Potts and independent set models on d-regular graphs

Amir Dembo Andrea Montanari Allan Sly Nike Sun

Stanford University UC Berkeley

Bangalore January 4 2013
1. The Potts and independent set models

2. Locally tree-like graphs and the Bethe prediction

3. Previous work and results

4. Verifying the Bethe prediction: proof ideas
The Potts and independent set models

Locally tree-like graphs and the Bethe prediction

Previous work and results

Verifying the Bethe prediction: proof ideas
Graphical models

A. Dembo, A. Montanari, A. Sly, N. Sun

Factor models on d-regular graphs
Graphical models

\[G = (V, E) \text{ finite undirected graph} \]
Graphical models

$G = (V, E)$ finite undirected graph

Spin configuration $\sigma \in \mathcal{X}^V$

(\mathcal{X} finite alphabet)
\(G = (V, E) \) finite undirected graph

Spin configuration \(\sigma \in \mathcal{X}^V \)

(\(\mathcal{X} \) finite alphabet)

Graphical model:
Graphical models

\[G = (V, E) \] finite undirected graph

Spin configuration \(\sigma \in \mathcal{X}^V \)

(\(\mathcal{X} \) finite alphabet)

Graphical model:
Model of random spin configuration
Graphical models

\[G = (V, E) \] finite undirected graph

Spin configuration \(\sigma \in \mathcal{X}^V \)

(\(\mathcal{X} \) finite alphabet)

Graphical model:
Model of random spin configuration defined by **local** interactions
Factor models

\[\mathbf{G} = (V, E) \]

\[\text{judge interaction } \psi(\sigma_i, \sigma_j) \]

\[\bar{\psi}(\sigma_i) \]

\[\text{Rexternal field} \]

Taking product over all edges gives factor model

\[\nu_G(\sigma) = \frac{1}{Z} \prod_{(ij) \in E} \psi(\sigma_i, \sigma_j) \prod_{i \in V} \bar{\psi}(\sigma_i) \]

\[Z = \text{normalizing constant or partition function} \]
Factor models

Factor model on $G = (V, E)$:

$\nu_G(\sigma) = \frac{1}{Z} \prod_{(ij) \in E} \psi(\sigma_i, \sigma_j) \prod_{i \in V} \bar{\psi}(\sigma_i)$

Z is the normalizing constant or partition function.
Factor models on $G = (V, E)$:

$$\psi(\sigma_i, \sigma_j)$$

Edge interaction $\psi(\sigma_i, \sigma_j)$,
Factor models

Factor model on $G = (V, E)$:

Edge interaction $\psi(\sigma_i, \sigma_j)$, vertex factor $\overline{\psi}(\sigma_i)$ (external field)
Factor models

Factor model on $G = (V, E)$:

Edge interaction $\psi(\sigma_i, \sigma_j)$, vertex factor $\overline{\psi}(\sigma_i)$ (external field)
Taking product over all edges, vertices gives factor model
Factor models

Factor model on $G = (V, E)$:

$$\nu_G(\sigma) = \frac{1}{Z} \prod_{(i,j) \in E} \psi(\sigma_i, \sigma_j) \prod_{i \in V} \bar{\psi}(\sigma_i)$$

Edge interaction $\psi(\sigma_i, \sigma_j)$, vertex factor $\bar{\psi}(\sigma_i)$ (external field)

Taking product over all edges, vertices gives factor model
Factor models

Factor model on $G = (V, E)$:

$$\nu_G(\sigma) = \frac{1}{Z} \prod_{(i,j) \in E} \psi(\sigma_i, \sigma_j) \prod_{i \in V} \bar{\psi}(\sigma_i)$$

$Z = \text{normalizing constant or partition function}$

Edge interaction $\psi(\sigma_i, \sigma_j)$, vertex factor $\bar{\psi}(\sigma_i)$ (external field)
Taking product over all edges, vertices gives factor model
The Potts model on a graph $G = (V, E)$ is defined by the partition function $Z_G(\beta, B)$, where β is the inverse temperature and B is the external field. The partition function is given by:

$$Z_G(\beta, B) = \prod_{(ij) \in E} e^{\beta \mathbb{1}\{\sigma_i = \sigma_j\}} \prod_{i \in V} e^{B \mathbb{1}\{\sigma_i = 1\}}$$

Here, $\mathbb{1}\{\cdot\}$ is the indicator function, taking the value 1 if the condition inside the brackets is true, and 0 otherwise. The parameter $\beta = \frac{1}{kT}$, where k is the Boltzmann constant and T is the temperature.

The external field B acts on the distinguished spin 1, and V is the set of spins in the graph.

Factor models on d-regular graphs can be analyzed within this framework.
\[X = [q] \equiv \{1, \ldots, q\} \]
$\mathcal{X} = [q] \equiv \{1, \ldots, q\}$

q-Potts model on $G = (V, E)$:
\[\mathcal{X} = \{q\} \equiv \{1, \ldots, q\} \]

q-Potts model on \(G = (V, E) \):

\[
\nu_{G}^{\beta, B}(\sigma) = \frac{1}{Z_G(\beta, B)} \prod_{(ij) \in E} e^{\beta \mathbf{1}\{\sigma_i = \sigma_j\}} \prod_{i \in V} e^{B \mathbf{1}\{\sigma_i = 1\}}
\]
\[\mathcal{X} = [q] \equiv \{1, \ldots, q\} \]

q-Potts model on \(G = (V, E) \):

\[
\nu^\beta, B_G(\sigma) = \frac{1}{Z_G(\beta, B)} \prod_{(ij) \in E} e^{\beta 1\{\sigma_i = \sigma_j\}} \prod_{i \in V} e^{B 1\{\sigma_i = 1\}}
\]

\[\beta^{-1} = \text{temperature} \]
\[\mathcal{X} = [q] \equiv \{1, \ldots, q\} \]

q-Potts model on \(G = (V, E) \):

\[
\nu^{\beta, B}_{G}(\sigma) = \frac{1}{Z_{G}(\beta, B)} \prod_{(i,j) \in E} e^{\beta 1\{\sigma_i = \sigma_j\}} \prod_{i \in V} e^{B 1\{\sigma_i = 1\}}
\]

- \(\beta^{-1} = \) temperature
- \(B = \) external field, in direction of distinguished spin 1
Potts model

\[\mathcal{X} = [q] \equiv \{1, \ldots, q\} \]

q-Potts model on \(G = (V, E) \):

\[
\nu_{G}^{\beta, B}(\sigma) = \frac{1}{Z_{G}(\beta, B)} \prod_{(ij) \in E} e^{\beta \mathbb{1}\{\sigma_i = \sigma_j\}} \prod_{i \in V} e^{B \mathbb{1}\{\sigma_i = 1\}}
\]

- \(\beta^{-1} = \) temperature
- \(B = \) external field, in direction of distinguished spin 1
- \(Z_{G}(\beta, B) = \) partition function
Potts model

Figure: David Wilson
\[\nu^\beta_B G (\sigma) = \frac{1}{Z_G (\beta, B)} \prod_{(i,j) \in E} e^{\beta 1 \{\sigma_i = \sigma_j\}} \prod_{i \in V} e^{B 1 \{\sigma_i = 1\}} \]

is ferromagnetic

\[\beta > 0 \]

is antiferromagnetic

- Ising model

- \(\beta = -\infty \)
Potts model

\[\nu_G^{\beta, B}(\sigma) = \frac{1}{Z_G(\beta, B)} \prod_{(i,j) \in E} e^{\beta 1\{\sigma_i = \sigma_j\}} \prod_{i \in V} e^{B 1\{\sigma_i = 1\}} \]

- \(\beta > 0 \) is ferromagnetic; \(\beta < 0 \) is anti-ferromagnetic (AF)
Potts model

\[\nu_{G}^{\beta, B} (\sigma) = \frac{1}{Z_G(\beta, B)} \prod_{(i,j) \in E} e^{\beta \mathbf{1}\{\sigma_i = \sigma_j\}} \prod_{i \in V} e^{B \mathbf{1}\{\sigma_i = 1\}} \]

- $\beta > 0$ is ferromagnetic; $\beta < 0$ is anti-ferromagnetic (AF)
- $q = 2$: Ising model
Potts model

\[
\nu_G^{\beta, B}(\sigma) = \frac{1}{Z_G(\beta, B)} \prod_{(i,j) \in E} e^{\beta 1\{\sigma_i = \sigma_j\}} \prod_{i \in V} e^{B 1\{\sigma_i = 1\}}
\]

- \(\beta > 0 \) is ferromagnetic; \(\beta < 0 \) is anti-ferromagnetic (AF)
- \(q = 2 \): Ising model
- \(\beta = -\infty \): random proper \(q \)-colorings
Independent set (hard-core) model

\[\mathcal{X} = \{0, 1\} \]

The independent set \(\mathcal{R} \) of the hard-core model on \(G = (V, E) \) is defined as:

\[
\mathcal{G}(\lambda) = \frac{1}{Z_{\mathcal{G}}(\lambda)} \prod_{(i, j) \in E} \left(\sigma_i \sigma_j - 1 \right) \prod_{i \in V} \lambda \sigma_i
\]

Where \(\lambda \) is the fugacity or activity, and \(Z_{\mathcal{G}}(\lambda) \) is the partition function with \(Z_{\mathcal{G}}(1) \) being the number of independent sets.
Independent set (hard-core) model

\[\mathcal{X} = \{0 = \text{unoccupied}, 1 = \text{occupied}\} \]
Independent set (hard-core) model

\[\mathcal{X} = \{0 = \text{unoccupied}, 1 = \text{occupied}\} \]

The **independent set (IS)** or **hard-core model** on \(G = (V, E) \):

\[Z_G(\lambda) = \text{partition function} \]

\[Z_G(1) = \text{number of independent sets} \]
$\mathcal{X} = \{0 = \text{unoccupied}, 1 = \text{occupied}\}$

The independent set (IS) or hard-core model on $G = (V, E)$:

$$\nu^\lambda_G(\sigma) = \frac{1}{Z_G(\lambda)} \prod_{(ij) \in E} 1\{\sigma_i \sigma_j \neq 1\} \prod_{i \in V} \lambda^{\sigma_i}$$
\[\mathcal{X} = \{0 = \text{unoccupied}, 1 = \text{occupied}\} \]

The **independent set (IS) or hard-core model** on \(G = (V, E) \):

\[
\nu_G^\lambda(\sigma) = \frac{1}{Z_G(\lambda)} \prod_{(i,j) \in E} 1\{\sigma_i \sigma_j \neq 1\} \prod_{i \in V} \lambda^{\sigma_i}
\]

- \(1\{\sigma_i \sigma_j \neq 1\} \): hard constraints; repulsive interactions
Independent set (hard-core) model

\(\mathcal{X} = \{0 = \text{unoccupied}, 1 = \text{occupied}\} \)

The independent set (IS) or hard-core model on \(G = (V, E) \):

\[
\nu_G^\lambda(\sigma) = \frac{1}{Z_G(\lambda)} \prod_{(i,j) \in E} 1\{\sigma_i \sigma_j \neq 1\} \prod_{i \in V} \lambda^{\sigma_i}
\]

- \(1\{\sigma_i \sigma_j \neq 1\} \): hard constraints; repulsive interactions
- \(\lambda \): fugacity or activity
Independent set (hard-core) model

\[\mathcal{X} = \{0 = \text{unoccupied}, 1 = \text{occupied}\} \]

The independent set (IS) or hard-core model on \(G = (V, E) \):

\[\nu_G^\lambda(\sigma) = \frac{1}{Z_G(\lambda)} \prod_{(i,j) \in E} 1\{\sigma_i \sigma_j \neq 1\} \prod_{i \in V} \lambda^{\sigma_i} \]

- \(1\{\sigma_i \sigma_j \neq 1\} \): hard constraints; repulsive interactions
- \(\lambda \): fugacity or activity
- \(Z_G(\lambda) \): partition function, with \(Z_G(1) = \) number of independent sets
Independent set (hard-core) model

Figure: David Wilson
Free energy density

Consider a sequence of random graphs G_n with n vertices in the thermodynamic limit $n \rightarrow \infty$.

Asymptotics of partition function $Z_n \equiv Z_{G_n}$?

Free energy $\phi_n \equiv n^{-1} E_n \left[\log Z_n \right]$

Free energy density $\phi \equiv \lim_{n \rightarrow \infty} \phi_n$

Random growth rate of Z_n

Does ϕ exist? Can its value be computed?

The purpose of this work is to give an answer in the setting of locally tree-like graphs.

Factor models on d-regular graphs
Consider a sequence of (random) graphs G_n (n vertices) in the thermodynamic limit $n \to \infty$.

Free energy density $\phi \equiv n^{-1} E_n \log Z_n$.
Consider a sequence of (random) graphs G_n (n vertices) in the thermodynamic limit $n \to \infty$.

Asymptotics of partition function $Z_n \equiv Z_{G_n}$?
Consider a sequence of (random) graphs G_n (n vertices) in the thermodynamic limit $n \to \infty$

Asymptotics of partition function $Z_n \equiv Z_{G_n}$?

Free energy $\phi_n \equiv n^{-1} \mathbb{E}_n[\log Z_n]$
Consider a sequence of (random) graphs G_n (n vertices) in the thermodynamic limit $n \to \infty$

Asymptotics of partition function $Z_n \equiv Z_{G_n}$?

Free energy $\phi_n \equiv n^{-1} \mathbb{E}_n[\log Z_n]$

Free energy density $\phi \equiv \lim_{n \to \infty} \phi_n$
Consider a sequence of (random) graphs G_n (n vertices) in the thermodynamic limit $n \to \infty$

Asymptotics of partition function $Z_n \equiv Z_{G_n}$?

Free energy $\phi_n \equiv n^{-1} \mathbb{E}_n [\log Z_n]$

Free energy density $\phi \equiv \lim_{n \to \infty} \phi_n$

(\approx exponential growth rate of Z_n)
Consider a sequence of (random) graphs G_n (n vertices) in the thermodynamic limit $n \to \infty$

Asymptotics of partition function $Z_n \equiv Z_{G_n}$?

Free energy $\phi_n \equiv n^{-1} \mathbb{E}_n[\log Z_n]$

Free energy density $\phi \equiv \lim_{n \to \infty} \phi_n$

(\approx exponential growth rate of Z_n)

Does ϕ exist?
Consider a sequence of (random) graphs G_n (n vertices) in the thermodynamic limit $n \to \infty$

Asymptotics of partition function $Z_n \equiv Z_{G_n}$?

Free energy $\phi_n \equiv n^{-1} \mathbb{E}_n [\log Z_n]$

Free energy density $\phi \equiv \lim_{n \to \infty} \phi_n$

(\approx exponential growth rate of Z_n)

Does ϕ exist? Can its value be computed?
Consider a sequence of (random) graphs G_n (n vertices) in the thermodynamic limit $n \to \infty$

Asymptotics of partition function $Z_n \equiv Z_{G_n}$?

Free energy $\phi_n \equiv n^{-1} \mathbb{E}_n [\log Z_n]$

Free energy density $\phi \equiv \lim_{n \to \infty} \phi_n$

(\approx exponential growth rate of Z_n)

Does ϕ exist? Can its value be computed?

The purpose of this work is to give an answer in the setting of locally tree-like graphs
1. The Potts and independent set models

2. Locally tree-like graphs and the Bethe prediction

3. Previous work and results

4. Verifying the Bethe prediction: proof ideas
1. The Potts and independent set models

2. Locally tree-like graphs and the Bethe prediction

3. Previous work and results

4. Verifying the Bethe prediction: proof ideas
Locally tree-like graphs
In what sense is the random 3-regular graph locally tree-like?
Locally tree-like graphs

In what sense is the random 3-regular graph locally like T_3?

random 3-regular graph

first few levels of T_3
$I_n \in V_n$ unif. random

$B_t(I_n)$ radius t ball about I_n

Isomorph to T_d^t
(first t levels of T_d)?
Locally tree-like graphs

$I_n \in V_n$ unif. random

$B_t(I_n)$ radius t ball about I_n

Isomorphic to T^t_d (first t levels of T_d)?
Locally tree-like graphs

$I_n \in V_n$ unif. random

$B_t(I_n)$ radius t ball about I_n

Isomorphic to T_d^t (first t levels of T_d)?
$I_n \in V_n$ unif. random

$B_t(I_n)$ radius t ball about I_n

Isomorphic to T_d^t

(first t levels of T_d)?
Locally tree-like graphs

\[I_n \in V_n \text{ unif. random} \]

\[B_t(I_n) \text{ radius } t \text{ ball about } I_n \]

Isomorphic to \(T_d^t \)

(first \(t \) levels of \(T_d \))?
Locally tree-like graphs: definition

\[G_n = (V_n, E_n) \] random graph sequence
Locally tree-like graphs: definition

\[G_n = (V_n, E_n) \] random graph sequence

\[I_n \in V_n \] uniformly random vertex
Locally tree-like graphs: definition

\[G_n = (V_n, E_n) \] random graph sequence
\[I_n \in V_n \] uniformly random vertex

Definition.
Locally tree-like graphs: definition

\[G_n = (V_n, E_n) \] random graph sequence
\[I_n \in V_n \] uniformly random vertex

Definition.

\[G_n \text{ converges locally to } T_d \text{ if for all } t \geq 0, \]
Locally tree-like graphs: definition

\[G_n = (V_n, E_n) \] random graph sequence
\[I_n \in V_n \] uniformly random vertex

Definition.
\[G_n \text{ converges locally} \text{ to } T_d \text{ if for all } t \geq 0, \]
\[B_t(I_n) \text{ converges in probability to } T_d^t \]
Locally tree-like graphs: definition

\(G_n = (V_n, E_n) \) random graph sequence
\(I_n \in V_n \) uniformly random vertex

Definition.

\(G_n \) converges locally to \(T_d \) if for all \(t \geq 0 \),
\(B_t(I_n) \) converges in probability to \(T_d^t \)

Notation: \(G_n \to_{loc} T_d \)
Locally tree-like graphs: definition

\[G_n = (V_n, E_n) \] random graph sequence
\[I_n \in V_n \] uniformly random vertex

Definition.

\[G_n \text{ converges locally to } T_d \text{ if for all } t \geq 0, \]
\[B_t(I_n) \text{ converges in probability to } T_d^t \]

Notation: \[G_n \rightarrow_{loc} T_d \]

[Can also make definition with general (random) limiting tree]
Examples.
Examples.

The random d-regular graph converges locally to T_d.
Examples.

The random d-regular graph converges locally to T_d.

More generally, so does the random k-partite d-regular graph.
Examples.

The random d-regular graph converges locally to T_d.

More generally, so does the random k-partite d-regular graph.

The Erdős-Rényi graph $G(n, \gamma/n)$ converges locally to the Pois(γ) Galton–Watson tree.
Examples.

The random d-regular graph converges locally to T_d

More generally, so does the random k-partite d-regular graph

The Erdős-Rényi graph $G(n, \gamma/n)$ converges locally to

the Pois(γ) Galton–Watson tree

T^t_d does not converge locally to T_d.
Examples.

The random d-regular graph converges locally to T_d. More generally, so does the random k-partite d-regular graph. The Erdős-Rényi graph $G(n, \gamma/n)$ converges locally to the Pois(γ) Galton–Watson tree.

T_d^t does not converge locally to T_d, but rather to the random d-canopy tree.
Examples.

The random d-regular graph converges locally to T_d
More generally, so does the random k-partite d-regular graph
The Erdős-Rényi graph $G(n, \gamma/n)$ converges locally to
the Pois(\gamma) Galton–Watson tree
T_d^t does not converge locally to T_d,
but rather to the random d-canopy tree

Local weak limits are unimodular measures
on the space of rooted graphs.
For factor models on graph sequence $G_n \rightarrow_{loc} T$, the Bethe prediction is defined only in terms of limiting tree - not the finite graphs G_n. The Bethe prediction gives an explicit prediction for the free energy density $\phi \equiv \lim_{n \rightarrow \infty} \frac{1}{n} E_n \log Z_n$.
For factor models on graph sequence $G_n \rightarrow_{loc} T$,

non-rigorous methods of statistical physics give an explicit prediction for free energy density $\phi \equiv \lim_n n^{-1} \mathbb{E}_n[\log Z_n]$:
The Bethe prediction

For factor models on graph sequence $G_n \to_{loc} T$, non-rigorous methods of statistical physics give an explicit prediction for free energy density $\phi \equiv \lim_n n^{-1} E_n [\log Z_n]$: the Bethe prediction (or replica symmetric solution)
For factor models on graph sequence $G_n \to_{loc} T$, non-rigorous methods of statistical physics give an explicit prediction for free energy density $\phi \equiv \lim_n n^{-1} \mathbb{E}_n [\log Z_n]$: the Bethe prediction (or replica symmetric solution).

Bethe prediction is defined only in terms of limiting tree — not the finite graphs G_n.

The Bethe prediction: definition

\[\phi \equiv \lim_{n \to \infty} \frac{1}{n} \log Z_n \]
exists and equals the rethe free energy
\[\Phi \equiv \Phi(h) \]
for \(h \in \Delta_R X \) simple a distinguished fixed point of the Bethe or belief propagation recursion

\[h(\sigma) \sim \bar{\psi}(\sigma) \left(\sum \sigma' \psi(\sigma, \sigma') h(\sigma') \right) \]
The Bethe prediction: definition

Bethe prediction for factor models on $G_n \rightarrow_{loc} T_d$: \[\phi \equiv \lim_{n \to \infty} \frac{1}{n} \log Z_n \] exists and equals the rethe free energy $\Phi \equiv \Phi(h)$ for $h \in \Delta$.
The Bethe prediction: definition

Bethe prediction for factor models on $G_n \rightarrow_{loc} T_d$:
$$\phi \equiv \lim_n n^{-1} \mathbb{E}_n[\log Z_n] \text{ exists}$$
The Bethe prediction: definition

Bethe prediction for factor models on $G_n \rightarrow_{loc} T_d$:

$$\phi \equiv \lim_n n^{-1} \mathbb{E}_n [\log Z_n]$$ exists and equals the Bethe free energy
Bethe prediction for factor models on $G_n \rightarrow_{loc} T_d$:

$$\phi \equiv \lim_n n^{-1} \mathbb{E}_n[\log Z_n]$$ exists and equals the Bethe free energy

$$\Phi \equiv \Phi(h)$$
The Bethe prediction: definition

Bethe prediction for factor models on $G_n \to_{loc} T_d$:

$\phi \equiv \lim_{n} n^{-1} \mathbb{E}_n [\log Z_n]$ exists and equals the Bethe free energy

$$\Phi \equiv \Phi(h)$$

for $h \in \Delta$ (\mathcal{X}-simplex) a distinguished fixed point of the Bethe or belief propagation (BP) recursion:
The Bethe prediction: definition

Bethe prediction for factor models on $G_n \to_{loc} T_d$:

$$\phi \equiv \lim_{n} n^{-1} \mathbb{E}_n [\log Z_n]$$
exists and equals the Bethe free energy

$$\Phi \equiv \Phi(h)$$

for $h \in \Delta$ (\mathcal{K}-simplex) a distinguished fixed point of the Bethe or belief propagation (BP) recursion:

$$h(\sigma) \approx \psi(\sigma) \left(\sum_{\sigma'} \psi(\sigma, \sigma') h(\sigma') \right)^{d-1}$$
The Bethe prediction: functional form

\[\Phi \equiv \Phi_{\text{vx}} - \Phi_{\text{e}} \]

where

\[\Phi_{\text{vx}} \equiv \log \left(\sum \sigma \bar{\psi}(\sigma) \right) \]

\[\Phi_{\text{e}} \equiv d^2 \log \left(\sum \sigma, \sigma' \psi(\sigma, \sigma') h(\sigma') \right) \]
The Bethe prediction: functional form

Functional form:
Functional form: $\Phi \equiv \Phi^v - \Phi^e$ where
The Bethe prediction: functional form

Functional form: $\Phi \equiv \Phi^{\text{vx}} - \Phi^e$ where

$$\Phi^{\text{vx}} \equiv \log \left\{ \sum_\sigma \overline{\psi}(\sigma) \left(\sum_{\sigma'} \psi(\sigma, \sigma') h(\sigma') \right)^d \right\}$$
The Bethe prediction: functional form

Functional form: $\Phi \equiv \Phi^{vx} - \Phi^e$ where

$$\Phi^{vx} \equiv \log \left\{ \sum_{\sigma} \bar{\psi}(\sigma) \left(\sum_{\sigma'} \psi(\sigma, \sigma') h(\sigma') \right)^d \right\}$$

$$\Phi^e \equiv \frac{d}{2} \log \left\{ \sum_{\sigma, \sigma'} \psi(\sigma, \sigma') h(\sigma) h(\sigma') \right\}$$
Interpretation of the BP fixed point:
Interpretation of the BP fixed point:
Suppose factor model ν_n on G_n has local weak limit ν. —
Interpretation of the BP fixed point:
Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d
The Bethe prediction: interpretation of BP recursion

Interpretation of the BP fixed point:
Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

![Diagram of factor model]

Ignore long cycles
Interpretation of the BP fixed point:
Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

Ignore long cycles
Boundary data \approx i.i.d.
Interpretation of the BP fixed point:
Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

Ignore long cycles
Boundary data \approx i.i.d.
Marginal of ν on $U \approx \nu(\sigma_U | \sigma_{\partial U})$
Interpretation of the BP fixed point:
Suppose factor model ν_n on G_n has local weak limit ν —
trans.-inv. Gibbs measure for factor model on T_d

Ignore long cycles
Boundary data \approx i.i.d.
Marginal of ν on $U \approx$
$\nu(\sigma_U | \sigma_{\partial U}) \times \prod_{v \in \partial U} h(\sigma)$
Interpretation of the BP fixed point:
Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

- Ignore long cycles
- Boundary data \approx i.i.d.
- Marginal of ν on $U \approx$
 $$\nu(\sigma_U | \sigma_{\partial U}) \times \prod_{v \in \partial U} h(\sigma)$$
Interpretation of the BP fixed point:
Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

Ignore long cycles
Boundary data \approx i.i.d.
Marginal of ν on $U \approx$
$\nu(\sigma_{\mathcal{U}} | \sigma_{\partial U}) \times \prod_{v \in \partial U} h(\sigma)$

Consistent family of marginals
Interpretation of the BP fixed point:
Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

Ignore long cycles
Boundary data \approx i.i.d.
Marginal of ν on $U \approx$
$\nu(\sigma_U | \sigma_{\partial U}) \times \prod_{v \in \partial U} h(\sigma)$

Consistent family of marginals precisely when h is a BP fixed point
Interpretation of the BP fixed point:
Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

Ignore long cycles
Boundary data \approx i.i.d.
Marginal of ν on $U \approx \nu(\sigma_{U} | \sigma_{\partial U}) \times \prod_{\nu \in \partial U} h(\sigma)$

Consistent family of marginals precisely when h is a BP fixed point

BP fixed point h
Interpretation of the BP fixed point:
Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d.

Consistent family of marginals precisely when h is a BP fixed point

BP fixed point h

$\nu \equiv \nu_h$ candidate local weak limit of ν_n
BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n
BP fixed point $h \longleftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n

Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

\[\Phi^{vx}(h) = \log W_{\text{partition of marginal of } \nu_h \text{ on star graph } T} \]

\[\Phi^e(h) = \frac{1}{2} \log W_{\text{partition on } d \text{ disjoint edges}} \]

\[n \text{ stars } V \text{ contribution } \approx n \cdot \Phi^{vx} \]

\[n \cdot \Phi^e \text{ to correct for overcounting} \]

\[V \text{ subtract } n \cdot \Phi^e \]

Only a heuristic G_n are typically not trees J
BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n

Heuristic for $\Phi \equiv \Phi^\text{vx} - \Phi^\text{e}$:
The Bethe prediction: interpretation of function Φ

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n

Heuristic for $\Phi \equiv \Phi^\text{vx} - \Phi^\text{e}$:

$$\Phi^\text{vx}(h) = \log\text{-partition of marginal of } \nu_h \text{ on star graph } T^1_d$$
The Bethe prediction: interpretation of function Φ

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n

Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

$\Phi^{vx}(h) = \log$-partition of marginal of ν_h on star graph T^1_d
The Bethe prediction: interpretation of function Φ

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n

Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

$$\Phi^{vx}(h) = \log\text{-partition of marginal of } \nu_h \text{ on star graph } T^1_d$$
The Bethe prediction: interpretation of function Φ

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n

Heuristic for $\Phi \equiv \Phi^{\text{vx}} - \Phi^{\text{e}}$:

$$\Phi^{\text{vx}}(h) = \log\text{-partition of marginal of } \nu_h \text{ on star graph } T^1_d$$
$$\Phi^{\text{e}}(h) = \frac{1}{2} \log\text{-partition on } d \text{ disjoint edges}$$
The Bethe prediction: interpretation of function Φ

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n

Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

$\Phi^{vx}(h) = \log$-partition of marginal of ν_h on star graph T_d^1

$\Phi^e(h) = 1/2 \log$-partition on d disjoint edges
The Bethe prediction: interpretation of function Φ

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n

Heuristic for $\Phi \equiv \Phi^{\text{vx}} - \Phi^e$:

- $\Phi^{\text{vx}}(h) = \log$-partition of marginal of ν_h on star graph T^1_d
- $\Phi^e(h) = 1/2 \log$-partition on d disjoint edges

If G_n is finite tree, can compute $\log Z_n$ by cutting edges recursively
BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n

Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

$\Phi^{vx}(h) = \log$-partition of marginal of ν_h on star graph T^1_d

$\Phi^e(h) = 1/2 \log$-partition on d disjoint edges

If G_n is finite tree, can compute $\log Z_n$ by cutting edges recursively

n stars, contribution $\approx n \cdot \Phi^{vx}$
The Bethe prediction: interpretation of function Φ

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n

Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

$\Phi^{vx}(h) = \log\text{-partition of marginal of }\nu_h \text{ on star graph } T^1_d$

$\Phi^e(h) = 1/2 \log\text{-partition on } d \text{ disjoint edges}$

If G_n is finite tree, can compute $\log Z_n$ by cutting edges recursively

n stars, contribution $\approx n \cdot \Phi^{vx}$

$nd/2$ edges, each participating in two stars:

to correct for overcounting, subtract $n \cdot \Phi^e$
The Bethe prediction: interpretation of function Φ

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n

Heuristic for $\Phi \equiv \Phi^{\text{vx}} - \Phi^{\text{e}}$:

$\Phi^{\text{vx}}(h) = \log$-partition of marginal of ν_h on star graph T^1_d

$\Phi^{\text{e}}(h) = 1/2 \log$-partition on d disjoint edges

If G_n is finite tree, can compute $\log Z_n$ by cutting edges recursively

n stars, contribution $\approx n \cdot \Phi^{\text{vx}}$

$nd/2$ edges, each participating in two stars:

to correct for overcounting, subtract $n \cdot \Phi^{\text{e}}$

Only a heuristic: G_n are typically not trees!
The Bethe prediction: multiple fixed points

\[\Phi(h) \equiv \Phi(\nu h) \]

is the heuristic formula for \(\phi\) assuming \(\nu \to \text{loc}\) for a fixed point \(h\) is non-unique. Therefore, the prediction becomes the supremum of \(\Phi(h)\) over fixed points.
\[\Phi(h) \equiv \Phi(\nu_h) \text{ is (heuristic) formula for } \phi \text{ assuming } \nu_n \to_{loc} \nu_h \]
The Bethe prediction: multiple fixed points

\[\Phi(h) \equiv \Phi(\nu_h) \text{ is (heuristic) formula for } \phi \text{ assuming } \nu_n \to_{loc} \nu_h \]

If BP fixed point \(h \) is non-unique, assume \(\nu_n \to_{loc} \text{mixture}(\nu_h) \)
The Bethe prediction: multiple fixed points

\[\Phi(h) \equiv \Phi(\nu_h) \text{ is (heuristic) formula for } \phi \text{ assuming } \nu_n \to_{\text{loc}} \nu_h \]

If BP fixed point \(h \) is non-unique, assume \(\nu_n \to_{\text{loc}} \text{mixture}(\nu_h) \)

Bethe prediction becomes supremum of \(\Phi(h) \) over fixed points \(h \)
The Bethe prediction: some remarks

[Text content]

A. Dembo, A. Montanari, A. Sly, N. Sun

Factor models on d-regular graphs
Bethe prediction computation **only** involves infinite tree T_d, **not** specific graph sequence G_n.
Bethe prediction computation **only** involves infinite tree T_d, **not** specific graph sequence G_n. Can make prediction for general (random) limiting trees.
Bethe prediction computation **only** involves infinite tree T_d,
not specific graph sequence G_n.
Can make prediction for general (random) limiting trees.

Bethe prediction is “replica symmetric” in the sense that there is a
fixed Gibbs measure ν in definition of $\Phi(\nu)$.
The Bethe prediction: some remarks

Bethe prediction computation \textbf{only} involves infinite tree T_d, \textbf{not} specific graph sequence G_n.

Can make prediction for general (random) limiting trees.

Bethe prediction is “\textit{replica symmetric}” in the sense that there is a fixed Gibbs measure ν in definition of $\Phi(\nu)$ — equivalently, take \textit{same} h at each boundary vertex.
Bethe prediction specialized to ferromagnetic Potts:
Bethe prediction specialized to ferromagnetic Potts:

Translation-invariant Gibbs measures
Bethe prediction specialized to ferromagnetic Potts:

Translation-invariant Gibbs measures
\(\nu^f \) (free) and \(\nu^1 \) (maximally 1-biased)
Bethe prediction for ferromagnetic Potts

Bethe prediction specialized to ferromagnetic Potts:

Translation-invariant Gibbs measures \(\nu^f \) (free) and \(\nu^1 \) (maximally 1-biased)

Bethe prediction is
Bethe prediction specialized to ferromagnetic Potts:

Translation-invariant Gibbs measures \(\nu^f \) (free) and \(\nu^1 \) (maximally 1-biased)

Bethe prediction is \(\Phi(\nu^f) \lor \Phi(\nu^1) \)
Bethe prediction specialized to IS and AF Ising:
Bethe prediction for AF two-spin systems

Bethe prediction specialized to IS and AF Ising:

For G_n bipartite, local weak limits of ν_n
need only be semi-trans.-inv.
Bethe prediction for AF two-spin systems

Bethe prediction specialized to IS and AF Ising:

For G_n bipartite, local weak limits of ν_n
need only be semi-trans.-inv.
Extremal semi-trans.-inv. Gibbs measures
Bethe prediction specialized to IS and AF Ising:

For G_n bipartite, local weak limits of ν_n
need only be semi-trans.-inv.
Extremal semi-trans.-inv. Gibbs measures
ν^0, ν^1 which disagree in non-uniqueness regimes
Bethe prediction specialized to IS and AF Ising:

For G_n bipartite, local weak limits of ν_n
need only be semi-trans.-inv.
Extremal semi-trans.-inv. Gibbs measures
ν^0, ν^1 which disagree in non-uniqueness regimes
Bethe prediction is $\Phi = \Phi(\nu^0) = \Phi(\nu^1)$
Bethe prediction specialized to IS and AF Ising:

For G_n bipartite, local weak limits of ν_n need only be semi-trans.-inv. Extremal semi-trans.-inv. Gibbs measures ν^0, ν^1 which disagree in non-uniqueness regimes

Bethe prediction is $\Phi = \Phi(\nu^0) = \Phi(\nu^1)$

For G_n non-bipartite, same prediction believed to hold in uniqueness regimes only
1. The Potts and independent set models

2. Locally tree-like graphs and the Bethe prediction

3. Previous work and results

4. Verifying the Bethe prediction: proof ideas
Outline

1. The Potts and independent set models
2. Locally tree-like graphs and the Bethe prediction
3. Previous work and results
4. Verifying the Bethe prediction: proof ideas
Previous work: ferromagnetic Ising

Ferromagnetic Ising:
Previous work: ferromagnetic Ising

Ferromagnetic Ising:

[Dembo–Montanari AAP ’10] verified Bethe prediction for all $\beta \geq 0$, $B \in \mathbb{R}$, for graphs converging locally to Galton-Watson trees.
Previous work: ferromagnetic Ising

Ferromagnetic Ising:

[Dembo–Montanari AAP ’10] verified Bethe prediction for all $\beta \geq 0$, $B \in \mathbb{R}$, for graphs converging locally to Galton-Watson trees.

Moment condition on root vertex degree later removed

[Dommers–Giardinà–van der Hofstad JSP ’10]
Ferromagnetic Ising:

[Dembo–Montanari AAP ’10] verified Bethe prediction for all $\beta \geq 0$, $B \in \mathbb{R}$, for graphs converging locally to Galton-Watson trees. Moment condition on root vertex degree later removed. [Dommers–Giardinà–van der Hofstad JSP ’10]

Proofs use an interpolation scheme, comparing $\partial_\beta \phi_n$ with $\partial_\beta \Phi$.
Results: Ferro. Potts on general limiting tree

Theorem

The prediction $\phi = \Phi$ holds on locally tree-like graphs with general limiting tree for Potts at any $B \in \mathbb{R}$ with $B \geq 0$ with β sufficiently low.
We developed a generalized interpolation scheme to show:
We developed a generalized interpolation scheme to show:

Theorem (Dembo, Montanari, Sun ’11).
We developed a generalized interpolation scheme to show:

Theorem (Dembo, Montanari, Sun ’11).

The Bethe prediction $\phi = \Phi$ holds on locally tree-like graphs with general limiting tree for:
We developed a generalized interpolation scheme to show:

Theorem (Dembo, Montanari, Sun ’11).

The Bethe prediction $\phi = \Phi$ holds on locally tree-like graphs with general limiting tree for:

- **Ferro. Ising** at any $B \in \mathbb{R}$
We developed a generalized interpolation scheme to show:

Theorem (Dembo, Montanari, Sun ’11).

The Bethe prediction $\phi = \Phi$ holds on locally tree-like graphs with general limiting tree for:

- **Ferro. Ising** at any $B \in \mathbb{R}$
- **Ferro. Potts** at $B \geq 0$ with β sufficiently low (high)
We developed a generalized interpolation scheme to show:

Theorem (Dembo, Montanari, Sun ’11).

The Bethe prediction $\phi = \Phi$ holds on locally tree-like graphs with general limiting tree for:
- Ferro. Ising at any $B \in \mathbb{R}$
- Ferro. Potts at $B \geq 0$ with β sufficiently low (high)

$\nu^f = \nu^1$
Results: Potts on T_d

Theorem Ronvanov Potts model on $G_n \to \text{loc} T_d$

$\lim \inf \frac{\phi_n}{n} \geq \Phi$ for all $\beta, B \geq 0$

Theorem Ronvanov Slyv SunabS

Factor models on d-regular graphs
Can obtain sharper results when $G_n \rightarrow_{loc} T_d$:
Can obtain sharper results when $G_n \xrightarrow{\text{loc}} T_d$:

Theorem (Dembo, Montanari, Sun ’11).
Can obtain sharper results when $G_n \to_{loc} T_d$:

Theorem (Dembo, Montanari, Sun ’11).

For Potts model on $G_n \to_{loc} T_d$,

\[
\liminf_n \phi_n \geq \Phi \text{ for all } \beta, B \geq 0
\]
Can obtain sharper results when $G_n \rightarrow_{loc} T_d$:

Theorem (Dembo, Montanari, Sun ’11).

For Potts model on $G_n \rightarrow_{loc} T_d$,

$$\lim \inf_n \phi_n \geq \Phi \text{ for all } \beta, B \geq 0.$$
Can obtain sharper results when $G_n \to_{loc} T_d$:

Theorem (Dembo, Montanari, Sun ’11).

For Potts model on $G_n \to_{loc} T_d$,

$$\liminf_n \phi_n \geq \Phi \text{ for all } \beta, B \geq 0.$$

Theorem (Dembo, Montanari, Sly, Sun ’12).
Can obtain sharper results when $G_n \rightarrow_{\text{loc}} T_d$:

Theorem (Dembo, Montanari, Sun ’11).

For Potts model on $G_n \rightarrow_{\text{loc}} T_d$,
$$\liminf_n \phi_n \geq \Phi \text{ for all } \beta, B \geq 0.$$

Theorem (Dembo, Montanari, Sly, Sun ’12).

For Potts model on $G_n \rightarrow_{\text{loc}} T_d$ with d even,
Can obtain sharper results when $G_n \rightarrow_{loc} T_d$:

Theorem (Dembo, Montanari, Sun ’11).

For Potts model on $G_n \rightarrow_{loc} T_d$,

$$
\lim \inf_n \phi_n \geq \Phi \text{ for all } \beta, B \geq 0.
$$

Theorem (Dembo, Montanari, Sly, Sun ’12).

For Potts model on $G_n \rightarrow_{loc} T_d$ with d even,

$$
\phi = \Phi \text{ for all } \beta, B \geq 0.
$$
Previous work: AF two-spin free energy density

...
Previous work: AF two-spin free energy density

IS, AF Ising:
Previous work: AF two-spin free energy density

\textbf{IS, AF Ising:}

Bethe prediction $\phi = \Phi$ holds for random regular graphs below uniqueness threshold

[Bandyopadhyay–Gamarnik SODA '06]
Previous work: AF two-spin free energy density

IS, AF Ising:

Bethe prediction $\phi = \Phi$ holds for random regular graphs below uniqueness threshold

[Bandyopadhyay–Gamarnik SODA ’06]

Existence of ϕ for random regular graphs and Erdős-Rényi graphs

[Bayati–Gamarnik–Tetali STOC ’10]
Results: AF two-spin free energy density
Theorem (Dembo, Montanari, Sun ’11).
Theorem (Dembo, Montanari, Sun ’11).

The Bethe prediction $\phi = \Phi$ holds on locally tree-like graphs for the IS model at sufficiently low λ.
Theorem (Dembo, Montanari, Sun ’11).

The Bethe prediction $\phi = \Phi$ holds on locally tree-like graphs for the IS model at sufficiently low λ.

$\nu^0 = \nu^1$ & reg. conds
Theorem (Dembo, Montanari, Sun ’11).

The Bethe prediction $\phi = \Phi$ holds on locally tree-like graphs for the IS model at sufficiently low λ.

$\nu^0 = \nu^1$ & reg. conds

Theorem (Sly, Sun ’12).
Results: AF two-spin free energy density

Theorem (Dembo, Montanari, Sun ’11).

The Bethe prediction $\phi = \Phi$ holds on locally tree-like graphs for the IS model at sufficiently low λ.

$\nu^0 = \nu^1$ & reg. conds

Theorem (Sly, Sun ’12).

For the Ising and IS models on $G_n \rightarrow_{loc} T_d$ with G_n bipartite, $\phi = \Phi$ for all parameter values.
Two-spin systems — algorithmic results:
Complexity of two-spin systems

Two-spin systems — algorithmic results:

Ferromagnetic:
Two-spin systems — algorithmic results:

Ferromagnetic:

FPRAS for ferro. Ising at all temperatures, arbitrary magnetic field

[Jerrum–Sinclair ALP '90]
Complexity of two-spin systems

Two-spin systems — algorithmic results:

Ferromagnetic:
FPRAS for ferro. Ising at all temperatures, arbitrary magnetic field
[Jerrum–Sinclair ALP ’90]

Anti-ferromagnetic:
Complexity of two-spin systems

Two-spin systems — algorithmic results:

Ferromagnetic:
FPRAS for ferro. Ising at all temperatures, arbitrary magnetic field
[Jerrum–Sinclair ALP ’90]

Anti-ferromagnetic:
AF two-spin systems have uniqueness thresholds on T_d:
Complexity of two-spin systems

Two-spin systems — algorithmic results:

Ferromagnetic:
FPRAS for ferro. Ising at all temperatures, arbitrary magnetic field
[Jerrum–Sinclair ALP '90]

Anti-ferromagnetic:
AF two-spin systems have uniqueness thresholds on T_d:
$\lambda_c(d)$ for IS, $\beta_{af}(B, d) < 0$ for AF Ising
Complexity of two-spin systems

Two-spin systems — algorithmic results:

Ferromagnetic:

FPRAS for ferro. Ising at all temperatures, arbitrary magnetic field
[Jerrum–Sinclair ALP '90]

Anti-ferromagnetic:

AF two-spin systems have uniqueness thresholds on \(T_d: \)
\(\lambda_c(d) \) for IS, \(\beta_{c}^{af}(B, d) < 0 \) for AF Ising

- **FPTAS** for IS partition function \(Z_G(\lambda) \) on bdd. deg. graphs,
 \(\lambda < \lambda_c(d) \) [Weitz STOC '06]
Complexity of two-spin systems

Two-spin systems — algorithmic results:

Ferromagnetic:
FPRAS for ferro. Ising at all temperatures, arbitrary magnetic field
[Jerrum–Sinclair ALP ’90]

Anti-ferromagnetic:
AF two-spin systems have uniqueness thresholds on T_d:
$\lambda_c(d)$ for IS, $\beta_{c}^{af}(B, d) < 0$ for AF Ising

- FPTAS for IS partition function $Z_G(\lambda)$ on bdd. deg. graphs,
 $\lambda < \lambda_c(d)$ [Weitz STOC ’06]
- FPTAS for AF Ising partition function $Z_G(\beta, B)$ on bdd. deg.
 graphs, $\beta_{c}^{af}(B, d) < \beta < 0$ [Sinclair–Srivastava–Thurley ’11]
Complexity of AF two-spin systems

Hardness results for IS:
Complexity of AF two-spin systems

Hardness results for IS:

\[Z_G(\lambda) \text{ hard to approximate on } d\text{-regular graphs when } \lambda > c/d \]
[Luby–Vigoda STOC ’97];
Complexity of AF two-spin systems

Hardness results for IS:

\[Z_G(\lambda) \text{ hard to approximate on } d\text{-regular graphs when } \]
\[\lambda > c/d \text{ [Luby–Vigoda STOC '97]; } \]
\[\lambda = 1 \text{ and } d > 25 \text{ [Dyer–Frieze–Jerrum FOCS '99] } \]
Complexity of AF two-spin systems

Hardness results for IS:

\[Z_G(\lambda) \text{ hard to approximate on } d\text{-regular graphs when } \lambda > c/d \text{ [Luby–Vigoda STOC '97];} \]

\[\lambda = 1 \text{ and } d > 25 \text{ [Dyer–Frieze–Jerrum FOCS '99]} \]

Phase transition at } \lambda_c(d):
Complexity of AF two-spin systems

Hardness results for IS:

\[Z_G(\lambda) \text{ hard to approximate on } d\text{-regular graphs when } \lambda > c/d \text{ [Luby–Vigoda STOC ’97];} \]
\[\lambda = 1 \text{ and } d > 25 \text{ [Dyer–Frieze–Jerrum FOCS ’99]} \]

Phase transition at \(\lambda_c(d) \):

- [Mossel–Weitz–Wormald PTRF ’09] Local \(\text{MCMC} \) mixes slowly on random bipartite \(d\)-reg. graphs, \(\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d) \)
Complexity of AF two-spin systems

Hardness results for IS:

\[Z_G(\lambda) \] hard to approximate on \(d \)-regular graphs when

- \(\lambda > c/d \) [Luby–Vigoda STOC '97];
- \(\lambda = 1 \) and \(d > 25 \) [Dyer–Frieze–Jerrum FOCS '99]

Phase transition at \(\lambda_c(d) \):

- [Mossel–Weitz–Wormald PTRF '09] Local MCMC mixes slowly on random bipartite \(d \)-reg. graphs, \(\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d) \)
- [Sly FOCS '10] \(Z_G(\lambda) \) hard to approximate on \(d \)-regular graphs for \(\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d) \)
Complexity of AF two-spin systems

Hardness results for IS:

\(Z_G(\lambda) \) hard to approximate on \(d \)-regular graphs when
\(\lambda > c/d \) [Luby–Vigoda STOC '97];
\(\lambda = 1 \) and \(d > 25 \) [Dyer–Frieze–Jerrum FOCS '99]

Phase transition at \(\lambda_c(d) \):

- [Mossel–Weitz–Wormald PTRF '09] Local MCMC mixes slowly on random bipartite \(d \)-reg. graphs, \(\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d) \)
- [Sly FOCS '10] \(Z_G(\lambda) \) hard to approximate on \(d \)-regular graphs for \(\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d) \)
 — first rigorous indication that computational transition for finite \(d \)-regular graphs
Complexity of AF two-spin systems

Hardness results for IS:

\[Z_G(\lambda) \] hard to approximate on \(d \)-regular graphs when

\[\lambda > c/d \] [Luby–Vigoda STOC '97];
\[\lambda = 1 \text{ and } d > 25 \] [Dyer–Frieze–Jerrum FOCS '99]

Phase transition at \(\lambda_c(d) \):

- [Mossel–Weitz–Wormald PTRF '09] Local \textit{MCMC} mixes slowly on random bipartite \(d \)-reg. graphs, \(\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d) \)
- [Sly FOCS '10] \(Z_G(\lambda) \) hard to approximate on \(d \)-regular graphs for \(\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d) \)

 — first rigorous indication that computational transition for finite \(d \)-regular graphs \(\longleftrightarrow \) statistical physics phase transition for the model on \(T_d \)
Complexity of AF two-spin systems

Hardness results for IS:

\[Z_G(\lambda) \text{ hard to approximate on } d\text{-regular graphs when} \]
\[\lambda > c/d \text{ [Luby–Vigoda STOC '97];} \]
\[\lambda = 1 \text{ and } d > 25 \text{ [Dyer–Frieze–Jerrum FOCS '99]} \]

Phase transition at } \lambda_c(d):

- [Mossel–Weitz–Wormald PTRF '09] Local MCMC mixes slowly on random bipartite \(d\)-reg. graphs, \(\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d)\)
- [Sly FOCS '10] \(Z_G(\lambda)\) hard to approximate on \(d\)-regular graphs for \(\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d)\)
 — first rigorous indication that computational transition for finite \(d\)-regular graphs \(\leftrightarrow\) statistical physics phase transition for the model on \(T_d\)
- Subsequently improved to \(\lambda > \lambda_c(d)\) for \(d \neq 4, 5\) [Galanis–Ge–Štefankovič–Vigoda–Yang '11]
Recent: complexity of AF two-spin systems

Theorem

RSlyV Sun 'abS

RaS vor

\[d \geq 3, \quad \lambda > \lambda_c(d) \]

the partition function \(Z_G(\lambda) \)

is hard to approx

on the class of \(d \)

regular graphs.

RbS vor

\[d \geq 3, \quad \beta \leq \beta_{af}(B, d) \]

the partition function \(Z_G(\beta, B) \)

is hard to approx

on the class of \(d \)

regular graphs.

NonWtrivial twoWspin systems on \(d \)

regular graphs reduce to yS

RaS O

[Weitz STOC 'ov]

complete classification of hardWcore complexity except at \(\lambda_c(d) \)

RbS O

[Jerrum–Sinclair ALP '–o]

complete classification of ysing complexity except at \(\beta_{af}(B, d) \)

ynterpolation O methods from

[Montanari–Mossel–Sly PTRF 'pr]

circumvent di ffi

valanis–ˇ Stefankoviˇc–Vigoda R and RbS with

B = 0

[61x3] An Dembol An Montanaril An Slyl Nn Sun

Factor models on \(d \)-regular graphs
Theorem (Sly, Sun ’12).
Recent: complexity of AF two-spin systems

Theorem (Sly, Sun ’12).

(a) For \(d \geq 3, \lambda > \lambda_c(d) \) the IS partition function \(Z_G(\lambda) \) is hard to approx. on the class of \(d \)-regular graphs.
Recent: complexity of AF two-spin systems

Theorem (Sly, Sun ’12).

(a) For $d \geq 3, \lambda > \lambda_c(d)$ the IS partition function $Z_G(\lambda)$ is hard to approx. on the class of d-regular graphs.

(b) For $d \geq 3, \beta < \beta_{af}(B,d)$, the Ising partition function $Z_G(\beta, B)$ is hard to approx. on the class of d-regular graphs.
Recent: complexity of AF two-spin systems

Theorem (Sly, Sun ’12).

(a) For $d \geq 3, \lambda > \lambda_c(d)$ the IS partition function $Z_G(\lambda)$ is hard to approx. on the class of d-regular graphs.

(b) For $d \geq 3, \beta < \beta^\text{af}_c(B, d)$, the Ising partition function $Z_G(\beta, B)$ is hard to approx. on the class of d-regular graphs.

Non-trivial two-spin systems on d-regular graphs reduce to IS/Ising
Recent: complexity of AF two-spin systems

Theorem (Sly, Sun ’12).

(a) For $d \geq 3, \lambda > \lambda_c(d)$ the IS partition function $Z_G(\lambda)$ is hard to approx. on the class of d-regular graphs.

(b) For $d \geq 3, \beta < \beta_c^{af}(B, d)$, the Ising partition function $Z_G(\beta, B)$ is hard to approx. on the class of d-regular graphs.

Non-trivial two-spin systems on d-regular graphs reduce to IS/Ising

(a) & [Weitz STOC ’06]

complete classification of hard-core complexity except at $\lambda_c(d)$
Recent: complexity of AF two-spin systems

Theorem (Sly, Sun '12).

(a) For $d \geq 3, \lambda > \lambda_c(d)$ the IS partition function $Z_G(\lambda)$ is hard to approx. on the class of d-regular graphs.

(b) For $d \geq 3, \beta < \beta_{\text{af}}^c(B, d)$, the Ising partition function $Z_G(\beta, B)$ is hard to approx. on the class of d-regular graphs.

Non-trivial two-spin systems on d-regular graphs reduce to IS/Ising

(a) \& [Weitz STOC '06]
complete classification of hard-core complexity except at $\lambda_c(d)$

(b) \& [Jerrum–Sinclair ALP '90] \& [Sinclair–Srivastava–Thurley '11]
complete classification of Ising complexity except at $\beta_{\text{af}}^c(B, d)$
Recent: complexity of AF two-spin systems

Theorem (Sly, Sun ’12).

(a) For $d \geq 3$, $\lambda > \lambda_c(d)$ the IS partition function $Z_G(\lambda)$ is hard to approx. on the class of d-regular graphs.

(b) For $d \geq 3$, $\beta < \beta^\text{af}_c(B, d)$, the Ising partition function $Z_G(\beta, B)$ is hard to approx. on the class of d-regular graphs.

Non-trivial two-spin systems on d-regular graphs reduce to IS/Ising

(a) & [Weitz STOC ’06]
complete classification of hard-core complexity except at $\lambda_c(d)$

(b) & [Jerrum–Sinclair ALP ’90] & [Sinclair–Srivastava–Thurley ’11]
complete classification of Ising complexity except at $\beta^\text{af}_c(B, d)$

Interpolation & methods from [Montanari–Mossel–Sly PTRF ’12]
Recent: complexity of AF two-spin systems

Theorem (Sly, Sun ’12).

(a) For $d \geq 3, \lambda > \lambda_c(d)$ the IS partition function $Z_G(\lambda)$ is hard to approx. on the class of d-regular graphs.

(b) For $d \geq 3, \beta < \beta_{af}^c(B, d)$, the Ising partition function $Z_G(\beta, B)$ is hard to approx. on the class of d-regular graphs.

Non-trivial two-spin systems on d-regular graphs reduce to IS/Ising

(a) & [Weitz STOC ’06]
 complete classification of hard-core complexity except at $\lambda_c(d)$

(b) & [Jerrum–Sinclair ALP ’90] & [Sinclair–Srivastava–Thurley ’11]
 complete classification of Ising complexity except at $\beta_{af}^c(B, d)$

Interpolation & methods from [Montanari–Mossel–Sly PTRF ’12]
circumvent difficult second moment calculations
Theorem (Sly, Sun ’12).

(a) For \(d \geq 3, \lambda > \lambda_c(d) \) the IS partition function \(Z_G(\lambda) \) is hard to approx. on the class of \(d \)-regular graphs.

(b) For \(d \geq 3, \beta < \beta_{af}(B, d) \), the Ising partition function \(Z_G(\beta, B) \) is hard to approx. on the class of \(d \)-regular graphs.

Non-trivial two-spin systems on \(d \)-regular graphs reduce to IS/Ising

(a) & [Weitz STOC ’06] complete classification of hard-core complexity except at \(\lambda_c(d) \)

(b) & [Jerrum–Sinclair ALP ’90] & [Sinclair–Srivastava–Thurley ’11] complete classification of Ising complexity except at \(\beta_{af}(B, d) \)

Interpolation & methods from [Montanari–Mossel–Sly PTRF ’12] circumvent difficult second moment calculations

Independently, Galanis–Štefankovič–Vigoda ’12 establish (a), and (b) with \(B = 0 \).
1. The Potts and independent set models

2. Locally tree-like graphs and the Bethe prediction

3. Previous work and results

4. Verifying the Bethe prediction: proof ideas
1. The Potts and independent set models

2. Locally tree-like graphs and the Bethe prediction

3. Previous work and results

4. Verifying the Bethe prediction: proof ideas
Proof ideas: interpolation scheme for factor models

Recall \(\phi_n = n^{-1} \log Z_j \Rightarrow \partial_B \phi_n = \text{avg}[\text{local observable wrt } \nu] \)

\[\limsup_n \left[\phi_n(B_1) - \phi_n(B_0) \right] \leq \Phi(B_1) - \Phi(B_0) \]

San show \(\partial_B \Phi(\nu) = \text{avg}[\text{same observable at root of } T \text{ wrt } \nu] \)

Wibbs measure unique \(\Rightarrow \) observable averages on \(G \) converge to averages on \(T \) by general theory \(\Rightarrow \)

Sometimes obtain beyond uniqueness from model-specific monotonicity properties
Proof ideas: interpolation scheme for factor models

(Dembo, Montanari, Sun '11)
Proof ideas: interpolation scheme for factor models

(Dembo, Montanari, Sun '11)
Generalized interpolation scheme for abstract factor models
Proof ideas: interpolation scheme for factor models

(Dembo, Montanari, Sun '11)
Generalized interpolation scheme for abstract factor models

Basic idea: if \(\limsup_n \partial_B \phi_n \leq \partial_B \Phi \) ★
Proof ideas: interpolation scheme for factor models

(Dembo, Montanari, Sun '11)
Generalized interpolation scheme for abstract factor models

Basic idea: if \(\limsup_n \partial_B \phi_n \leq \partial_B \Phi \) ★
then \(\limsup_n [\phi_n(B_1) - \phi_n(B_0)] \leq \Phi(B_1) - \Phi(B_0) \).
Proof ideas: interpolation scheme for factor models

(Dembo, Montanari, Sun '11)
Generalized interpolation scheme for abstract factor models

Basic idea: if \(\limsup_n \partial_B \phi_n \leq \partial_B \Phi \),
then \(\limsup_n [\phi_n(B_1) - \phi_n(B_0)] \leq \Phi(B_1) - \Phi(B_0) \).

Recall \(\phi_n = n^{-1} \log Z_n \):
Proof ideas: interpolation scheme for factor models

(Dembo, Montanari, Sun '11)
Generalized interpolation scheme for abstract factor models

Basic idea: if \(\limsup_n \partial_B \phi_n \leq \partial_B \Phi \) ★
then \(\limsup_n [\phi_n(B_1) - \phi_n(B_0)] \leq \Phi(B_1) - \Phi(B_0) \).

Recall \(\phi_n = n^{-1} \log Z_n \):
⇒ \(\partial_B \phi_n = \text{avg. of local observable w.r.t. } \nu_n \)
Proof ideas: interpolation scheme for factor models

(Dembo, Montanari, Sun '11)
Generalized interpolation scheme for abstract factor models

Basic idea: if \(\limsup_n \partial_B \phi_n \leq \partial_B \Phi \)
then \(\limsup_n [\phi_n(B_1) - \phi_n(B_0)] \leq \Phi(B_1) - \Phi(B_0) \).

Recall \(\phi_n = n^{-1} \log Z_n \):
\[\Rightarrow \partial_B \phi_n = \text{avg. of local observable w.r.t. } \nu_n \]
Can show \(\partial_B \Phi(\nu) = \text{avg. of same observable at root of } T_d \)
w.r.t. Gibbs measure \(\nu \)
Proof ideas: interpolation scheme for factor models

(Dembo, Montanari, Sun ’11)
Generalized interpolation scheme for abstract factor models

Basic idea: if \(\limsup_n \partial_B \phi_n \leq \partial_B \Phi \) ★
then \(\limsup_n [\phi_n(B_1) - \phi_n(B_0)] \leq \Phi(B_1) - \Phi(B_0) \).

Recall \(\phi_n = n^{-1} \log Z_n \):
\(\Rightarrow \partial_B \phi_n = \text{avg. of local observable w.r.t. } \nu_n \)
Can show \(\partial_B \Phi(\nu) = \text{avg. of same observable at root of } T_d \)
 w.r.t. Gibbs measure \(\nu \)

If Gibbs measure unique,
Proof ideas: interpolation scheme for factor models

(Dembo, Montanari, Sun ’11)
Generalized interpolation scheme for abstract factor models

Basic idea: if \(\lim \sup_n \partial_B \phi_n \leq \partial_B \Phi \) ★
then \(\lim \sup_n [\phi_n(B_1) - \phi_n(B_0)] \leq \Phi(B_1) - \Phi(B_0) \).

Recall \(\phi_n = n^{-1} \log Z_n \):
\(\Rightarrow \partial_B \phi_n = \text{avg. of local observable w.r.t. } \nu_n \)
Can show \(\partial_B \Phi(\nu) = \text{avg. of same observable at root of } T_d \)
\(\text{w.r.t. Gibbs measure } \nu \)

If Gibbs measure unique, observable averages on \(G_n \)
converge to averages on \(T_d \) by general theory
Proof ideas: interpolation scheme for factor models

(Dembo, Montanari, Sun '11)

Generalized interpolation scheme for abstract factor models

Basic idea: if \(\limsup_n \partial_B \phi_n \leq \partial_B \Phi \)
then \(\limsup_n [\phi_n(B_1) - \phi_n(B_0)] \leq \Phi(B_1) - \Phi(B_0) \).

Recall \(\phi_n = n^{-1} \log Z_n \):
\(\Rightarrow \partial_B \phi_n = \text{avg. of local observable w.r.t. } \nu_n \)
Can show \(\partial_B \Phi(\nu) = \text{avg. of same observable at root of } T_d \)
\(\text{w.r.t. Gibbs measure } \nu \)

If Gibbs measure unique, observable averages on \(G_n \)
converge to averages on \(T_d \) by general theory \(\Rightarrow \)
Proof ideas: interpolation scheme for factor models

(Dembo, Montanari, Sun '11)
Generalized interpolation scheme for abstract factor models

Basic idea: if \(\limsup_n \partial_B \phi_n \leq \partial_B \Phi \) \(\star \)
then \(\limsup_n [\phi_n(B_1) - \phi_n(B_0)] \leq \Phi(B_1) - \Phi(B_0) \).

Recall \(\phi_n = n^{-1} \log Z_n \):
\[\Rightarrow \partial_B \phi_n = \text{avg. of local observable w.r.t. } \nu_n \]
Can show \(\partial_B \Phi(\nu) = \text{avg. of same observable at root of } T_d \)
\[\text{w.r.t. Gibbs measure } \nu \]

If Gibbs measure unique, observable averages on \(G_n \)
converge to averages on \(T_d \) by general theory \(\Rightarrow \) \(\star \)

Can sometimes obtain \(\star \) beyond uniqueness from
(model-specific) \((\text{anti-})\text{monotonicity}\) properties
Proof ideas: BP recursion on T_d

The recursion on T_d is simply a map $\Delta \to \Delta$

where $\sigma \sim \bar{\psi}(\sigma) = \sum_{\sigma'} \psi(\sigma, \sigma') h(\sigma')$.

By explicitly analyzing this mapping, we can obtain more exact results for T_d than are implied by the interpolation scheme for general trees.
Proof ideas: BP recursion on T_d

BP recursion on general limiting trees is complicated, but
Proof ideas: BP recursion on T_d

BP recursion on general limiting trees is complicated, but BP recursion on T_d is simply a map $\Delta \rightarrow \Delta$:

$$\bar{\psi}(\sigma) = \sum_{\sigma'} \psi(\sigma, \sigma') h(\sigma')^{d-1}$$
Proof ideas: BP recursion on T_d

BP recursion on general limiting trees is complicated, but BP recursion on T_d is simply a map $\Delta \rightarrow \Delta$:

$$h(\sigma) \approx \bar{\psi}(\sigma) \left(\sum_{\sigma'} \psi(\sigma, \sigma') h(\sigma') \right)^{d-1}$$
Proof ideas: BP recursion on T_d

BP recursion on general limiting trees is complicated, but
BP recursion on T_d is simply a map $\Delta \to \Delta$:

$$h(\sigma) \cong \bar{\psi}(\sigma) \left(\sum_{\sigma'} \psi(\sigma, \sigma') h(\sigma') \right)^{d-1}$$

By explicitly analyzing this mapping, can obtain more exact results for T_d than are implied by interpolation scheme for general trees.
For AF two-spin systems on bipartite graphs, complete Bethe prediction can be verified by interpolation with a good choice of the local observable.
Proof ideas: AF two-spin systems on bipartite graphs

For AF two-spin systems on bipartite graphs, complete Bethe prediction can be verified by interpolation with a good choice of the local observable

\[\partial_B \phi_n = \mathbb{E}_n[\sigma_{I_n}] \] (with \(B \equiv \log \lambda \) for IS)
For AF two-spin systems on bipartite graphs, complete Bethe prediction can be verified by interpolation with a good choice of the local observable

\[\partial_B \phi_n = \mathbb{E}_n[\sigma_{I_n}] \]
(with \(B \equiv \log \lambda \) for IS)

With obvious observable \(i \mapsto \sigma_i \), can show \(\phi = \Phi \) for \(\lambda \leq \lambda_c \)
Proof ideas: AF two-spin systems on bipartite graphs

For AF two-spin systems on bipartite graphs, complete Bethe prediction can be verified by interpolation with a good choice of the local observable

$$\partial_B \phi_n = \mathbb{E}_n[\sigma_{I_n}] \quad \text{(with } B \equiv \log \lambda \text{ for IS)}$$

With obvious observable $i \mapsto \sigma_i$, can show $\phi = \Phi$ for $\lambda \leq \lambda_c$

But by taking observable $i \mapsto (\sigma_i + d^{-1} \sum_{j \in \partial i} \sigma_j)/2$

can show $\phi = \Phi$ for all $\lambda > 0$
IS BP recursion (in terms of $h(0)$)

\[\lambda = 0.5 \]
IS BP recursion

IS BP recursion (in terms of $h(0)$)

$\lambda = 0.9$
IS BP recursion (in terms of $h(0)$)

$\lambda = 1.5875$
IS BP recursion (in terms of $h(0)$)

\[\lambda = 1.6875 \]
IS BP recursion (in terms of $h(0)$)

Semi-translation-invariant solutions arise above λ_c
IS BP recursion (in terms of $h(0)$)

$\lambda = 1.6975$

Semi-translation-invariant solutions arise above λ_c
IS BP recursion

IS BP recursion (in terms of $h(0)$)

$\lambda = 1.7875$

Semi-translation-invariant solutions arise above λ_c
IS BP recursion (in terms of $h(0)$)

$\lambda = 2.$

Semi-translation-invariant solutions arise above λ_c
IS BP recursion (in terms of $h(0)$)

Semi-translation-invariant solutions arise above λ_c
IS BP recursion (in terms of $h(0)$)

Semi-translation-invariant solutions arise above λ_c
IS BP recursion (in terms of $h(0)$)

$\lambda = 4.$

Semi-translation-invariant solutions arise above λ_c
Use bipartite property to interpolate semiWtrans\[Winv\[fixed point from λ = ∞
IS free energy density

\[IS(\lambda) = S(\lambda) - S(\infty) \]

The graph illustrates the free energy density \(IS(\lambda) \) as a function of \(\lambda \). The graph shows the behavior of the free energy density under varying values of \(\lambda \), with \(\phi \) on the y-axis and \(\lambda \) on the x-axis. The bipartite property is used to interpolate the semi-W transform from a fixed point.
IS free energy density

\[\phi(\lambda) \]

Use bipartite property to interpolate semi-Wtrans from fixed point.
IS free energy density

Use bipartite property to interpolate semi W_{λ} from fixed point $\lambda = \infty$.
Use bipartite property to interpolate semi-trans.-inv. fixed point from $\lambda = \infty$
In Potts model, $\partial_B \phi_n = \mathbb{E}_n \mathbb{E}_{\nu_n} [\delta_{\sigma_{I_n}, 1}]$,
Proof ideas: interpolation for Potts

In Potts model, \(\partial_B \phi_n = \mathbb{E}_n \mathbb{E}_{\nu_n} [\delta_{\sigma_{I_n}}, 1] \), so local observable is simply \(\nu \mapsto \delta_{\sigma_v, 1} \)
In Potts model, \(\partial_B \phi_n = \mathbb{E}_n \mathbb{E}_{\nu_n} [\delta_{\sigma_{I_n},1}] \),
so local observable is simply \(v \mapsto \delta_{\sigma_v,1} \)

Similarly \(\partial_\beta \phi_n = \mathbb{E}_n \mathbb{E}_{\nu_n} [\sum_{j \in \partial I_n} \delta_{\sigma_{I_n},\sigma_j}] \)
Proof ideas: interpolation for Potts

In Potts model, \(\partial_B \phi_n = \mathbb{E}_n \mathbb{E}_\nu_n [\delta_{\sigma_{I_n}, 1}] \), so local observable is simply \(\nu \mapsto \delta_{\sigma_{\nu}, 1} \).

Similarly \(\partial_\beta \phi_n = \mathbb{E}_n \mathbb{E}_\nu_n [\sum_{j \in \partial I_n} \delta_{\sigma_{I_n}, \sigma_j}] \).

In non-uniqueness regimes, can take advantage of
Proof ideas: interpolation for Potts

In Potts model, $\partial_B \phi_n = \mathbb{E}_n \mathbb{E}_\nu_n [\delta_{\sigma_{I_n},1}]$, so local observable is simply $\nu \mapsto \delta_{\sigma_v,1}$

Similarly $\partial_\beta \phi_n = \mathbb{E}_n \mathbb{E}_\nu_n [\sum_{j \in \partial I_n} \delta_{\sigma_{I_n},\sigma_j}]$

In non-uniqueness regimes, can take advantage of random-cluster (FK) representation for Potts model
Proof ideas: interpolation for Potts

In Potts model, \(\partial_B \phi_n = \mathbb{E}_n \mathbb{E}_\nu_n [\delta_{\sigma_{I_n},1}] \), so local observable is simply \(\nu \mapsto \delta_{\sigma,1} \)

Similarly \(\partial_\beta \phi_n = \mathbb{E}_n \mathbb{E}_\nu_n [\sum_{j \in \partial I_n} \delta_{\sigma_{I_n},\sigma_j}] \)

In non-uniqueness regimes, can take advantage of random-cluster (FK) representation for Potts model to get monotonicity properties, thereby restricting range of admissible Gibbs measures
Ising vs. Potts

Ising BP (in terms of $\log[h(+) / h(-)]$)

$\beta = 0.1$
Ising vs. Potts

Ising BP (in terms of $\log[h(+) / h(-)]$)

\[\beta = 0.5 \]
Ising vs. Potts

Ising BP (in terms of $\log[h(+) / h(-)]$)

$\beta = \log(2)$
Ising vs. Potts

Ising BP (in terms of $\log[h(+) / h(-)]$)

\[\beta = 1.3 \]
Ising vs. Potts

Ising BP (in terms of $\log[h(+) / h(-)]$)

BP solutions as function of β

$\beta = 1.3$
Ising vs. Potts

Ising BP (in terms of $\log[h(+)/h(-)]$)

![Graph showing Ising BP solutions as function of β.]

$\beta = 1.3$

BP solutions as function of β

![Graph showing BP solutions as function of β.]

Adding small field $B > 0$ resolves non-uniqueness
Potts BP (in terms of \(\log[h(1)/h(2)] \))

\[\beta = 0.5 \]
Ising vs. Potts

Potts BP (in terms of $\log[h(1)/h(2)]$)

$\beta = 1.5$
Potts BP (in terms of $\log[h(1)/h(2)]$)

$\beta = 1.7162$
Ising vs. Potts

Potts BP (in terms of $\log[h(1)/h(2)]$)

$\beta = 2$
Ising vs. Potts

Potts BP (in terms of $\log[h(1)/h(2)]$)

$\beta = 2.6$
Ising vs. Potts

Potts BP (in terms of $\log[h(1)/h(2)]$)

$\beta = 4$
Ising vs. Potts

Potts BP (in terms of $\log[h(1)/h(2)]$)

$\beta = 4$

BP solutions as function of β

Free
Ising vs. Potts

Potts BP (in terms of $\log[h(1)/h(2)]$)

$\beta = 4$

BP solutions as function of β

maximally 1-biased

free
Ising vs. Potts

Potts BP (in terms of $\log[h(1)/h(2)]$)

$\beta = 4$

BP solutions as function of β

maximally 1-biased

free
Potts BP (in terms of $\log[h(1)/h(2)]$)

\[\beta = 4 \]

Adding $B > 0$ not enough to resolve non-uniqueness
Potts: $\phi \geq \Phi$ by interpolation

Factor models on d-regular graphs
Potts: $\phi \geq \Phi$ by interpolation
Potts: $\phi \geq \Phi$ by interpolation

An Dembo An Montanari An Slyl Nn Sun

Factor models on d-regular graphs
Interpolation gives $\phi \geq \Phi$.
Interpolation gives $\phi \geq \Phi$, with equality for $(\beta, B) \notin \mathcal{R}_\neq$ (shaded)
Interpolation gives $\phi \geq \Phi$, with equality for $(\beta, B) \notin \mathcal{R}_\neq$ (shaded).

Different approach needed to obtain equality inside \mathcal{R}_\neq.
Potts: $\phi \leq \Phi$ by graph deconstruction
Potts: $\phi \leq \Phi$ by graph deconstruction.
Potts: $\phi \leq \Phi$ by graph deconstruction

Delete a vertex

\[\text{Diagram showing vertex deletion process.} \]
Potts: $\phi \leq \Phi$ by graph deconstruction

Delete a vertex

Match up half edges
Potts: $\phi \leq \Phi$ by graph deconstruction

Delete a vertex
Match up half edges
Show decrease in $\log Z$
at each step is $\leq \Phi$ ★
Potts: $\phi \leq \Phi$ by graph deconstruction

Delete a vertex

Match up half edges

Show decrease in $\log Z$

at each step is $\leq \Phi \star$

Matching not done u.a.r.

but to guarantee \star

\[\phi \leq \Phi \text{ by graph deconstruction} \]
Potts: $\phi \leq \Phi$ by graph deconstruction

Delete a vertex

Match up half edges

Show decrease in $\log Z$ at each step is $\leq \Phi$

Matching **not** done u.a.r. but to guarantee ★

Argue graphs remain uniformly locally tree-like
Potts: $\phi \leq \Phi$ by graph deconstruction

Delete a vertex

Match up half edges

Show decrease in $\log Z$ at each step is $\leq \Phi \star$

Matching not done u.a.r. but to guarantee \star

Argue graphs remain uniformly locally tree-like

This procedure reduces the upper bound to showing \star, which is a difficult (but tractable) calculus problem
Two questions

We make crucial use of the fact that the limiting tree is T_d. Can these methods be extended to more general graph ensembles? The prediction is believed to be false for S_1 at high fugacity on typical nonbipartite graphs converging to T_d. Can we describe what happens in this case?
Two questions

- We make crucial use of the fact that the limiting tree is T_d. Can these methods be extended to more general graph ensembles, e.g. Erdős-Rényi?
Two questions

- We make crucial use of the fact that the limiting tree is T_d. Can these methods be extended to more general graph ensembles, e.g. Erdős-Rényi?

- The Bethe prediction is believed to be false for IS at high fugacity on typical non-bipartite graphs converging to T_d. Can one describe what happens in this case?