Lecture 2

Basic Neurobiology & Machine Learning

for Brain-Computer Interfacing
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Today’s Roadmap

+ PART I: Basic Neuroscience for BCI
< The neuron doctrine (or dogma)
< Neuronal signaling

» Action Potentials (= spikes)
» Synapses
< Brain organization and function

+ PART Il: Basic Machine Learning for BCI
< Supervised Learning
» Regression: Linear, polynomial
» Radial Basis Functions
» Artificial Neural Networks
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Our 3-pound Universe
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Enter...the neuron (“brain cell”)
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The Neuron Doctrine/Dogma
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Neuron Doctrine:

“The neuron is the appropriate basis
for understanding the computational
and functional properties of the
brain” '

FIrSt SUggeStEd n 1891 by Waldeyer From Kandel, Schwartz, Jessel, Principles of
Neural Science, 3" edn., 1991, pg. 21
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The Idealized Neuron
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What is a Neuron?

+ A “leaky bag of charged liquid” o

4+ Contents of the neuron enclosed
within a cell membrane

+ Cell membrane is a lipid bilayer

= Bilayer is impermeable to
charged ion species such as

“gates” allow ions in or out

From Kandel, Schwartz, Jessel, Principles of
Neural Science, 3" edn., 1991, pg. 67
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The Electrical Personality of a Neuron

+ Each neuron maintains a potential

difference across its membrane [Na*], [CI], [Ca?*]
[K*T, [A]
@ Inside is =70 to —80 mV Outsid
relative to outside 2 mV\Au\i'Fef bt
difference by expelling Na* out m,uuuﬂj)w}wm; X H
and allowing K* ions in 7omvInside
[K*], [A]

[Na'], [CI], [Ca?*]
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The Output of a Neuron: Action Potentials

+ Voltage-gated channels cause A Ve Action Potential
action potentials (spikes) f/ (spike)
1. Rapid Na* influx causes A
rising edge 3
2. Na* channels deactivate
3. K* outflux restores

membrane potential - e —

Time (msec)

From Kandel, Schwartz, Jessel, Principles of Neural
Science, 3 edn., 1991, pg. 110
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Propagation of a Spike along an Axon
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Communication between Neurons: Synapses

+ Synapses are the “connections”
between neurons
< Electrical synapses (gap
junctions)
<> Chemical synapses (use
neurotransmitters)

+ Synapses can be excitatory or
inhibitory
+ Synapse Doctrine: Synapses

are the basis for memory and
learning
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Distribution of synapses on a real neuron...

R. Rao, IISc course: Lecture 2 12




Organization of the Nervous System

Central Peripheral
Nervous System Nervous System

Brain  Spinal Cord Somatic  Autonomic
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Autonomic and Central Nervous System

Autonomic: Nerves that connect to the heart,
blood vessels, smooth muscles, and glands

CNS = Brain + Spinal Cord

Spinal Cord:
» Local feedback loops control reflexes
» Descending motor control signals from
the brain activate spinal motor neurons
» Ascending sensory axons transmit
sensory feedback information from
muscles and skin back to brain

R. Rao, IISc course: Lecture 2

14




Major Brain Regions: Cerebral Hemispheres

+ Consists of: Cerebral
cortex, basal gang Iia, Cerebrum/Cerebral Cortex
hippocampus, and
amygdala

+ Involved in perception
and motor control,
cognitive functions,
emotion, memory, and
learning el crd
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Cerebral Cortex: A Layered Sheet of Neurons

4 Cerebral Cortex: Convoluted
surface of cerebrum about 1/8th
of an inch thick

+ Six layers of neurons

f4—Nonpyramidal cell

+ Approximately 30 billion
neurons

Pyramidal
|

+ Each neuron makes about ¢ a4

10,000 synapses: approximately
300 trillion connections in total

|—Axon

From Kandel, Schwartz, Jessel, Principles of Neural
Science, 3 edn., 1991, pgs.
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Specialization of Function in Cerebral Cortex
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Hierarchical Organization of Visual Cortex
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WHERE? {Motion,

Spatial Relationships)
[Parietal stream]

WHAT? {Form, Color}
[Infarotemporal stream]
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Tuning Curve of a Visual Cortical Neuron
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The Motor Hierarchy

M1 (Primary
motor cortex)

Posterior
parietal

Supplementary cortex

motor area

Premotor
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Prefrontal
cortex
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Tuning Curve of a Neuron in M1
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Spike trains as a function of Cosine Tuning Curve
hand reaching direction
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Movement Direction can be Predicted from a
Population of M1 Neurons’ Firing Rates

Population vector = sum of
preferred directions weighted
by their firing rates

Actual arm movement
direction

Population vectors
(decoded movement
direction)

"Actual arm movement
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Somatotopic
Organization of
M1 (a.k.a. the
“homunculus™)
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Electrically stimulating M1 elicits primitive
movements

Electrically
stimulating
Premotor

Area elicits

more

complex
movements

R. Rao, IISc course: Lecture 2 25

Activity in Motor Hierarchy during Reaching
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Summary: Brain versus Digital Computing

+ Device count:
< Human Brain: 10 neurons (each neuron ~ 10* connections)
< Silicon Chip: 10%° transistors with sparse connectivity

+ Device speed:
< Biology has 100us temporal resolution
< Digital circuits approaching 100ps clock (10 GHz)

+ Computing paradigm:
< Brain: Massively parallel computation & adaptive connectivity
< Digital Computers: sequential information processing via CPU
with fixed connectivity

+ Capabilities:
< Digital computers excel in math & symbol processing...
< Brains: Better at solving ill-posed problems (speech, vision)?
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Part I1: Basic Machine Learning for BCI

Input neural activity over time

Learn

E[W mapping

Output over time
(hand position)

and position
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Why machine learning for BCIs?

+ In most BCI applications, we have example inputs and
outputs
< Inputs = Neural data; Outputs = Position of hand or robot,
class of imagined movement etc.

+ We wish to learn a function mapping arbitrary inputs to
outputs
< Supervised learning

+ Dominant paradigms in BCI literature
< Map neural activity to continuous outputs (e.g., hand
position) = regression (Invasive BCIs).
< Classify brain patterns into one of several classes, and use
this to select action = classification (EEG BClIs)
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Outline

+ Regression
< Linear, polynomial
< RBFs, perceptrons, multilayer neural networks

+ Classification
= Linear classifiers, support vector machines
= Multi-class classifiers

+ Cross-validation
< Model selection, preventing overfitting
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Linear Regression

y
X
1 31
output
2 6.4
3.1 8.9
X 0.9 2
input

Assumption: Output is a linear function of input, i.e.,

Y= WX; + noise

where noise is independent, gaussian, unknown fixed variance
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Linear Regression

Given: Data (y;, x;) where y; are drawn from N(wx;, 62)
Likelihood of data (y;, x;) for a given w is:

IT; p(y; | w, X;) which is equal to

IT, exp(-0.5 (yi - WXi))zlcz (ignoring constants)

Goal: Maximize the likelihood of data given w

i.e.,, maximize: X; -0.5(y;-wx;)?/c?
i.e., minimize: X (y; —wx;)?

Easy to show that w =X x;y; / Z (x;)?
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Input vector

But...typically, inputs in BClsare =
vectors of multiple neurons’
activities, multiple EEG
measurements, etc.
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Need Multivariate Regression (hand'p )
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Multivariate regression

Suppose inputs x; are n-element vectors: y; =w'x; + noise

Write the m data points as:

(X X, 0 Xy
X = X Xy 0 Xy Y= Y,
Xt Xm2 0 Xpn Y

Then, Y = Xw + noise

Maximum likelihood w is
w = (XTX)1(XTY)
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Linear regression: constants

What if data does not go
through origin?
X y
1 8.1
2 11.4
3.1 13.7
0.7 7
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Linear Regression: constants

Solution: Add a dummy input fixed at 1 and learn its

coefficient (constant offset) 7
X y Zy z,(=%) y
1 8.1
1 1 8.1
2 11.4 1 2 11.4
3.1 13.7 1 3.1 13.7
0.7 7 1 0.7 7

Learn w for the new function y = w'z + noise
=Ww;X + W, + noise
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What if the data looks like this?

A )

Need to generalize to non-linear
regression...any ideas?
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Non-Linear Regression: Polynomials

4+ Use same trick as for constants:
= Replace input x by modified input vector z

Example: Quadratic Regression with original input X = [X; X,]

Zo| 21 | 2| Z3 Z, Z5 y

1] Xy | X | (Ki)? | (X2? | XiXia | Y

< Learn the coefficients w from the model y = w'z + noise
which is equivalent to: y = wy + W X, + WX, + W3X,2...
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More Non-Linear Regression: Radial Basis
Functions (RBFs)

+ Create features that are arbitrary “basis” functions (or kernel
functions) of the input vector
@ e.g., z; = KernelFunction(|x; — c;|/y;) where ¢; s and y; s are
constants to be learned
< Learn the coefficients w from y = w'z + noise

Function: y = 2z, + 3.8z, + 2.3z,

i % +——— DataPointsy,
H e

Basis Functions z,, z,, z,
——

z; = exp(-(Ix; — ciliv)?)
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Acrtificial Neural Networks: Perceptrons

v=g(w'u) The most common
= g(Wu, +W,u, +W,u,) activation function:
Output

Sigmoid function:

1

a)= ——
9(a) 1+e

odes

. Jr@J(a)

Want to learn a mapping from inputs
to outputs, given training data (um,dm).
How is w learned?

R. Rao, IISc course: Lecture 2 40




Learning the Weights: Gradient Descent

+ Given training examples (u™d™) (m =1, ..., N), define an
error function (cost function or “energy” function)

E(w)%z(dm—vm)z

where v" =g(w'u™)
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Learning the Weights: Gradient Descent

+ Would like to estimate w so that error E(w) is minimized
< Gradient Descent: Change w in proportion to —dE/dw

(why?)

dE
WoW—g—
dw

dE dv™

o dm_vm R dm_vm rWTum um

™ Zm:( ) v Zm:( )? ( )
Derivative of sigmoid
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Multilayer Networks

+ One layer networks can only learn a limited class of
functions. E.g., cannot learn XOR function

+ To learn arbitrary functions, need multiple layers

How do we learn these

/ weights?

Inputu = (u; U, ... U)T
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Idea: “Backpropagation” Learning Rule

v, = Q(ZWJ_i g(z W, U, ) Start with random weights {W, w}
i k

Given input u, network produces
output v

Find W and w that minimize total
squared output error over all output
units (labeled i):

EW.W) =23 (d v’
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Vi = g(zwjixj)

Backpropagation:
Output Weights

EW,W) =23 (d —v )

Learning rule for hidden-output weights W:
Wji —)Wji —-& dE
d

ji
dE

=—(d; —v;)g'(Q_ W)X,
dei Zl: it
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{gradient descent}

Backpropagation:
Hidden Weights

EW, W) =23 (d )

Learning rule for input-hidden weights w:

E E E dx;
wkj—>wkj—gd— But:d _ G %

dw, dw, dx; dw,

dE m m i m ' m m
q :{_Z(di -Vvi")g (ijixj )Wji:|'|:g (zwkjuk )Uk}
Wi mi ] k
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{chain rule}




Example Application in BCI

Multichannel nlsural
signal processing: s
Instrumentation and :’:‘Tr:jm;i.‘v ?yc‘f
analysis neurochip Vs tolemetdy

Implanted
microelectrode
arrays -

Computation of
3D movement
trajectory

= VVeexanunethBtypeof
anw

BCBon

a mbotuc prosthetu: arm

7

3D arm trajectory
(Nicolelis, 2001) 41

Outline

<+

+ Supervised Learning: Classification
< Linear classifiers, support vector machines
< Multi-class classification

+ Cross-validation
< Model selection, preventing overfitting

Next Lecture
will cover
g this

plus

See you tomorrow!
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Non-Invasive BCls
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