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Most of us who study Probability theory in modern times have

a belief that the countability additivity axiom introduced by

Kolmogorov is a must for limit theorems to hold. Infact, some

believe that countability additivity is required for two reasons-

for the integration theory and for limit theorems.

We forget that some of the theorems have a much longer

history- Law of large numbers and Central limit theorem.
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We also forget, or rather are never told, what Kolmogorov

himself wrote when he introduced the axiom of countable

additivity. In his 1933 monograph, he goes onto give

motivation for finite additivity assumption on probability

measures.

He then introduces the countably additivity axiom as a

regularity assumtion and goes onto say that he will not try to

give motivation for it as in reality we can only observe finitely

many events at a time.
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So we must use as regular a model as is consistent with other

requirements but be willing to consider a model without this

regularity assumption if some natural requirement is in conflict

with the countability additivity assumption.

This is the case when engineers consider white noise which we

say does not exist- we mean that white noise does not exist on

a countably additive probability space, for if it does, its

indefinite inegral would give a Brownian motion with

differentiable paths.
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Indeed, White Noise can be constructed on a finitely additive

probability space and one can do a lot of meaningful analysis

with it. Kallianpur and myself have worked on non-linear

filtering theory in this framework.

I will leave that for another time and return to Limit Theorem
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Let us consider i.i.d. Bernouli (p) random variables

X1,X2, . . . ,Xn (i.e. P(Xj = 0) = 1−p and P(Xj = 1) = p for

1≤ j≤ n and X1,X2, . . . ,Xn are independent. The (Weak) Law

of large numbers says that for all ε > 0

lim
n→∞

P(| X1 +X2 + . . .+Xn

n
−p |> ε) = 0.

The formulation as well as proof of this result does not depend

upon countably additivity.
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The DeMovire Central Limit theorem: Indeed one has for all x

lim
n→∞

P(
X1 +X2 + . . .+Xn−np

√
npq

≤ x)

=
1√
2π

∫ x

−∞

exp{−1
2

u2}du.

Rajeeva L. Karandikar Director, Chennai Mathematical Institute

Limit Thoerems and Finitiely Additive Probability - 7



As far the statement is concerned, one does not need

countable additivity and the early proofs of the result use

sterlings formula and are valid without bringing in Kolmogorov

framework.
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Strong Law of Large Numbers:

Let X1,X2, . . .Xn, . . . be independent random variables with

P(Xj = 0) = 1−p and P(Xj = 1) = p for j≥ 1 where

0 < p < 1. Then

X1 +X2 + . . .+Xn

n
→ p a.s

equivalently for all ε > 0

lim
m→∞

P(sup
n≥m
| X1 +X2 + . . .+Xn

n
−p |> ε) = 0.
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In this case, even for formulation, one needs to have the

infinte sequence of random variables and hence this depends

heavily on the Kolmogorov framework.
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If X1,X2, . . . ,Xn are i.i.d. E valued random variables where E is

a finite subset of R. Then one can show that the weak law of

large numbers and central limit theorem are true for this

sequence. Once again the formulation as well as the proof can

be worked out without Kolmogorov’s frame work.

Strong law of large numbers seems to need counably additivity

to even formulate.
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We are going to see that various limit laws are valid on finitely

additive measure spaces as well.

Indeed, I will show that Almost all limit laws that are valid on

countably additive probability spaces are also valid on finitely

additive probability spaces

For this we need to go over notion of measurable functions

and integration theory w.r.t finitely additive measures with

some details.
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As I said earlier, one tends to also believe that the integration

theory and that the convergence theorems depend upon

counable additivity of the underlying measure.

The classic book by - Dunford and Schwartz (Linear Operators

-I) devolops integration with respect to a finitely additive

measure first, goes onto prove dominated convergence

theorem with convergence in measure and then deduce the

usual DCT when the measure is countably additive.
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Let H be a non empty set, C be a field of subsets of H and µ

be a finitely addtive measure on (H,C ). For any set A⊆H, let

µ
∗(A) = inf{µ(C) : A⊆ C, C ∈ C }.

As in the case of countably addtitive measure, one can assume

that (H,C ,µ) is complete:

A⊆ H, µ∗(A) = 0 implies A ∈ C .
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A function f : H 7→ R is said to be simple if

f (x) =
m

∑
k=1

ak1Bk(x)

for some B1, . . .Bm ∈ C and a1, . . . ,am ∈ R and for such a

simple function f we define∫
f dµ =

m

∑
k=1

akµ(Ak).
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The class of measurable functions L0(H,C ,µ) is the class of

functions f for which there exist simple fucntions {fn} such

that for every ε > 0

µ
∗(| fn− f |> ε)→ 0.

For a measurable function f it can be seen that

{f ≤ t} ∈ C ∀t ∈ Uf

where Uc
f is at most countable. Indeed, Uf is the set of

continuity points of the increasing function t 7→ µ∗(f ≤ t).
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The class of integrable functions L1(H,C ,µ) is the class of

functions f for which there exist simple fucntions {fn} such

that for every ε > 0

µ
∗(| fn− f |> ε)→ 0

and

lim
m,n→∞

∫
| fn− fm | dµ = 0

and for such an f we define∫
f dµ = lim

n→∞

∫
fn dµ
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In this framework we have a version of DCT:

Let gn,g ∈ L1(H,C ,µ) be such that for every ε > 0

µ
∗(| gn−g |> ε)→ 0

and that there exists h ∈ L1(H,C ,µ) such that
∫

h dµ < ∞ and

| gn |≤ h ∀n.

Then ∫
| gn−g | dµ → 0

and ∫
gn dµ →

∫
g dµ.x
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Example: A finitely additive measure that is not countably

additive:

One can show that on the set of natural numbers N, there

esists a measure µ on the power set P(N) which gives

probability 0 to every singleton and 1 to the whole set.

Now f (n) = 1
n is a measurable and integrable function on

(N,P(N),µ). Note that here f > 0 but
∫

f dµ = 0.
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Example: Canonical Gauss Measure on a Hilbert Space.

Let H be a real separable Hilbert space and let {en : n≥ 1} be

an orthonormal basis. Let Xk : H 7→ R be defined by

Xk(h) = 〈h,ek〉. Let Cn denote sets of the form

π
−1
n (B) = {h : (X1(h), . . .Xn(h)) ∈ B}, B ∈B(Rn).

Define µn on Cn by

µn(π
−1
n (B)) = P((Z1,Z2, . . . ,Zn) ∈ B)

where {Zk} is a sequence of i.i.d. N(0,1) random variables on

a countably additive probability space.
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It can be shown that Cn ⊆ Cn+1 and that {µn} is a consistant

family and thus we can define µ on C = ∪∞
n=1Cn satisfying

µ(A) = µn(A) for A ∈ Cn, n≥ 1.

It may be noted that each Cn is a σ -field and µn is a

countably additive measure while C is a field and µ is not

countably additive on the field.
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To see this, note that each n≥ 1, X1,X2, . . . ,Xn are iid N(0,1)
and hence

µ({
2n

∑
k=n

X2
k ≥ 1})→ 1

while
∞

∑
k=1

Xk(h)2 = ‖h‖2 < ∞.

These two relations would contradict each other if µ is

countably additive on C .
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If C ∗ is the completion of C under µ , then µ on (H,C ) is

called the canonical Gauss measure on H.

This measure plays an important role in the theory of White

Noise and also in the theory of Abstrat Wiener spaces.
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Dubins and Savage framework :

Dubins and Savage introduced a framework for finitely additive

probability that they called the Strategic framework.

This framework was the starting point for exploring limit

theorems on fintely additive probabiltiy spaces.

Rajeeva L. Karandikar Director, Chennai Mathematical Institute

Limit Thoerems and Finitiely Additive Probability - 24



(From obituiry for Lester Dubins)

. . . This encounter with Savage developed into a collaboration

generating several key papers and culminating in the

ground-breaking monograph How to Gamble if You Must

(Inequalities for Stochastic Processes), which presented a

coherent theory of gambling processes and optimal behavior in

gambling situations. Influenced by Bruno de Finetti, the two

collaborators worked in a finitely additive framework in order

to bypass the measurability difficulties inherent in maximizing

groups constituted of so many functions that they could not

be counted.
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Dubins and Savage, in order to avoid measurability questions,

decided to work with finitely additive measures defined on the

power set of the underlying set.

Fact: Any finitely additive measure on (H,C ) can be extended

as a fintely additive measure to (H,P(H)).
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Dubins and Savage proposed a setup where given a

distribution σ1 of X1 and conditional distribution

σn(·;a1,a2, . . . ,an−1) of Xn given X1 = a1, . . . ,Xn−1 = an−1,

[where σ1(·) and σn(·,a1,a2, . . . ,an−1) are finitely additive

measures on (S,P(S)) for a1, . . . ,ak, . . . ∈ S], they showed a

cannonical way of constructing a measure on the power set of

S∞ so that the coordinate mappings have required properties.
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There is a natural way of defining Independence in this setting.

Purves - Sudderth and Chen proved some limit theorems in the

strategic setting of Dubins and Savage for a sequence of

Independent random variables and also for martingales.

Ramakrishnan proved the Central limit theorem in this setting

- he showed that Lindeberg-Feller Central limit theorem is true

verbatim in the Dubins Savage framework.
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In particular, Ramakrishnan showed that if X1,X2, . . . are iid

with mean 0 and variance 1, then

lim
n→∞

µ
∗(

X1 +X2 + . . .+Xn√
n

≤ x)

=
1√
2π

∫ x

−∞

exp{−1
2

u2}du.
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One of the key techniques used was to approximate the given

iid sequence {Xn} by a sequence {Yn} such that each Yn takes

finitely many values and Yn’s are independent. Further, Yn is a

function of Xn.

For any m, the distribution of (Y1,Y2, . . . ,Ym) is trivially

countably additive. In the Dubins Savage framework, the

distribution of the full sequence {Yn : n≥ 1} is countably

additive.

Then one uses a limit theorem on {Yn} to get the required

result. Of course, as n becomes large, Yn comes closer to Xn

and hence Yn is no longer iid.
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Thus to prove CLT for an iid sequence {Xn}, one needs to use

Lindeberg-Feller CLT for Yn. Of course, this means one has to

manage the approximation suitably. To prove SLLN for an iid

sequence {Xn}, a suitable version of SLLN for an independent

sequence Yn is needed, which is readily available.

However, when trying to prove Law of iterated logarithm for

an iid sequence, a version for independent sequences (with

different distributions) is needed, which was not readily

available.
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While Ramakrishnan and I were trying to prove the law of

iterated logerithm for an iid sequence and extend CLT to path

space to get an analogue of Donsker’s invariance principle, (we

were nearly there) he mentioned to me that some experts

believed that there should be a meta theorem that states that

most limits theorems that are true under countability additivity

axiom are also ture without it.
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How does one formulate such a meta theorem?

When I had been thinking of this, we had a seminar by Prof S

D Chatterjee at ISI Kolkata on his Subsequence principle and

its proof by Aldous that showed me a way. This subsequence

principle is interesting in its own right.
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Chatterjee’s Subsequence Principle:

Komlos had proven in 1967 that Let X1,X2, . . . ,Xn . . . be any

sequence of random variables such that

sup
n≥1

E[|Xn|]< ∞.

Then there exists a subsequence {nk} and a random variable Z
such that

lim
k→∞

Xn1 +Xn2 + . . .+Xnk

k
= Z, a.s.
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Chaterjee proved a similar version for the law of iterated

logarithm:

Let X1,X2, . . . ,Xn . . . be any sequence of random variables such

that

sup
n≥1

E[|Xn|2]< ∞.

Then there exists a subsequence {nk} and random variables

U,V such that

limsup
n→∞

Xn1 +Xn2 + . . .+Xnk− kU√
2k log log(k)

= V a.s.
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Chatterjee also proved a version of the subsequence result for

CLT:

Let X1,X2, . . . ,Xn . . . be any sequence of random variables such

that

sup
n≥1

E[|Xn|2]< ∞.

Then there exists a subsequence {nk} and random variables

U,V such that

Xn1 +Xn2 + . . .+Xnk− kU√
k

→ VZ

where Z is a random variable independent of V having

standard normal distribution and the convergence above is in

distribution.
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Based on these results, Chatterjee formulated the following

heuristic principle:

Given a limit theorem for i.i.d. random variables under certain

moment conditions, there exists an analogous theorem such

that an arbitrarily-dependent sequence (under the same

moment conditions) always contains a subsequence satisfying

this analogous theorem.
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The phrase same moment condition above has to be

interpreted as follows:

The condition E[|X1|p < ∞ for the iid sequence {Xn} is to be

read as

[sup
n
E[|Xn|p]< ∞

and hence the same condition on an arbitrary sequence {Yn}
turns out to be

[sup
n
E[|yn|p]< ∞.
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Aldous formulated a precise result which captures the

Chatterjee’s subsequence princile and proved the same. This

had appeared in 1977. Chatterjee himself presented this in a

colloquim talk at ISI in early 1980.

This gave me a way of formulating the elusive meta theorem I

had been thinking about.
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Back to Finitiely additive measures:

Dubins Savage framework:

Let νn be a sequence of finitely additive probability measure

on (R,P(R)). Taking σ1 = ν and σn(·,a1,a2, . . . ,an−1) = νn

we construct in the canonical strategic way a finitely additive

probability measure σ n (R∞,P(R∞)) such that, denoting the

coordinate mappings on R∞ by {Xn},

σ(Xn ∈ An,n≥ 1) =
∞

∏
n=1

νn(An)

for all An ⊆ R, n≥ 1.

Thus {Xn} are independent r.v.’s with marginal distributions

νn.
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Let us assume that for each n, νn is tight- i.e. given ε > 0,

∃Kn < ∞ such that

νn([−Kn,Kn])≥ 1− ε.

Note that any moment condition:
∫
|Xn|p dσ < ∞ for p > 0

would imply tightness for νn.

Let Fn(t) = σ(Xn ≤ t) denote the distribution of Xn.
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Now Fn is an increasing function and limt→−∞ Fn(t) = 0 and

limt→∞ Fn(t) = 1 in view of tightness of ν . Hence

Gn(t) = Fn(t+) = lim
s↓t

Fn(s)

is a proper distribution function. Thus we can construct a

countably additive probability space (Ω,F ,P) and a sequence

of independent r.v.’s {Zn} on it with marginal distribution

functions Gn.

Note that

Fn(t) = Gn(t) for all continuity points t of Fn.
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This leads to
∫

h(Xn) dσ =
∫

h(Zn) dP for all bounded

continuous functions h and for m≥ 1 and for all h ∈ Cb(Rm)∫
h(X1, . . .Xm) dσ =

∫
h(Z1, . . . ,Zm) dP (1)

Indeed, (1) is also true if h is positive or if∫
|h(Z1, . . . ,Zm)| dP< ∞.
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Thus a moment condition holds for {Xn} if and only if it holds

for {Zn}.
We are going to prove that a limit theorem holds for

(X1, . . . ,Xn, . . .) if and only if it holds for (Y1, . . . ,Yn, . . .).
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Theeorem: Suppose A⊆ R∞ satisfies for some p, 0 < p < ∞

(x1,x2, . . .) ∈ A and
∞

∑
n=1
|xn− yn|p < ∞ implies (y1,y2, . . .) ∈ A

(2)

(Such A has been called limit statute by Aldous). Then

(X1,X2, . . .) ∈ A a.s. if and only if (Z1,Z2, . . .) ∈ A a.s.
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Example: (SLLN) Fix α ∈ R. Let

A = {(x1,x2, . . .) ∈ R∞ :
x1 + . . .+ xn

n
→ α}.

This satisfies (2) with p = 1. Thus we have

X1 + . . .+Xn

n
→ α a.s. if and only if

Z1 + . . .+Zn

n
→ α a.s.

So if {Xn} are iid with
∫

X1dσ = α then {Zn} are iid with

E(Z1) = α . So by SLLN, Z1+...+Zn
n → α a.s. and hence

X1 + . . .+Xn

n
→ α a.s.
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Let {Xn} be iid with
∫

X1dσ = α and
∫
(X1−α)2dσ = β . Let

A = {(x1,x2, . . .) ∈ R∞ : limsup
n→∞

x1 + . . .+ xn−nα√
β2n log log(n)

= 1}

Once again easy to see that A satisfies (2) and thus the law of

oterated logarithm for the sequence {Zn} (which is now iid

with E(Z1) = α and E(Z1−α)2 = β )) implies that the same

is true for {Xn}.

Indeed, we can likewise show that Strassen’s law of iterated

logarithm is also true for {Xn}.
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Proof: The idea is to approximate {Xn} by {Yn} and {Zn} by

{Wn} such that each Yn and Wn take finitely many values and

have same distribution. The approximation is such that

∞

∑
n=1
|Xn−Yn|p < ∞ a.s.

∞

∑
n=1
|Zn−Wn|p < ∞ a.s.

and hence {Xn} ∈ A a.s. if and only if {Yn} ∈ A a.s. and

{Zn} ∈ A a.s. if and only if {Wn} ∈ A a.s. (using (2) on A).

Then using {Yn} and {Zn} have same distribution we conclude

{Xn} ∈ A a.s. and {Zn} ∈ A a.s.
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Recall Fn,Gn are distribution functions of Xn,Zn and are equal

at all continuity points of Fn. Get an,0 < an,1 < .. .an,mn

continuity points of Fn such that

Fn(an,0)<
1
2n , Fn(an,nm)>

1
2n

an,j+1−an,j <
1
2n , 0≤ j < nm

and let φn(x) = an,j for an,j ≤ x < an,j+1 and φn(x) = an,0 for

x < an,0 and φn(x) = an,nm for x≥ an,nm .

Let Yn = φn(Xn) and Wn = φn(Zn). Then for each n Yn and Wn

have same law.
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Since P(|Zn−Wn|> 1
2n )≤ 1

2n , using Borel Cantelli Lemma it

follows that
∞

∑
n=1
|Zn−Wn|p < ∞ a.s.

Since the event |Xn−Yn|> 1
2n depends only on Xn, the Borel

Cantelli Lemma holds in the Dubins Savage framework also

and so using P(|Xn−Yn|> 1
2n )≤ 1

2n it follows that

∞

∑
n=1
|Xn−Yn|p < ∞ a.s.
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We have noted that for each n Yn and Wn have same law and

using independence, we have that for each n
(Y1, . . . ,Yn) and (W1, . . . ,Wn) have same laws.

As remarked earlier, in the Dubins Savage framework, using

the fact that Yn takes finitely many values and that

Yn = φn(Xn), it follows that the law of the sequence {Yn} is

countably additive and hence (Y1, . . . ,Yn, . . .) and

(W1, . . . ,Wn, . . .) have same laws.
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Thus

{Xn} ∈ A a.s. if and only if {Yn} ∈ A a.s.

if and only if {Wn} ∈ A a.s.

if and only if {Zn} ∈ A a.s.
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Caution: The Almost Sure Limit theorems may not be true on

a general finitely probability space.
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