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Some results from number theory

Many problems in number theory have to do with inherently “additive struc-
ture’. E.g.:

e van der Corput’s theorem (1939):
The set of prime numbers contains infinitely many arithmetic progressions

(AP’s) of size 3

e Szemerédi's theorem (1975):
Any set A of integers such that

An{l,...
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contains an AP of length k, for all & > 2

> ()

e Green-Tao theorem (2008):
For each £ > 2, the set of prime numbers contains an arithmetic pro-
gression of length £



Additive combinatorics

In all three results above, the problem is to count the number of occurrences
of a certain additive pattern in a given set

Classical “multiplicative” combinatorial results are insufficient for these pur-
poses

The theory of additive combinatorics, and in particular the so-called sumset
inequalities, provides a set of very effective tools

Sumset inequalities

o ‘sumset” A+ B={a+0b:a€ A b¢e B}, where A, B are finite sets
in some group G

e “sumset inequality”: inequalities for the cardinalities of sumsets under a
variety of conditions



Classical Sumset inequalities
Examples from the Pliinnecke-Ruzsa (direct) theory

e Ruzsa triangle inequality

|A— B|-|B—C]
[A-C| <
B
e Sum-difference inequality
[A—BJ?
A+ B| <
Al - |B|

These are special cases of the Pliinnecke-Ruzsa inequalities

Examples from the Freiman (inverse) theory

e The Cauchy-Davenport inequality says that
A+ B| > |A|+ |B| -1
with equality iff A and B are AP’s

e The Freiman theory provides structural (inverse sumset) results
E.g.. if |A+ A is not too large relative to |A
“generalized AP”

~then A is “close” to a



Combinatorics and Entropy

Discrete entropy: For probability mass function p(-) on a countable set A,
entropy H(p) = — ) .. p(x)logp(x)

Natural connection: For a finite set A, H(Unif(A)) = log|A| is the
maximum entropy of any distribution supported on A

Entropy in Classical Combinatorics

e Intersection families [Chung-Graham-Frankl-Shearer '86]
e New proof of Bregman's theorem, etc. [Radhakrishnan '97-'03]

e Various counting problems [Kahn '01, Friedgut-Kahn '98, Brightwell-Tetali '03,
Galvin-Tetali '04, M.-Tetali '07, Johnson-Kontoyiannis-M.'09]

Entropy in Additive Combinatorics

® Ruzsa '09 (pioneered this approach, formulated basic questions)

® M.-Marcus-Tetali '10, '12 (entropic “direct” theory, including Pliinnecke-
Ruzsa inequalities)

e Tao '10 (entropic “inverse” theory, including Freiman's theorem)



Our Goal

So far, “entropy theory” in additive combinatorics has been focused on
discrete abelian groups. Can we develop a theory that makes sense also
In continuous settings, e.g., R"?

Why should we care?

e Probability: Related to basic questions. E.g.: rate of convergence in the
(entropic) CLT

e Additive combinatorics: A thriving field in which discrete abelian groups
have been well studied, but entropy techniques may be useful in more
general settings that are under active investigation

e Convex geometry: Has fascinating unsolved problems that connect to
high-dimensional probability and functional analysis. Understanding the
entropy of sums of continuous RV's is useful in the context of the “ge-
ometrization of probability” program popularized by V. Milman

e Information theory: Studies fundamental limits of communication sys-
tems. Additive combinatorics has led to recent advances [Etkin-Ordentlich '09,
Wu-Shamai-Verdd '12]



Continuous Entropy

e When random variable X = (X1,..., X,,) has density f(z) on R", the
entropy of X is

WX) = h(f) = - ” f(x)log f(x)dr = E[=log f(X)]

e The relative entropy between the distributions of X ~ fand Y ~ g is
f (@)
D(fllg) = /f x) log dx
(Flg) = [ fla)log 2
For any f, g, D(f||lg) > 0 with equality iff f = ¢

Why are they relevant?

e Entropy is a measure of randomness

e Relative Entropy is a very useful notion of “distance” between probability
measures (non-negative, and dominates several of the usual distances,
although non-symmetric)



A Unified Setting

Let G be a Hausdorff topological group that is abelian and locally compact,
and A be a Haar measure on G. If 4 < X\ is a probability measure on G,

the entropy of X ~ p is defined by

h(X) = / 1) tog 2 ) A

Remarks

e In general, h(X) may or may not exist; if it does, it takes values in the
extended real line [—00, +00]

e If G is compact and ) is the Haar ( “uniform”) probability measure on G,
then h(X) = —D(u||A) <0 for every RV X

e Covers both the classical cases: G discrete with counting measure, and
G = R" with Lebesgue measure



A Question and an Answer

Setup: Let Y and Y’ be i.i.d. random variables (continuous, with density
f). As usual, the differential entropy is A(Y) = E|—log f(Y)]

Question

How different can A(Y +Y’) and h(Y — YY) be?

First answer [Lapidoth—Pete '08]

The entropies of the sum and difference of two i.i.d. random variables can
differ by an arbitrarily large amount

Precise formulation: Given any M > 0, there exist i.i.d. random variables
Y, Y’ of finite differential entropy, such that

AY =Y —hY +Y')> M (Ans. 1)



A Question and another Answer

Question

If Y and Y’ are i.i.d. continuous random variables, how different can
h(Y +Y’) and h(Y — Y’) be?

Our answer [Kontoyiannis—M.'12]

The entropies of the sum and difference of two i.i.d. random variables are
not too different

Precise formulation: For any two i.i.d. random variables Y, Y with finite
differential entropy:

L _ WY +Y') — h(Y)
2= WY —Y') = h(Y)

<2 (Ans. 2)



What do the two Answers tell us?

Together, they suggests that the natural quantities to consider are the dif-
ferences

Ay =h(Y+Y)—h(Y) and A_=h(Y -Y")—h(Y)
Then (Ans. 1) states that the difference Ay — A_ can be arbitrarily large,

while (Ans. 2) asserts that the ratio A, /A_ must always lie between 1 and
2

Why is this interesting?

e Seems rather intriguing in its own right

e Observe that A, and A_ are affine-invariant; so these facts are related
to the shape of the density

e This statement for discrete random variables (one half of which follows
from [Ruzsa '09, Tao '10], and the other half of which follows from [M.-
Marcus-Tetali '12]) is the exact analogue of the inequality relating doubling
and difference constants of sets in additive combinatorics

e This and possible extensions may be relevant for studies of “polarization”
phenomena and/or interference alignment in information theory



Half the proof

Want to show: If YY" are i.i.d.,
h(Y +Y') = h(Y) <2[h(Y —Y') — h(Y)]

Proof: If Y, Y’ Z are independent random variables, then the Submodularity
Lemma says

WY +Y'+ 2)+ h(Z)<h(Y+Z)+h(Y' +Z) [M. 08
Since h(Y +Y") < h(Y +Y' + Z),
hWY +Y)+h(Z)<hY +2Z)+hY + 2) (1)
Taking now Y, Y’ to be i.i.d. and Z to be an independent copy of —Y,
(Y +Y)+h(Y) <2n(Y =Y

which is the required upper bound

Remark: The other half would follow similarly if we could prove the following
slight variant of (1):

hWY-Y")+nWZ) <MY +Z)+hY'+ 2Z)
This is the entropy analogue of the Ruzsa triangle inequality and is a bit
more intricate to prove



The Submodularity Lemma

Given independent G-valued RVs X7, X5, X35 with finite entropies,
h(Xl —|—X2—|—X3> —|—h<X2> < h(Xl —|—X2) —|—h<X3—|—X2> [M. '08]

Remarks

e For discrete groups, the Lemma is implicit in Kaimanovich-Vershik '83, but was redis-
covered and significantly generalized by M.-Marcus-Tetali '12 en route to proving some
conjectures of Ruzsa

e Discrete entropy is subadditive; trivially,
H(X1 + XQ) < H(Xl, XQ) < H(X1) + H(XQ)
This corresponds to putting X5 = 0 in discrete form of the Lemma

e Continuous entropy is not subadditive; it is easy to construct examples with
h(Xl + XQ) > h(Xl) + h(XQ)

Note that putting X5 = 0 in the Lemma is no help since h(const.) = —o0



Proof of Submodularity Lemma

Lemma A: (“Data processing inequality”) The mutual information cannot
increase when one looks at functions of the random variables:

I(9(2);Y) <I(Z;Y).

Lemma B: If X, are independent RVs, then
](Xl + Xo; X1> = H(Xl + XQ) — H(XQ)

Proof of Lemma B

Since conditioning reduces entropy,

h(X1 + XQ) — h(XQ) = h(Xl + XQ) — h(X2|X1> [independence of X]
= h<X1 + X2> — h(X1 + XQ‘Xl) [translation-invariance]
= I( X1+ X9, X7)

Proof of Submodularity Lemma

(a)
I(X) + Xo 4+ X5: X)) < I(X) + Xo, Xa: X1) 2 I(X) + Xo: X))

where (a) follows from Lemma A and (b) follows from independence

By Lemma B, this is the same as
h(X1 + Xo+ X3) + h(X2) < h(X; + Xo) + h(Xs + X5)



Aside: Applications in Convex Geometry

Continuous Plunnecke-Ruzsa inequality: Let A and By, ..., B, be convex
bodies in R? such that for each 1,
1

d

Then

1
7 n
< T 1r

1=1

‘A +) B
i€n]

The proof combines the Submodularity Lemma with certain reverse Holder-
type inequalities developed in [Bobkov-M. 12]

Reverse Entropy Power Inequality: The Submodularity Lemma is one in-
gredient (along with a deep theorem of V. Milman on the existence of
“M-ellipsoids” ) used in Bobkov-M.'11, '12 to prove a reverse entropy power
inequality for convex measures (generalizing the reverse Brunn-Minkowski
inequality)
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Non-Gaussianity

For X ~ f in R", its relative entropy from Gaussianity is

D(X) = D(f) = D(f| f),

where f© is the Gaussian with the same mean and covar. matrix as X

Observe:

e For any density f, its non-Gaussianity D(f) = h(f%) — h(f)

Proof. Gaussian density is exponential in first two moments

e Thus Gaussian is MaxEnt: N(0, %) has maximum entropy among all
densities on R with variance < o2

Proof. D(f) >0



Towards the Entropic CLT

Two observations . ..

e Gaussian is MaxEnt: N (0, 0?) has maximum entropy among all densities
on R with variance < ¢

o Let X, bei.id. with EX; =0 and EX12 = o2,
M
1
For the CLT, we are interested in Sy = —— X;
g

The CLT scaling preserves variance

suggest . ..

Question: Is it possible that the CLT may be interpreted like the 2nd law of
thermodynamics, in the sense that h(5);) monotonically increases in M until
it hits the maximum entropy possible (namely, the entropy of the Gaussian)?



Entropic Central Limit Theorem

If D(S)) < oo for some M, then as M — oo,
D(Sy) 1 0 orequivalently, h(Syr) T h(N(0,0%))

Convergence shown by Barron '86; monotonicity shown by Artstein-Ball-Barthe-
Naor '04 with simple proof by Barron-M.'07

Remarks

e The proof in Barron—M.’07 of a general inequality that implies monotonicity is a direct
consequence of 3 ingredients:

— An (almost) standard reduction to statements about Fisher information of sums
— An integration-by-parts trick to reduce the desired Fisher information inequality to
a variance inequality

— A proof of the variance inequality, which generalizes Hoeffding's variance bounds for
U-statistics

e Question: Can such a “2nd law" interpretation be given to other limit theorems in
probability?
Answer: Yes, but it is harder to do so, and the theory is incomplete

E.g.: Partial results in the Compound Poisson case by [Johnson-Kontoyiannis-M.'09,
Barbour-Johnson-Kontoyiannis-M. 10]



Original Entropy Power Inequality

If X, and X are independent RVs,
2 X1HX0) > 2h(X1) | o2h(X2) [Shannon '48, Stam '59]

with equality if and only if both X; and X, are Gaussian

Remarks

e Implies the Gaussian logarithmic Sobolev inequality in 3 lines

e Implies Heisenberg's uncertainty principle (stated using Fourier trans-
forms for unit vectors in Ly(R™))

e Since h(aX) = h(X) + log |al, implies for i.i.d. X;,

Thus we have monotonicity for doubling sample size: h(Ss,) > h(S,)
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An elementary observation

If X, are independent,
h(X1) + h(Xs) = h(X1, Xo)
B h<X1+X2 X1 —XQ)

V2. V2
(S5 (5

When X and X5 are |lID. ..

o If X, has a symmetric (even) density, this immediately yields h(S3) >
h(S1) in the CLT

o If h(X| — X,) < h(X) + Xy) — C, then
WZ) > h(Xl +X2> > h(X)) +%

V2
so that D(X;) > &
e Thus any distribution of X for which |h(X; — X5) — h(X1+ X3)| is large

must be far from Gaussianity




What does small doubling mean?

Let X be a R-valued RV with finite (continuous) entropy and variance o~

The EPIl implies h(X +X')—h(X) > 1log2, with equality iff X is Gaussian
A (Conditional) Freiman theorem in R”

If X has finite Poincaré constant R = R(X), and
MX +X')—h(X) <1ilog2+C, (2)

then X is approximately Gaussian in the sense that

D(X) < (ﬁﬂ)(}

0'2
Remarks

e Follows from a convergence rate result in the entropic CLT obtained independently by
[Johnson-Barron '04] and [Artstein-Ball-Barthe-Naor '04]

e A construction of [Bobkov-Chistyakov-Gotze '11] implies that in general such a result
does not hold

e A sufficient condition for small doubling is log-concavity: in this case, h(X + X') <
h(X)+1log2and h(X — X') < h(X)+1

e There are still structural conclusions to be drawn just from (2). ..



Summary

e Took some initial steps towards developing an entropy theory for additive
combinatorics in the general abelian setting

e Inequalities from this theory have applications in convex geometry/geometric
functional analysis

e Looking at limit theorems using entropy is very natural and intuitive, and
this study is also related to “continuous additive combinatorics”

Thank you!

o — O — O



