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What is this talk about, and why should one care J

Amir Dembo Statistical Mechanics on Sparse Random Graphs



‘Standard model’

G=(V,E), V=]n], x=(x1,..-,Xn), X; € X (finite set).

H % Xlan

IJEE
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‘Standard model’ (assumptions)

1. G has bounded degree (on average).
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1. G has bounded degree (on average).

2. G has girth larger than 2/
with ¢ = ¢(n) — oo (apart from o(n) vertices).
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‘Standard model’ (assumptions)

1. G has bounded degree (on average).

2. G has girth larger than 2/
with ¢ = ¢(n) — oo (apart from o(n) vertices).

3.0 ¢ij(Xian) < wmax < 0.
For each / exists x s.t. 0 < ¢min < ¥ji(xF, xj).
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Example 1: g-coloring

G = (V,E) graph.
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Example 1: g-coloring

G = (V,E) graph.

x = (x1,X2,...,Xn), Xi €{1,...,q} variables
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Uniform measure over proper colorings

pu(x) = % I vtxix%), Y(x,y) =I(x #y).

(ij)eE
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Example 2: k-satisfiability

n variables: x = (x1,x2,...,Xn), x; € {0,1}

m k-clauses

(aVXVxs)A(xsVxg Vo)A A (Xos VX1 V X32)
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Uniform measure over solutions

X OXs + variables x; € {0,1}

O Xy

o clauses, e.g. (x5 V x7V Xg V X10)
7

F= "'/\(Xil(a)vyiz(a)\/"'\/Xik(a))/\"‘

a-th clause

m
1
;U(K) = ? H wa(xil(a)v e 7Xik(3))
a=1



Many other examples

e Communications (LDPC; XORSAT).

Artificial intelligence (Bayesian networks; Graphical models).

Statistics (Compressed sensing).
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Interesting phenomena
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1. ‘Exact’ predictions
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1. ‘Exact’ predictions

Example: Free energy density

= > 11 witxx)

x (if)eE
1
o = lim —logZ,.

n—oo n

[Cavity/Replica methods]
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2. Mean field equations

‘Set of O(n) non-linear equations that determine local
marginals in the large system limit’
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2. Mean field equations

Bethe-Peierls equations (replica symmetric cavity method):

Lti—j(-) = Marginal of x; when replacing ;(x;, x;) by 1
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2. Mean field equations

Bethe-Peierls equations (replica symmetric cavity method):

Lti—j(-) = Marginal of x; when replacing ;(x;, x;) by 1

H Zlb,/ Xiy X MIAI(XI)

Zi=j leaiNj

pi—sj(xi) ~
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2. Mean field equations

Bethe-Peierls equations (replica symmetric cavity method):

Lti—j(-) = Marginal of x; when replacing ;(x;, x;) by 1

H Zlb,/ Xiy X MIAI(XI)

Zi=j leaiNj

pi—sj(xi) ~

General philosophy: approximate local marginals of pu(-) in terms
of measures on trees.
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2. Bethe-Peierls approximation

F = (U, Ey) C G, diam(F) < 2/, such that 9i € U or
ainU={u(i)}

Hu (XU)NVU(XU H wlj XHXJ H Visu(i) XI .

I,j)EEU icou
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Questions

{vij(-)} — 'set of messages' (aka cavity fields)
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Questions

{vij(-)} — 'set of messages' (aka cavity fields)

1. Is pu( ) well-approximated by some {v;_,;(-)}?
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Questions

{vij(-)} — 'set of messages' (aka cavity fields)

1. Is pu( ) well-approximated by some {v;_,;(-)}?

2. How to find a good set of messages {v;,;(-)}7?
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3. ‘Dynamical’ phase transition

‘The free energy density is analytic but the measure p
splits into lumps’
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3. ‘Dynamical’ phase transition

Example: k-satisfiability, the space of solutions

TN
~ L ) . .
PR BN 1o, =y =7 TN , 1
’ \ [ ) J ] _ J 1
’ [ LR N DU ) ey 1
! v ' ) 1 P 1
y 1 N 1 ’ \’ 1
1 - - -
\ O oy N I
/ )
\ \ ,
9 s - N 1
S _ 1 1 1
- - 1 1 1
1 1 1
1 1 1
ag(k) ac(k) as(k)

a = m/n fixed, n — oo.
[Biroli,Monasson,Weigt 00, Mézard,Parisi,Zecchina 02, Krzakala et al 07]
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3. ‘Dynamical’ phase transition

Example: g-COL, the space of solutions

TN
B . Lo . .
ST s Ty T oo
\ 1 -

’ I RN /’,—\\_z 1 t) e 1
! v ' 1 P 1
I ! N
| [N 1 \/ ! 1

1 N -1 1
X St e \,I - 1
\\ V| A N 1
N _’ 1 1 1
- - 1 1 1
| | |
1 1 1

va(q) Ye(q) 75(q)

[Edges taken independently with probability v/n each, v fixed, n — o0]
[same references + Achlioptas,Ricci 06]
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4. ‘Non-self averaging'

x(1) x(?) independent configurations, same disorder (replicas)

d(xM), x()) Hamming distance
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4. ‘Non-self averaging'

x(1), x(2) independent configurations, same disorder (replicas)

d(xM), x()) Hamming distance

w(d(x®, x)) > nd) = non-degenerate random variable

[~ SK model]
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A few results
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Ferromagnetic Ising model

Amir Dembo Statistical Mechanics on Sparse Random Graphs



Ferromagnetic Ising model
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Ferromagnetic Ising model

Gn = (Vnh = [n], Ep)
xi € {+1,-1}
B>0
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Ferromagnetic Ising model

Gn = (Vnh = [n], Ep)
xi € {+1,-1}
B>0

p(x) = %exp Y x,><,+BZx,

(if)€EEn

[in sparse random graphs: Johnston, Plechdc 98/ Leone et al 04]
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Free energy density
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Free energy density

Theorem (D., Montanari, 10)

If {Gp} is uniformly sparse and converges locally to MGW
T(P, p,00), then

[moment condition relaxed in Dommers, Giardina, van der Hofstad 10;
extended to all limiting trees and to ferromagnetic Potts models with
regular limiting tree in D., Montanari, Sly, Sun, 11]
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Amir Dembo Statistical Mechanics on Sparse Random Graphs



T(P,p, t)

Py

:/ N
A
AN L]
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‘Converges locally’

P = {Py}k>0 Degree distribution, law of L (of mean P > 0)

p ={pi}k>0 Size-biased P, law of K (degree of uniform edge)
T(P,p,t) t-generations GW tree (root degree P, else p)
Bi(t) Ball of radius t in G, centered at node |

Definition

{G,} converges locally to T(P, p,o0) if for uniformly random
I € [n] and fixed t, law of B;(t) converges as n — oo to T(P, p, t).

[in framework of Benjamini & Schramm 01, Aldous & Lyons 07]
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For B >0, let # = tanh 3, h(®©) > 0, and for iid h,(t),

K-1
At L tanh {B+ Z atanh (6 h,(t))} ,
i=1
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For B > 0, let 6 = tanh /3, h(©®) > 0, and for iid h,(t),

K—1
AEHD L tanh {B+ Z atanh(6 h,(t))} ,
i=1

Then h() 2 h* and for iid h* independent of L,
P P s
¢«(P, 3, B) = log cosh B + 3 log cosh 5 — 3 Elog(1 + 6hyh3)+

L L
+E log {(1 +tanh B) [ (1 + 6h7) + (1 —tanh B) [ [ (1 - Oh}“)} .
i=1 i=1

[Variational (LD) formulation for ¢,, see D., Montanari, Sun, 11]
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Proof strategy

0. Take B > 0.

1. Reduce to expectations of local quantities

log Zo(8,B) = > {(xiXj)n

(if)€En

dﬂ

((-)n denote expectation under Ising on Gp).

2. Prove convergence of local expectations to tree values.
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2. Convergence to tree values

Z1 22 Z3

T infinite tree with max degree kpax
T(t) first t generations
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2. Convergence to tree values

2 3
T infinite tree with max degree kpax
T(t) first t generations

t,z

uh#(+) Ising model on ¥(t) boundary condition z
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2. Convergence to tree values

zZ1 2 Z3

T infinite tree with max degree kpax
() first t generations
ub#(+) lsing model on ¥(t) boundary condition z

uf’z root spin expectation
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Decorrelation

Uniform (Gibbs measure uniqueness)

t,z(1)

? 2 -
™D — O < gt =t = 0.
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Decorrelation

Uniform (Gibbs measure uniqueness)

t,z(1)

? 2 -
™D — O < gt =t = 0.

Easier
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Decorrelation

Uniform (Gibbs measure uniqueness)

t,z(1)

? 2 -
™D — O < gt =t = 0.

Easier

True only at high temperature (8 = O(1/kmax))
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Why non-uniform control? Phase transition. ..

For 5 > . = atanh(1/p)

lim lim E(x;), = — lim lim E(x;), >0
B—0+ n—o0 B—0— n—o0
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.and its tree counterpart

Z1 Zp Z3
z=(+1,41,...,+1) = lim (x,)¢ >0
{—00
z=(-1,-1,...,-1) = lim (x,)¢ <0
{—00
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Decorrelation

Non uniform

™ — ) = 0.

Any temperature
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0 < Mﬁ,—f— _ M:,free < 6{'ul',ﬁree _ H:—l,free} =0

r

(15 monotone by Griffiths)

[Ising specific, but strategy extended to Potts, Independent Sets]
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Ising spin glass
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Ising spin glass
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Ising spin glass

Gn = (Vo = [1], Ey)
Xj € {+1,—1}
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Ising spin glass

Gn = (Vo = [1], Ey)
Xj € {+1,—1}
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Ising spin glass

Go = (Vi =[], En)
Xj € {+1,—1}

p(x) = %exp B Z JUX/)9+BZXI

(if)€En

Jij € {+1, -1} uniformly random
[Viana, Bray 1985]
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Free energy density: brief survey

If G, uniformly random with average degree vy and 3 < 3.(B, ),
then
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Free energy density: brief survey

If G, uniformly random with average degree vy and 3 < 3.(B, ),
then

Guerra, Toninelli 2003

B =0, B« = atanh(1/,/7)
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Free energy density: brief survey

If G, uniformly random with average degree vy and 3 < 3.(B, ),
then

Guerra, Toninelli 2003
B =0, B« = atanh(1/,/7)

Talagrand 2001, 2003
B #0, B = O(1/7)
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Free energy density
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Free energy density

Theorem (D., Gerschenfeld, Montanari 11)

If G, uniformly sparse and converges locally to T(P, p,o0) and
B < B«(B, P), then

¢ = ¢.(P, B, B).

K ~ kiyp > 1= 3.(B,P) ~ % and 0 < f(B) 1 oo with B.
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For iid 0; € {+ tanh 3, —tanh 3} uniformly at random,
independent of K, L and iid h,(t), let

K-1
D Ltanh {B+ Y atanh(6; h(V)}
i=1
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For iid 0; € {+ tanh 3, —tanh 3} uniformly at random,
independent of K, L and iid h,(t), let

K-1
D Ltanh {B+ Y atanh(6; h(V)}
i=1

Then A(Y) 2 p* and for iid h¥ independent of L,
n ﬁ * ok
¢«(P, 8, B) = logcosh B + — 5 log cosh 3 — —]Elog(l + Oohi h3)+

L L
+Elog{(l+tanhBH1+9h*) (1-tanhB)[](1 ah*}
i=1 i=1
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Trees vs graphs: from reconstruction to pure states J
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Alice and Bob
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Alice, Bob and G

root
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O;: root
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Alice samples a proper coloring (uniformly). ..

root
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.and hides a ball B(root, t)
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. guesses right!
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The problem

Does Bob have a chance? J

Amir Dembo Statistical Mechanics on Sparse Random Graphs



Formally

X ={X;: i € V} uniformly random proper coloring.
wy(-|G) distribution of Xy ={X;: ie UC V}

B(r,t)={i€ V:d(ir) >t}

Definition

The reconstruction problem is solvable for the sequence of random
rooted graphs G, = (V,, = [n], E,) if for some € > 0,

11 By (5 +1Gn) = pe(- [Ga) gy (-Gl av 2 €

with positive probability (bounded away from 0 as n — o0).



When G =Tree

— Bleher, Ruiz, Zagrebenov (1995): Ising model on b-ary trees
— Evans, Kenyon, Peres, Schulman (2000): Ising on general trees
— Mossel, Peres (2003): Non binary variables

— Brightwell, Winkler (2004), Martin (2004): Independent sets.

— Chayes et al. (2006): Asymmetric Ising.
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Pure states decomposition in g-COL

va(q) = Non-extremality (a.k.a. multiple pure states or dRSB)

Tree reconstruction threshold

@ Graph reconstruction threshold

[Conjectured by Mézard, Montanari 06 that also prove (1) for regular
tree-like graphs; (2) proved for Erdds-Rényi graphs by Montanari,
Restrepo and Tetali 2011]
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Conclusion

Combinatorics/Probability problems on random sparse graphs.
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Conclusion

Combinatorics/Probability problems on random sparse graphs.

Unifying approach: approximation by trees.
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Conclusion

Combinatorics/Probability problems on random sparse graphs.
Unifying approach: approximation by trees.

Naturally leads to many interesting problems.
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Many challenges

1. General models and trees (e.g. ferromagnetic Potts for general
limiting tree).
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Many challenges

1. General models and trees (e.g. ferromagnetic Potts for general
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2. Ising spin glass - push (3,(0, P) to the RSB point. \
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Many challenges

1. General models and trees (e.g. ferromagnetic Potts for general
limiting tree).

2. Ising spin glass - push (3,(0, P) to the RSB point. \

3. Rigorous understanding of the 'one-step replica symmetry’
phase (as in g-coloring beyond 74(q)) and beyond.
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Many challenges

1. General models and trees (e.g. ferromagnetic Potts for general
limiting tree).

2. Ising spin glass - push (3,(0, P) to the RSB point. \

3. Rigorous understanding of the 'one-step replica symmetry’
phase (as in g-coloring beyond 74(q)) and beyond.
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If you want to know more about this. . .

@ M. Mézard and A. Montanari, Information, Physics, Computation,
Oxford Univ. Press. 2009.

A. Dembo and A. Montanari, Gibbs measures and phase transitions
on sparse random graphs, Brazilian J. of Probab. and Stat. 2010.

@ A. Dembo, A. Gerschenfeld and A. Montanari, Spin glasses on
locally tree-like graphs, in preparation

@ A. Dembo, A. Montanari and N. Sun, Factor models on locally
tree-like graphs, posted on ArXiv.
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