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Some results from number theory

Many problems in number theory have to do with inherently “additive struc-
ture”. E.g.:

• van der Corput’s theorem (1939):
The set of prime numbers contains infinitely many arithmetic progressions
(AP’s) of size 3

• Szemerédi’s theorem (1975):
Any set A of integers such that

lim sup
n→∞

|A ∩ {1, . . . , n}|
n

> 0

contains an AP of length k, for all k ≥ 2

• Green-Tao theorem (2008):
For each k ≥ 2, the set of prime numbers contains an arithmetic pro-
gression of length k



Additive combinatorics

In all three results above, the problem is to count the number of occurrences
of a certain additive pattern in a given set

Classical “multiplicative” combinatorial results are insufficient for these pur-
poses

The theory of additive combinatorics, and in particular the so-called sumset
inequalities, provides a set of very effective tools

Sumset inequalities

• “sumset” A + B = {a + b : a ∈ A, b ∈ B}, where A,B are finite sets
in some group G

• “sumset inequality”: inequalities for the cardinalities of sumsets under a
variety of conditions



Classical Sumset inequalities

Examples from the Plünnecke-Ruzsa (direct) theory

• Ruzsa triangle inequality

|A− C| ≤ |A− B| · |B − C|
|B|

• Sum-difference inequality

|A + B| ≤ |A− B|3

|A| · |B|
These are special cases of the Plünnecke-Ruzsa inequalities

Examples from the Freiman (inverse) theory

• The Cauchy-Davenport inequality says that

|A + B| ≥ |A| + |B|− 1

with equality iff A and B are AP’s

• The Freiman theory provides structural (inverse sumset) results
E.g.: if |A + A| is not too large relative to |A|, then A is “close” to a
“generalized AP”



Combinatorics and Entropy

Discrete entropy: For probability mass function p(·) on a countable set A,
entropy H(p) = −

∑
x∈A p(x) log p(x)

Natural connection: For a finite set A, H(Unif(A)) = log |A| is the
maximum entropy of any distribution supported on A

Entropy in Classical Combinatorics

• Intersection families [Chung-Graham-Frankl-Shearer ’86]

• New proof of Bregman’s theorem, etc. [Radhakrishnan ’97-’03]

• Various counting problems [Kahn ’01, Friedgut-Kahn ’98, Brightwell-Tetali ’03,

Galvin-Tetali ’04, M.-Tetali ’07, Johnson-Kontoyiannis-M.’09]

Entropy in Additive Combinatorics

• Ruzsa ’09 (pioneered this approach, formulated basic questions)

• M.-Marcus-Tetali ’10, ’12 (entropic “direct” theory, including Plünnecke-
Ruzsa inequalities)

• Tao ’10 (entropic “inverse” theory, including Freiman’s theorem)



Our Goal

So far, “entropy theory” in additive combinatorics has been focused on
discrete abelian groups. Can we develop a theory that makes sense also
in continuous settings, e.g., Rn?

Why should we care?

• Probability: Related to basic questions. E.g.: rate of convergence in the
(entropic) CLT

• Additive combinatorics: A thriving field in which discrete abelian groups
have been well studied, but entropy techniques may be useful in more
general settings that are under active investigation

• Convex geometry: Has fascinating unsolved problems that connect to
high-dimensional probability and functional analysis. Understanding the
entropy of sums of continuous RV’s is useful in the context of the “ge-
ometrization of probability” program popularized by V. Milman

• Information theory: Studies fundamental limits of communication sys-
tems. Additive combinatorics has led to recent advances [Etkin-Ordentlich ’09,
Wu-Shamai-Verdú ’12]



Continuous Entropy

•When random variable X = (X1, . . . , Xn) has density f (x) on Rn, the
entropy of X is

h(X) = h(f ) := −
∫

Rn
f (x) log f (x)dx = E[− log f (X)]

• The relative entropy between the distributions of X ∼ f and Y ∼ g is

D(f‖g) =
∫

f (x) log
f (x)

g(x)
dx

For any f, g, D(f‖g) ≥ 0 with equality iff f = g

Why are they relevant?

• Entropy is a measure of randomness

• Relative Entropy is a very useful notion of “distance” between probability
measures (non-negative, and dominates several of the usual distances,
although non-symmetric)



A Unified Setting

Let G be a Hausdorff topological group that is abelian and locally compact,
and λ be a Haar measure on G. If µ * λ is a probability measure on G,
the entropy of X ∼ µ is defined by

h(X) = −
∫

dµ

dλ
(x) log

dµ

dλ
(x)λ(dx)

Remarks

• In general, h(X) may or may not exist; if it does, it takes values in the
extended real line [−∞,+∞]

• If G is compact and λ is the Haar (“uniform”) probability measure on G,
then h(X) = −D(µ‖λ) ≤ 0 for every RV X

• Covers both the classical cases: G discrete with counting measure, and
G = Rn with Lebesgue measure



A Question and an Answer

Setup: Let Y and Y ′ be i.i.d. random variables (continuous, with density
f). As usual, the differential entropy is h(Y ) = E[− log f (Y )]

Question

How different can h(Y + Y ′) and h(Y − Y ′) be?

First answer [Lapidoth–Pete ’08]

The entropies of the sum and difference of two i.i.d. random variables can
differ by an arbitrarily large amount

Precise formulation: Given any M > 0, there exist i.i.d. random variables
Y, Y ′ of finite differential entropy, such that

h(Y − Y ′)− h(Y + Y ′) > M (Ans. 1)



A Question and another Answer

Question

If Y and Y ′ are i.i.d. continuous random variables, how different can
h(Y + Y ′) and h(Y − Y ′) be?

Our answer [Kontoyiannis–M.’12]

The entropies of the sum and difference of two i.i.d. random variables are
not too different

Precise formulation: For any two i.i.d. random variables Y, Y ′ with finite
differential entropy:

1

2
≤ h(Y + Y ′)− h(Y )

h(Y − Y ′)− h(Y )
≤ 2 (Ans. 2)



What do the two Answers tell us?

Together, they suggests that the natural quantities to consider are the dif-
ferences

∆+ = h(Y + Y ′)− h(Y ) and ∆− = h(Y − Y ′)− h(Y )

Then (Ans. 1) states that the difference ∆+ −∆− can be arbitrarily large,
while (Ans. 2) asserts that the ratio ∆+/∆− must always lie between 1

2 and
2

Why is this interesting?

• Seems rather intriguing in its own right

• Observe that ∆+ and ∆− are affine-invariant; so these facts are related
to the shape of the density

• This statement for discrete random variables (one half of which follows
from [Ruzsa ’09, Tao ’10], and the other half of which follows from [M.-

Marcus-Tetali ’12]) is the exact analogue of the inequality relating doubling
and difference constants of sets in additive combinatorics

• This and possible extensions may be relevant for studies of “polarization”
phenomena and/or interference alignment in information theory



Half the proof

Want to show: If Y, Y ′ are i.i.d.,

h(Y + Y ′)− h(Y ) ≤ 2[h(Y − Y ′)− h(Y )]

Proof: If Y, Y ′, Z are independent random variables, then the Submodularity
Lemma says

h(Y + Y ′ + Z) + h(Z) ≤ h(Y + Z) + h(Y ′ + Z) [M. ’08]

Since h(Y + Y ′) ≤ h(Y + Y ′ + Z),

h(Y + Y ′) + h(Z) ≤ h(Y + Z) + h(Y ′ + Z) (1)

Taking now Y, Y ′ to be i.i.d. and Z to be an independent copy of −Y ,

h(Y + Y ′) + h(Y ) ≤ 2h(Y − Y ′)

which is the required upper bound

Remark: The other half would follow similarly if we could prove the following
slight variant of (1):

h(Y−Y ′) + h(Z) ≤ h(Y + Z) + h(Y ′ + Z)

This is the entropy analogue of the Ruzsa triangle inequality and is a bit
more intricate to prove



The Submodularity Lemma

Given independent G-valued RVs X1, X2, X3 with finite entropies,

h(X1 +X2 +X3) + h(X2) ≤ h(X1 +X2) + h(X3 +X2) [M. ’08]

Remarks

• For discrete groups, the Lemma is implicit in Kăımanovich-Vershik ’83, but was redis-
covered and significantly generalized by M.-Marcus-Tetali ’12 en route to proving some
conjectures of Ruzsa

• Discrete entropy is subadditive; trivially,

H(X1 +X2) ≤ H(X1, X2) ≤ H(X1) +H(X2)

This corresponds to putting X2 = 0 in discrete form of the Lemma

• Continuous entropy is not subadditive; it is easy to construct examples with

h(X1 +X2) > h(X1) + h(X2)

Note that putting X2 = 0 in the Lemma is no help since h(const.) = −∞



Proof of Submodularity Lemma

Lemma A: (“Data processing inequality”) The mutual information cannot
increase when one looks at functions of the random variables:

I(g(Z);Y ) ≤ I(Z;Y ).

Lemma B: If Xi are independent RVs, then

I(X1 +X2;X1) = H(X1 +X2)−H(X2).

Proof of Lemma B

Since conditioning reduces entropy,

h(X1 +X2)− h(X2) = h(X1 +X2)− h(X2|X1) [independence of Xi]

= h(X1 +X2)− h(X1 +X2|X1) [translation-invariance]

= I(X1 +X2;X1)

Proof of Submodularity Lemma

I(X1 +X2 +X3;X1)
(a)
≤ I(X1 +X2, X3;X1)

(b)
= I(X1 +X2;X1)

where (a) follows from Lemma A and (b) follows from independence

By Lemma B, this is the same as

h(X1 +X2 +X3) + h(X2) ≤ h(X1 +X2) + h(X2 +X3)



Aside: Applications in Convex Geometry

Continuous Plünnecke-Ruzsa inequality: Let A and B1, . . . , Bn be convex
bodies in Rd, such that for each i,

∣∣∣∣A + Bi

∣∣∣∣

1
d

≤ ci|A|
1
d.

Then ∣∣∣∣A +
∑

i∈[n]

Bi

∣∣∣∣

1
d

≤
[ n∏

i=1

ci

]
|A|1d

The proof combines the Submodularity Lemma with certain reverse Hölder-
type inequalities developed in [Bobkov-M.’12]

Reverse Entropy Power Inequality: The Submodularity Lemma is one in-
gredient (along with a deep theorem of V. Milman on the existence of
“M -ellipsoids”) used in Bobkov-M.’11, ’12 to prove a reverse entropy power
inequality for convex measures (generalizing the reverse Brunn-Minkowski
inequality)
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Non-Gaussianity

For X ∼ f in Rn, its relative entropy from Gaussianity is

D(X) = D(f ) := D(f‖fG),

where fG is the Gaussian with the same mean and covar. matrix as X

Observe:

• For any density f , its non-Gaussianity D(f ) = h(fG)− h(f )

Proof: Gaussian density is exponential in first two moments

• Thus Gaussian is MaxEnt: N(0, σ2) has maximum entropy among all
densities on R with variance ≤ σ2

Proof: D(f ) ≥ 0



Towards the Entropic CLT

Two observations . . .

• Gaussian is MaxEnt: N(0, σ2) has maximum entropy among all densities
on R with variance ≤ σ2

• Let Xi be i.i.d. with EX1 = 0 and EX2
1 = σ2.

For the CLT, we are interested in SM :=
1√
M

M∑

i=1

Xi

The CLT scaling preserves variance

suggest . . .

Question: Is it possible that the CLT may be interpreted like the 2nd law of
thermodynamics, in the sense that h(SM)monotonically increases inM until
it hits the maximum entropy possible (namely, the entropy of the Gaussian)?



Entropic Central Limit Theorem

If D(SM) < ∞ for some M , then as M → ∞,

D(SM) ↓ 0 or equivalently, h(SM) ↑ h(N(0, σ2))

Convergence shown by Barron ’86; monotonicity shown by Artstein-Ball-Barthe-

Naor ’04 with simple proof by Barron–M.’07

Remarks

• The proof in Barron–M.’07 of a general inequality that implies monotonicity is a direct
consequence of 3 ingredients:

– An (almost) standard reduction to statements about Fisher information of sums

– An integration-by-parts trick to reduce the desired Fisher information inequality to
a variance inequality

– A proof of the variance inequality, which generalizes Hoeffding’s variance bounds for
U -statistics

• Question: Can such a “2nd law” interpretation be given to other limit theorems in
probability?
Answer: Yes, but it is harder to do so, and the theory is incomplete

E.g.: Partial results in the Compound Poisson case by [Johnson-Kontoyiannis-M.’09,
Barbour-Johnson-Kontoyiannis-M.’10]



Original Entropy Power Inequality

If X1 and X2 are independent RVs,

e2h(X1+X2) ≥ e2h(X1) + e2h(X2) [Shannon ’48, Stam ’59]

with equality if and only if both X1 and X2 are Gaussian

Remarks

• Implies the Gaussian logarithmic Sobolev inequality in 3 lines

• Implies Heisenberg’s uncertainty principle (stated using Fourier trans-
forms for unit vectors in L2(Rn))

• Since h(aX) = h(X) + log |a|, implies for i.i.d. Xi,

h

(
X1 +X2√

2

)
≥ h(X1)

Thus we have monotonicity for doubling sample size: h(S2n) ≥ h(Sn)
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An elementary observation

If Xi are independent,

h(X1) + h(X2) = h(X1, X2)

= h

(
X1 +X2√

2
,
X1 −X2√

2

)

≤ h

(
X1 +X2√

2

)
+ h

(
X1 −X2√

2

)

When X1 and X2 are IID. . .

• If X1 has a symmetric (even) density, this immediately yields h(S2) ≥
h(S1) in the CLT

• If h(X1 −X2) < h(X1 +X2)− C, then

h(Z) ≥ h

(
X1 +X2√

2

)
> h(X1) +

C

2

so that D(X1) >
C
2

• Thus any distribution of X for which |h(X1−X2)−h(X1+X2)| is large
must be far from Gaussianity



What does small doubling mean?

Let X be a R-valued RV with finite (continuous) entropy and variance σ2.
The EPI implies h(X+X ′)−h(X) ≥ 1

2 log 2, with equality iff X is Gaussian

A (Conditional) Freiman theorem in Rn

If X has finite Poincaré constant R = R(X), and

h(X +X ′)− h(X) ≤ 1
2 log 2 + C, (2)

then X is approximately Gaussian in the sense that

D(X) ≤
(2R
σ2

+ 1
)
C

Remarks

• Follows from a convergence rate result in the entropic CLT obtained independently by
[Johnson-Barron ’04] and [Artstein-Ball-Barthe-Naor ’04]

• A construction of [Bobkov-Chistyakov-Götze ’11] implies that in general such a result
does not hold

• A sufficient condition for small doubling is log-concavity: in this case, h(X + X ′) ≤
h(X) + log 2 and h(X −X ′) ≤ h(X) + 1

• There are still structural conclusions to be drawn just from (2). . .



Summary

• Took some initial steps towards developing an entropy theory for additive
combinatorics in the general abelian setting

• Inequalities from this theory have applications in convex geometry/geometric
functional analysis

• Looking at limit theorems using entropy is very natural and intuitive, and
this study is also related to “continuous additive combinatorics”

Thank you!

◦ − ◦ − ◦


