I Assumption 2:
∑

u,v∈Z |R(u, v)| <∞.
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Some combinatorics

I NC2(2m) is the set of non-crossing pair partitions of
{1, 2, . . . , 2m}.

I For σ ∈ NC2(2m), denote by K (σ) the maximal
partition π of {1, . . . , 2m} such that σ ∨ π is a
non-crossing partition of {1, 1, . . . , 2m, 2m}.

I For example, consider σ := {(1, 4), (2, 3), (5, 6)}.
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Therefore, K (σ) = {(1, 3), (2), (4, 6), (5)}.



I Fix σ ∈ NC2(2m).

I Let K (σ) = (V1, . . . ,Vk+1).

I Denote

Vi := {v i
1, . . . , v

i
li
}, 1 ≤ i ≤ k + 1 .

I Define

S(σ) :=

(k1, . . . , k2m) ∈ Z2m :

li∑
j=1

kv i
j

= 0, i = 1, . . . , k + 1

 .

I For m ≥ 1, denote

β2m :=
∑

σ∈NC2(2m)

∑
(k1,...,k2m)∈S(σ)

∏
(u,v)∈σ

R(ku, kv ) .
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The main result

Theorem (C., Hazra and Sarkar)

There exists a unique symmetric distribution µ with bounded
support, whose (2m)-th moment is β2m for m = 1, 2, . . ..
Furthermore, for all a, b ∈ R,

µn([a, b])
P−→ µ([a, b])

as n→∞.
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Wick’s formula

Fact
If (Y1, . . . ,Y2k) has a multivariate normal distribution with
mean zero, then

E

(
2k∏
i=1

Yi

)
=
∑
π

∏
(u,v)∈π

E (YuYv ) ,

where the sum runs over all pair partitions π of
{1, 2, . . . , 2k}.
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I Fix N ≥ 1.

I For i , j , k, l ≥ 1, declare (i , j) ∼ (k, l) if

|i ∧ j − k ∧ l | ∨ |i ∨ j − k ∨ l | ≤ N .

I Let (i1, . . . , i2m) ∈ {1, . . . , n}2m be such that for any
pair partition π of {1, . . . , 2m}, there exists (j , k) ∈ π
with

(ij−1, ij) 6∼ (ik−1, ik) ,

where i0 := i2m.
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I By Wick’s formula,

E
[
Xi0i1Xi1i2 . . .Xi2m−1i2m

]
is small if N is large.

I Difficulty: There are n2m such tuples, but we are
scaling by nm+1.

I “Assumption 2:
∑

u,v∈Z |R(u, v)| <∞” comes to our
rescue.
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Free product convloution
I Let (A, φ) be a non-commutative probability space.
I Let µ be a probability measure on R with all moments

finite. An element a ∈ A has distribution µ if

φ(an) =

∫
R

xnµ(dx), n ≥ 1 .

I a, b ∈ A are freely independent if for all k ≥ 1 and
polynomials p1, . . . , pk , q1, . . . , qk ,

φ (p1(a)q1(b) . . . pk(a)qk(b)) = 0 ,

whenever

φ(pi (a)) = φ(qi (b)) = 0, i = 1, . . . , k .

I If a and b have distributions µ and ν respectively, and a
and b are freely independent, then µ� ν is the
distribution of ab.
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Fact
Let µ be a distribution supported on a compact subset of
[0,∞), whose k-th moment is mk , k = 1, 2, . . .. Let µs be
the Wigner semicircular law (WSL), given by

µs(dx) =

√
4− x2

2π
1(|x | ≤ 2)dx .

Then, ∫
R

x2kµ� µs(dx) =
∑

σ∈NC2(2k)

k+1∏
i=1

mli (σ) ,

where l1(σ), . . . , lk+1(σ) denote the block sizes of K (σ).
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Special case 1.

Theorem (C., Hazra and Sarkar)

Assume that

R(k , l) = R(k, 0)R(l , 0), k , l ∈ Z .

Define

r(x) :=
∞∑

k=−∞
R(k , 0)e2πikx , x ∈ R ,

and let µr denote the law of r(U) where U follows
Uniform(0,1). Then the LSD µ is given by

µ = µr � µs ,

where µs is the WSL.
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Example

Let (Gi ,j : i , j ≥ 1) be i.i.d. standard normal. Fix N ≥ 1 and
define

Xi ,j :=
N∑

k=0

N∑
l=0

Gi+K ,j+l , i , j ≥ 1 .

Then, the hypothesis of the previous theorem is satisfied.
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Special case 2

Theorem (C., Hazra and Sarkar)

Assume that
R(k, 0) = 0 for all k 6= 0 .

Then, µ is the WSL.
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Example

Let (Cij : i , j ≥ 1) be deterministic numbers such that

I Cij = Cji ,

I
∑∞

i=1

∑∞
j=1 |Cij | <∞,

I
∑∞

i=1

∑∞
j=1 C 2

ij = 1,

I and for all j 6= k ,

∞∑
i=1

CijCik = 0 .
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Example (contd.)

I (Gij : i , j ≥ 1) i.i.d. standard Gaussian.

I For i , j ≥ 1,

Xi ,j :=
∞∑
k=1

∞∑
l=1

Ck,lGi+k,j+l .

I Then, the LSD of the matrix An := ((Xi ,j))1≤i ,j≤n is
WSL.
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Invariance

I Chatterjee’s invariance principle allows us to claim that
for a finite order moving average (MA) process,
standard Gaussian can be replaced by any distribution
with mean zero and variance one.

I Would be nice if this can be generalized to infinite order
MA processes.
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The model

I Suppose that {Xi ,j : i , j ≥ 1} is a family of i.i.d.
random variables such that

P(|X1,1| > ·) ∈ RV (−α) for some α > 0 ,

that is,

lim
t→∞

P(|X1,1| > tx)

P(|X1,1| > t
= x−α, x > 0 .

I {cij : 0 ≤ i , j ≤ N} are real numbers.

I Define

Yk,l :=
N∑
i=0

N∑
j=0

cijXi+k,j+l , 1 ≤ k ≤ l .



Random matrices
with entries from a
moving average

process

Arijit Chakrabarty

The problem

The result

Proof

Special cases

An edge problem

The model

I Suppose that {Xi ,j : i , j ≥ 1} is a family of i.i.d.
random variables such that

P(|X1,1| > ·) ∈ RV (−α) for some α > 0 ,

that is,

lim
t→∞

P(|X1,1| > tx)

P(|X1,1| > t
= x−α, x > 0 .

I {cij : 0 ≤ i , j ≤ N} are real numbers.

I Define

Yk,l :=
N∑
i=0

N∑
j=0

cijXi+k,j+l , 1 ≤ k ≤ l .



Random matrices
with entries from a
moving average

process

Arijit Chakrabarty

The problem

The result

Proof

Special cases

An edge problem

The model

I Suppose that {Xi ,j : i , j ≥ 1} is a family of i.i.d.
random variables such that

P(|X1,1| > ·) ∈ RV (−α) for some α > 0 ,

that is,

lim
t→∞

P(|X1,1| > tx)

P(|X1,1| > t
= x−α, x > 0 .

I {cij : 0 ≤ i , j ≤ N} are real numbers.

I Define

Yk,l :=
N∑
i=0

N∑
j=0

cijXi+k,j+l , 1 ≤ k ≤ l .



Random matrices
with entries from a
moving average

process

Arijit Chakrabarty

The problem

The result

Proof

Special cases

An edge problem

The model (contd.)

I For k > l , set
Yk,l := Yl ,k .

I For n ≥ 1, let An denote the n × n matrix whose
(i , j)-th entry is Yi ,j .

I For a matrix B, let

σmax(B) :=
√

largest eigenvalue of BTB .

I Problem: To find the asymptotics of σmax(An) as
n→∞.
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n→∞.
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Define

b(t) := inf
{

x : P(|X11| > x) ≤ t−1
}
, t > 0 ,

C :=



0 . . . 0 cNN . . . cN0
...

. . .
...

...
. . .

...
0 . . . 0 c0N . . . c00

cNN . . . c0N 0 . . . 0
...

. . .
...

...
. . .

...
cN0 . . . c00 0 . . . 0


(2N+1)×(2N+1)

.
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The result (contd.)

Theorem (C., Hazra and Sarkar)

If 0 < α < 1, then

σmax(An)

b(n2/2)
=⇒ σmax(C )Z ,

as n→∞, where Z , a Fréchet (α) random variable, has
c.d.f.

P(Z ≤ x) = exp
(
−x−α

)
, x > 0 .
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I It can be shown that

σmax(An)

max1≤i≤j≤n |Xi ,j |
P−→ σmax(C ) .

I It is known that if Z1,Z2, . . . are i.i.d. copies of X11,
then

max1≤j≤n |Zj |
b(n)

=⇒ Fréchet(α) .
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Theorem (Soshnikov(2004))

Let {Xij : 1 ≤ i ≤ j} be i.i.d. such that
P(|X11| > ·) ∈ RV (−α) for some 0 < α < 2. If Wn is the
n × n Wigner matrix constructed from Xij ’s, then

σmax(Wn)

max1≤i≤j≤n |Xij |
P−→ 1

as n→∞.
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Idea of Soshnikov’s proof

I If
(i∗, j∗) := arg max

1≤i≤j≤n
|Xij | ,

then X−1i∗j∗Wn is approximately equal to the matrix
whose (i∗, j∗)-th and (j∗, i∗)-th entries are one, rest are
zero.

I Soshnikov showed that

X−1i∗j∗ max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

Xij

∣∣∣∣∣∣ P−→ 1 .
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I Consider a simple example

Yij := Xi ,j + Xi ,j+1, i ≤ j .

I If
(i∗, j∗) := arg max

1≤i≤j≤n
|Xij | ,

then X−1i∗,j∗An is approximately
i∗ j∗ j∗ + 1

i∗ 0 1 1
j∗ 1 0 0
j∗ + 1 1 0 0

 .
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I For the matrix  0 1 1
1 0 0
1 0 0

 ,
L1 norm is 2 while L2 norm is

√
2.

I However, on squaring this matrix, the two norms equal.

I In general, we looked at the r -th power, and let r →∞.
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Future research

Light tail Heavy tail

LSD solved future work

Edge future work solved

THANK YOU
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