Lecture 2

Basic Neurobiology \& Machine Learning for Brain-Computer Interfacing

Today’s Roadmap

\downarrow PART I: Basic Neuroscience for BCI
\Leftrightarrow The neuron doctrine (or dogma)
\Rightarrow Neuronal signaling

- Action Potentials (= spikes)
- Synapses
\Rightarrow Brain organization and function
- PART II: Basic Machine Learning for BCI
\Rightarrow Supervised Learning
- Regression: Linear, polynomial
- Radial Basis Functions
- Artificial Neural Networks

Our 3-pound Universe

R. Rao, IISc course: Lecture 2

Enter...the neuron ("brain cell")

The Neuron Doctrine/Dogma

The Idealized Neuron

What is a Neuron?

\downarrow A "leaky bag of charged liquid"
\downarrow Contents of the neuron enclosed within a cell membrane
\downarrow Cell membrane is a lipid bilayer \Rightarrow Bilayer is impermeable to charged ion species such as $\mathrm{Na}^{+}, \mathrm{Cl}^{-}, \mathrm{K}^{+}$, and Ca^{2+} \Rightarrow Embedded ionic channels or "gates" allow ions in or out

From Kandel, Schwartz, Jessel, Principles of Neural Science, $3^{\text {rd }}$ edn., 1991, pg. 67

The Electrical Personality of a Neuron

- Each neuron maintains a potential difference across its membrane
\Rightarrow Inside is -70 to -80 mV relative to outside
\Rightarrow Ionic pump maintains -70 mV difference by expelling Na^{+}out and allowing K^{+}ions in
$\left[\mathrm{Na}^{+}\right],\left[\mathrm{Cl}^{-}\right],\left[\mathrm{Ca}^{2+}\right]$
$\left[\mathrm{K}^{+}\right],\left[\mathrm{A}^{-}\right]$

[K^{+}], [$\left.\mathrm{A}^{-}\right]$
$\left[\mathrm{Na}^{+}\right],\left[\mathrm{Cl}^{-}\right],\left[\mathrm{Ca}^{2+}\right]$

The Output of a Neuron: Action Potentials

- Voltage-gated channels cause action potentials (spikes)

1. Rapid Na^{+}influx causes rising edge
2. Na^{+}channels deactivate
3. K^{+}outflux restores membrane potential

From Kandel, Schwartz, Jessel, Principles of Neural Science, $3^{\text {rd }}$ edn., 1991, pg. 110

Propagation of a Spike along an Axon

Communication between Neurons: Synapses

\downarrow Synapses are the "connections" between neurons
\Rightarrow Electrical synapses (gap junctions)
\Rightarrow Chemical synapses (use neurotransmitters)
\uparrow Synapses can be excitatory or inhibitory

- Synapse Doctrine: Synapses are the basis for memory and learning
R. Rao, IISc course: Lecture 2

Distribution of synapses on a real neuron...

Autonomic and Central Nervous System
Autonomic: Nerves that connect to the heart, blood vessels, smooth muscles, and glands
CNS = Brain + Spinal Cord Spinal Cord:

- Local feedback loops control reflexes
- Descending motor control signals from the brain activate spinal motor neurons
- Ascending sensory axons transmit sensory feedback information from muscles and skin back to brain

Major Brain Regions: Cerebral Hemispheres

- Consists of: Cerebral cortex, basal ganglia, hippocampus, and amygdala
- Involved in perception and motor control, cognitive functions, emotion, memory, and learning

Cerebral Cortex: A Layered Sheet of Neurons

- Cerebral Cortex: Convoluted surface of cerebrum about $1 / 8^{\text {th }}$ of an inch thick
\uparrow Six layers of neurons
- Approximately 30 billion neurons
\downarrow Each neuron makes about 10,000 synapses: approximately 300 trillion connections in total

From Kandel, Schwartz, Jessel, Principles of Neural Science, $3^{\text {rd }}$ edn., 1991, pgs.

Specialization of Function in Cerebral Cortex

Hierarchical Organization of Visual Cortex

Tuning Curve of a Visual Cortical Neuron

Spike trains as a function of bar orientation

The Motor Hierarchy

Tuning Curve of a Neuron in M1

Movement Direction can be Predicted from a Population of M1 Neurons' Firing Rates

Electrically stimulating M1 elicits primitive movements

Electrically stimulating
Premotor
Area elicits more
complex movements

Summary: Brain versus Digital Computing

\uparrow Device count:
\Rightarrow Human Brain: 10^{11} neurons (each neuron $\sim 10^{4}$ connections)
\Rightarrow Silicon Chip: 10^{10} transistors with sparse connectivity

- Device speed:
\Rightarrow Biology has 100μ s temporal resolution
\Rightarrow Digital circuits approaching 100ps clock (10 GHz)
- Computing paradigm:
\Rightarrow Brain: Massively parallel computation \& adaptive connectivity
\Rightarrow Digital Computers: sequential information processing via CPU with fixed connectivity
- Capabilities:
\Rightarrow Digital computers excel in math \& symbol processing...
\Rightarrow Brains: Better at solving ill-posed problems (speech, vision)?
R. Rao, IISc course: Lecture 2

Part II: Basic Machine Learning for BCI

Why machine learning for BCIs?

\uparrow In most BCI applications, we have example inputs and outputs
\Rightarrow Inputs = Neural data; Outputs = Position of hand or robot, class of imagined movement etc.

- We wish to learn a function mapping arbitrary inputs to outputs
\Rightarrow Supervised learning
\uparrow Dominant paradigms in BCI literature
\Rightarrow Map neural activity to continuous outputs (e.g., hand position) \Rightarrow regression (Invasive BCIs).
\Rightarrow Classify brain patterns into one of several classes, and use this to select action \Rightarrow classification (EEG BCIs)

Outline

\rightarrow Regression
\Rightarrow Linear, polynomial
\Rightarrow RBFs, perceptrons, multilayer neural networks

- Classification
\Rightarrow Linear classifiers, support vector machines
\Rightarrow Multi-class classifiers
\downarrow Cross-validation
\Rightarrow Model selection, preventing overfitting

Linear Regression

Assumption: Output is a linear function of input, i.e.,

$$
y_{i}=w x_{i}+n o i s e
$$

where noise is independent, gaussian, unknown fixed variance

Linear Regression

Given: Data $\left(\mathbf{y}_{\mathbf{i}}, \mathbf{x}_{\mathbf{i}}\right)$ where $\mathbf{y}_{\mathbf{i}}$ are drawn from $\mathbf{N}\left(\mathbf{w} \mathbf{x}_{\mathrm{i}}, \sigma^{2}\right)$
Likelihood of data $\left(\mathbf{y}_{\mathbf{i}}, \mathbf{x}_{\mathrm{i}}\right)$ for a given \mathbf{w} is:
$\Pi_{\mathbf{i}} \mathbf{p}\left(\mathbf{y}_{\mathbf{i}} \mid \mathbf{w}, \mathbf{x}_{\mathbf{i}}\right) \quad$ which is equal to $\Pi_{\mathrm{i}} \exp \left(-\mathbf{0 . 5}\left(\mathbf{y}_{\mathrm{i}}-\mathbf{w x}_{\mathrm{i}}\right)\right)^{2} / \sigma^{2} \quad$ (ignoring constants)
Goal: Maximize the likelihood of data given w
i.e., maximize: $\Sigma_{\mathrm{i}}-\mathbf{0 . 5}\left(\mathbf{y}_{\mathrm{i}}-\mathrm{wx}_{\mathrm{i}}\right)^{2} / \sigma^{2}$
i.e., minimize: $\quad \Sigma_{\mathrm{i}}\left(\mathbf{y}_{\mathrm{i}}-\mathrm{wx}_{\mathrm{i}}\right)^{2}$

Easy to show that $w=\Sigma \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}} / \Sigma\left(\mathrm{x}_{\mathrm{i}}\right)^{2}$

But...typically, inputs in BCIs are vectors of multiple neurons’ activities, multiple EEG measurements, etc.

Need Multivariate Regression

Output
(hand position)

Multivariate regression

Suppose inputs \mathbf{x}_{i} are n-element vectors: $\mathrm{y}_{\mathrm{i}}=\mathbf{w}^{\mathrm{T}} \mathbf{x}_{\mathrm{i}}+$ noise
Write the m data points as:

$$
\mathbf{X}=\left[\begin{array}{cccc}
\left.\left.\begin{array}{|cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
x_{m 1} & x_{m 2} & \cdots & x_{m n}
\end{array}\right] \quad \mathbf{Y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right], ~\right]
\end{array}\right.
$$

Then, $\mathbf{Y}=\mathbf{X w}+$ noise

Maximum likelihood \mathbf{w} is

$$
w=\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\mathrm{T}} \mathbf{Y}\right)
$$

Linear regression: constants

What if data does not go through origin?

x	y
1	8.1
2	11.4
3.1	13.7
0.7	7

Linear Regression: constants

Solution: Add a dummy input fixed at 1 and learn its coefficient (constant offset)

x	y
1	8.1
2	11.4
3.1	13.7
0.7	7

z_{0}	$\mathrm{z}_{1}(=\mathrm{x})$	y
1	1	8.1
1	2	11.4
1	3.1	13.7
1	0.7	7

Learn \mathbf{w} for the new function $y=\mathbf{w}^{\mathrm{T}} \mathbf{z}+$ noise
R. Rao, IISc course: Lecture 2

What if the data looks like this?

Need to generalize to non-linear regression...any ideas?

Non-Linear Regression: Polynomials

\downarrow Use same trick as for constants:
\Rightarrow Replace input x by modified input vector \mathbf{z}
Example: Quadratic Regression with original input $\mathbf{x}=\left[\mathrm{x}_{1} \mathrm{x}_{2}\right]$

z_{0}	z_{1}	z_{2}	z_{3}	z_{4}	z_{5}	y
\cdots						
$\mathbf{1}$	$\mathbf{x}_{\mathrm{i} 1}$	$\mathbf{x}_{\mathrm{i} 2}$	$\left(\mathrm{x}_{\mathbf{i 1}}\right)^{2}$	$\left(\mathbf{x}_{\mathrm{i} 2}\right)^{2}$	$\mathbf{x}_{\mathbf{i 1}} \mathbf{x}_{\mathrm{i} 2}$	$\mathbf{y}_{\mathbf{i}}$
\cdots						

\Rightarrow Learn the coefficients \mathbf{w} from the model $y=\mathbf{w}^{\mathrm{T}} \mathbf{z}+$ noise which is equivalent to: $\mathrm{y}=\mathrm{w}_{0}+\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}+\mathrm{w}_{3} \mathrm{X}_{1}{ }^{2} \ldots$

More Non-Linear Regression: Radial Basis Functions (RBFs)

- Create features that are arbitrary "basis" functions (or kernel functions) of the input vector
\Rightarrow e.g., $\mathrm{z}_{\mathrm{i}}=$ KernelFunction $\left(\left|\mathrm{x}_{\mathrm{i}}-\mathrm{c}_{\mathrm{i}}\right| / \gamma_{\mathrm{i}}\right)$ where $\mathrm{c}_{\mathrm{i}} \mathrm{s}$ and $\gamma_{\mathrm{i}} \mathrm{s}$ are constants to be learned
\Rightarrow Learn the coefficients \mathbf{w} from $y=\mathbf{w}^{\mathrm{T}} \mathbf{z}+$ noise

R. Rao, IISc course: Lecture 2

Artificial Neural Networks: Perceptrons

$v=g\left(\mathbf{w}^{T} \mathbf{u}\right)$
$=g\left(w_{1} u_{1}+w_{2} u_{2}+w_{3} u_{3}\right)$
 $\mathbf{u}=\left(\begin{array}{lll}\mathrm{u}_{1} & \mathrm{u}_{2} & \mathrm{u}_{3}\end{array}\right)^{T}$

The most common activation function:

Sigmoid function:

$$
g(a)=\frac{1}{1+e^{-\beta a}}
$$

$1^{g(a)}$

Want to learn a mapping from inputs to outputs, given training data $\left(\mathbf{u}^{m}, d^{m}\right)$.

How is w learned?

Learning the Weights: Gradient Descent

\downarrow Given training examples $\left(\mathbf{u}^{m}, d^{m}\right)(m=1, \ldots, N)$, define an error function (cost function or "energy" function)

$$
\begin{aligned}
& E(\mathbf{w})=\frac{1}{2} \sum_{m}\left(d^{m}-v^{m}\right)^{2} \\
& \text { where } v^{m}=g\left(\mathbf{w}^{T} \mathbf{u}^{m}\right)
\end{aligned}
$$

Learning the Weights: Gradient Descent

\downarrow Would like to estimate \mathbf{w} so that error $E(\mathbf{w})$ is minimized \Rightarrow Gradient Descent: Change w in proportion to $-\mathrm{d} E / \mathrm{dw}$ (why?)
$\mathbf{w} \rightarrow \mathbf{w}-\varepsilon \frac{d E}{d \mathbf{w}}$
$\frac{d E}{d \mathbf{w}}=-\sum_{m}\left(d^{m}-v^{m}\right) \frac{d v^{m}}{d \mathbf{w}}=-\sum_{m}\left(d^{m}-v^{m}\right) g^{\prime}\left(\mathbf{w}^{T} \mathbf{u}^{m}\right) \mathbf{u}^{m}$
Derivative of sigmoid

Multilayer Networks

- One layer networks can only learn a limited class of functions. E.g., cannot learn XOR function
- To learn arbitrary functions, need multiple layers

Idea: "Backpropagation" Learning Rule

$v_{i}=g\left(\sum_{j} W_{j i} g\left(\sum_{k} w_{k j} u_{k}\right)\right)$ Start with random weights $\{\mathbf{W}, \mathbf{w}\}$

Given input \mathbf{u}, network produces output \mathbf{v}

Find \mathbf{W} and \mathbf{w} that minimize total squared output error over all output units (labeled i):

$$
E(\mathbf{W}, \mathbf{w})=\frac{1}{2} \sum_{i}\left(d_{i}-v_{i}\right)^{2}
$$

Backpropagation:

Output Weights

$$
E(\mathbf{W}, \mathbf{w})=\frac{1}{2} \sum_{i}\left(d_{i}-v_{i}\right)^{2}
$$

Learning rule for hidden-output weights \mathbf{W} :

$$
\begin{aligned}
& \left.W_{j i} \rightarrow W_{j i}-\varepsilon \frac{d E}{d W_{j i}} \quad \text { \{gradient descent }\right\} \\
& \frac{d E}{d W_{j i}}=-\left(d_{i}-v_{i}\right) g^{\prime}\left(\sum_{j} W_{j i} x_{j}\right) x_{j}
\end{aligned}
$$

Backpropagation: Hidden Weights

$$
E(\mathbf{W}, \mathbf{w})=\frac{1}{2} \sum_{i}\left(d_{i}-v_{i}\right)^{2}
$$

Learning rule for input-hidden weights w:

$$
\begin{aligned}
& w_{k j} \rightarrow w_{k j}-\varepsilon \frac{d E}{d w_{k j}} \quad \text { But : } \frac{d E}{d w_{k j}}=\frac{d E}{d x_{j}} \cdot \frac{d x_{j}}{d w_{k j}} \quad\{\text { chain rule\} } \\
& \frac{d E}{d w_{k j}}=\left[-\sum_{m, i}\left(d_{i}^{m}-v_{i}^{m}\right) g^{\prime}\left(\sum_{j} W_{j i} x_{j}^{m}\right) W_{j i}\right] \cdot\left[g^{\prime}\left(\sum_{k} w_{k j} u_{k}^{m}\right) u_{k}^{m}\right]
\end{aligned}
$$

Example Application in BCI

Outline

- Supervised Learning: Regression
\Rightarrow Linear, polynomial.
\Rightarrow RBFs, perceptrons, multilayer networks.
- Supervised Learning: Classification
\Rightarrow Linear classifiers, support vector machines
\Rightarrow Multi-class classification
- Cross-validation
\Leftrightarrow Model selection, preventing overfitting

See you tomorrow!

