

Brain Computer Interfaces: An Introduction

Rajesh P. N. Rao
Laboratory for Neural Systems
Dept of Computer Science and Engineering
University of Washington, Seattle

Hollywood fiction or possible today?

Why would we want to engineer such devices?

Can mathematics and engineering help people with such brain disorders?

Electrical nature of the brain's activity opens up the possibility of engineering devices for treating disorders

Devices may *record* brain activity and/or *stimulate* parts of the brain

Example: Cochlear Implants for the Deaf

Cochlear implants have improved hearing ability (in varying degrees) in a number of deaf children and adults

- 1. Microphone
- 2.Cable
- 3. Sound processor
- 4.Cable
- 5.FM radio transmitter

- 6. Receiver & Stimulator
- 7. Electrode array
- 8. Auditory nerve

From: http://www.deafblind.com/cochlear.html

Example: Deep Brain Stimulation for Parkinson's Disease

Implanted device electrically stimulates parts of the brain to help reduce tremors, rigidity, and other symptoms

Example: Stopping Seizures in Epilepsy Seizure activity without intervention: Seizure activity terminated by automatic seizure detector: Neural signal from brain Nerve cuff electrode for seizure-triggered Impulse cranial nerve from nerve stimulation Implanted VLSI device for monitoring neural activity and detecting seizure activity Implanted mini-pump Implanted stimulus for seizure-triggered systemic drug delivery (Nicolelis, 2001)

Such devices are examples of "brain-computer interfaces" or BCIs

Brain-Computer Interfaces

- A Brain-Computer Interface (BCI) is a device that records from and/or stimulates parts of the brain in order to:
 - Restore lost sensory capabilities (e.g., cochlear implants) or
 - Restore mental or motor function (e.g., epilepsy or Parkinson's) or
 - Significantly improve communication and control for paralyzed patients (e.g. stroke, ALS, spinal injury) or
 - Enhance sensory, mental, or motor capabilities in nondisabled individuals

Course Overview

- Today's Lecture: Introduction to BCIs
 - Basic components
 - Example BCI systems
- Tomorrow, Feb 6: Basic Neuroscience and Machine Learning for BCI
- Thursday, Feb 7: Non-Invasive and Semi-Invasive BCIs
 - EEG, fMRI, and ECoG-based systems
- Friday, Feb 8: Invasive BCIs and Future Developments
 - Electrode Arrays and Implants
 - BCIs: What lies ahead...

BCIs: The Hype

- Several commercial "BCI" systems exist
 - "Interactive Brainwave Visual Analyzer" (IBVA): "...trigger images, sounds, other software or almost any electronically addressable device..."
 - Cyberlink by Brain Actuated Technologies: "...operate computer software and any electrical device directly from the control center - the mind."
- Most are based on a headband with few sensors (typically 3)
- The Catch: Control is more through eye movements and facial muscle activity than through brain activity

BCIs: More Hype

"Brain Fingerprinting"

http://www.brainwavescience.com/

"We use details that the person being tested would have encountered in the course of committing a crime. We can tell by the brainwave response if...a person has a record of the crime stored in his brain."

BCI: What is involved? Technique for multichannel acquisition system Real-time Signal nalysis of brain Real-time telemetry Telemetry artificial limb Real-time multichannel Tactile and mechanical Visual feedback actuator feedback (Nicolelis, 2001)

Invasive BCIs

- Current Signal Acquisition Techniques:
 - Electrodes, Electrode Arrays, and Implants for recording and/or stimulating inside the brain
 - In animals (rats and monkeys) and some human patients (e.g., Parkinson's patients)
 - Surface Electrodes for recording electrical activity from the *brain surface* (Electrocorticography or ECoG)
 - In human patients scheduled for brain surgery

BCI in a Rat: Methodology

Experiment by Chapin et al., 1999:

- Rat presses a lever to move a robotic arm to get reward
- Neural outputs from rat's *motor cortex* train an artificial neural network to control the robotic arm
- After training, several rats no longer used their own body movements but retrieved reward using their neural activity

Invasive BCIs in Humans

- ECoG BCI: Electrodes placed on brain surface in patients scheduled for epilepsy surgery (U of Washington)
 - Control of cursors in 1D and 2D
- Brain Implant: Electrode array implanted inside the brain in a paralyzed patient (Brown U./Cyberkinetics Inc.)
 - Control of cursor and prosthetic hand

Non-Invasive BCIs: Current Approaches

Non-Invasive Recording Techniques

- Functional Magnetic Resonance Imaging (fMRI)
 - Measures changes in blood oxygenation levels due to increased brain activity
 - Good spatial resolution but too slow for real-time BCI
- Optical Brain Imaging (fNIR)
 - Also measures blood oxygenation
 - Slow for real-time BCI

Non-Invasive BCIs: Current Approaches

Non-Invasive Recording Techniques

- MEG (MagnetoEncephaloGraphy)
 - Measures changes in magnetic fields due to neural activity
 - Good spatiotemporal resolution but expensive and cumbersome

- Measures voltage changes at the scalp due to neural activity
- Good temporal resolution but poor spatial resolution
- Cheap, hence commonly used in BCIs

Non-Invasive BCIs: EEG-based Systems

- EEG signals: Acquired from a cap of electrodes that contact <u>scalp</u> through a gel
- Signals are in *microvolts* range → need to be amplified

What is EEG?

- Voltage fluctuations at the scalp due to activities of large populations of neurons in the cerebral cortex
- Input potentials and activities of neurons get attenuated and summated due to passage through meninges, cerebrospinal fluid, skull, and scalp

Some Achievements of EEG-based BCIs

- Typing words by flashing letters (Farwell & Donchin, 1988)
 - Select a character (out of 36) in 26 seconds with 95% accuracy
- Move a cursor towards a target on a screen by training subjects to control their EEG waves (Wolpaw et al., 1991; Pfurtscheller et al., 1993)
 - 10-29 hits/min and 80-95% accuracy after 12 45min sessions
- Moving a joystick in 1 of 4 directions by classifying EEG patterns during mental tasks (Hiraiwa et al., 1993; Anderson & Sijercic, 1996)

Example Videos of EEG-Based BCI (from the Wadsworth Group)

- A user controls a cursor to spell a word and select from icons in a menu (μ rhythm control, 64 channels EEG)
- An individual spells a word using visual evoked potentials

Direct Brain Control of a Humanoid Robot

BCI Research: Current Problems and Challenges

- Signal Acquisition (Hardware): Need better technology to record activities of thousands of neurons with high signal-to-noise ratio
 - Non-Invasive BCIs: Need physicists to discover better methods of brain imaging than EEG/MRI
 - Invasive: Need biocompatible implantable chips for long term recording and/or stimulation of large groups of neurons
 - Need better instrumentation for amplification and telemetry

BCI Research: Current Problems and Challenges

- Signal Processing (Software):
 - Need more robust and adaptive algorithms for learning the mapping between brain activity and desired outputs
 - Algorithms need to be sensitive to noise and nonstationary statistics of brain data
 - Need co-adaptive systems that adapt in synch with human over long periods of time

BCI Research: Moral and Ethical Issues

- Privacy, safety, and health issues: What if someone:
 - "reads your thoughts"? "writes in new memories"?
 - sends a "virus" to an implant?
- Abuse of technology (in law, war, crime, and terrorism)
 - E.g. improper use of "brain fingerprinting"
- Societal impacts: The new haves and have-nots
 - Possession and control of BCIs to enhance mental/physical capabilities may significantly alter balance of power in society

Conclusions

- Significant advances are being made in the development of both non-invasive and invasive BCIs
 - Invasive systems in rats and monkeys can control robotic arms and cursors in real time for simple tasks
 - Non-invasive systems based on EEG allow reasonably accurate but slow control of cursors, robots, and spelling of words
- In the rest of the course, we will delve into these systems in more detail:
 - What are the brain signals being used?
 - What are the feature extraction and machine learning methods that underlie these systems?
 - What are the strengths and weaknesses of these systems?
 - What does the future hold in store?