An asymptotic result on Skorokhod problem in an orthant

S.Ramasubramanian
Indian Statistical Institute
Bangalore

Joint work with
Offer Kella, Hebrew Univ., Jerusalem

Talk at IISc.-Conference, Bangalore

Jan. 9, 2013

Abstract

We consider the problem of asymptotic irrelevance of initial condition for the Skorokhod problem in an orthant. A characterization of this property is given. Also a useful sufficient condition is presented. Some implications for stochastic processes are also pointed out. This is a joint work with Offer Kella
$G=\mathbb{R}_{+}^{d}=\left\{x \in \mathbb{R}^{d}: x_{i} \geq 0 \forall i\right\} d$-dimensional orthant
$a \geq b$ denotes $a_{i} \geq b_{i} \forall i$
$a>b$ denotes $a_{i}>b_{i} \forall i$
$R=I-P d \times d$ reflection matrix
$P=\left(\left(P_{i j}\right)\right), P_{i i}=0, P_{i j} \geq 0, j \neq i$,
spectral radius of $P<1$
$R^{-1}=(I-P)^{-1}=I+P+P^{2}+\cdots$ has nonnegative entries
Given $a \in G, X(\cdot)$ an \mathbb{R}^{d} - valued r.c.l.I. function on $[0, \infty)$, with $X(0)=0$

$\mathrm{SP}(a+X(\cdot), R):$ contd.

Find \mathbb{R}^{d} - valued r.c.I.I. functions $Y^{(a)}, Z^{(a)}$ such that

- $Z^{(a)}(t)=a+X(t)+R Y^{(a)}(t)$ for all t; (Skorokhod equation)
- $Z^{(a)}(t) \in G$ for all $t \geq 0$ (constraint)
- $Y^{(a)}(0)=0, Y_{i}^{(a)}(\cdot)$ nondecreasing for all i;
- $Y_{i}^{(a)}(t)-Y_{i}^{(a)}(s)=\int_{(s, t]} 1_{\{0\}}\left(Z_{i}^{(a)}(u)\right) d Y_{i}^{(a)}(u), 0 \leq s \leq t$;

So $Y_{i}^{(a)}(\cdot)$ can increase only when $Z_{i}^{(a)}(\cdot)=0$ (minimality)
$Z^{(a)}(\cdot)$ regulated/reflected part
$Y^{(a)}(\cdot)$ pushing part

$\mathrm{SP}(a+X(\cdot), R):$ contd.

$d=1 \Rightarrow G=[0, \infty), R=I=1$; normal reflection
Explicit solution given by

- $y^{(a)}(t)=\sup _{0 \leq s \leq t} \max \{0,-(a+x(s))\}$
- $z^{(a)} t=a+x(t)+y^{(a)}(t), t \geq 0$

For $d \geq 2$, one-dimensional result above + spectral radius condition \Rightarrow appropriate map on $(D([0, \infty): G)) \times(D([0, \infty): G))$ having unique fixed point \Rightarrow unique solution to $\mathrm{SP}(a+X(\cdot), R)$

Also solution map $a+X(\cdot) \mapsto\left(Y^{(a)}(\cdot), Z^{(a)}(\cdot)\right)$ Lipschitz continuous

Harrison and Reiman (1981), many others ...

Question (Q)

When is

$$
\lim _{t \rightarrow \infty} Z^{(a)}(t)-Z^{(0)}(t)=0
$$

for all $a \in G$?

For \mathbb{R}^{d} - valued r.c.I.I. function f with $f(0) \in G$ denote $\Psi(f)$: regulated part (z part) of solution to $\operatorname{SP}(f, R)$ $\Phi(f)$: pushing part (y part) of solution to $\operatorname{SP}(f, R)$

So $Y^{(a)}(\cdot)=\Phi(a+X(\cdot)), Z^{(a)}(\cdot)=\Psi(a+X(\cdot))$

Significance of (Q)

Suppose X arises as sample paths of a stochastic process, again denoted $X(\cdot)$ such that
$X(0)=0$ a.s.,
$X(\cdot)$ has stationary ergodic increments (not necessarily independent increments) with finite mean,
$R^{-1}(E(X(1)-X(0)))<0$ (componentwise)
In particular, $\{X(t+s)-X(s): t \geq 0\}={ }^{d}\{X(t)-X(0): t \geq 0\}$ in distribution as processes for all s, and
$\left.\frac{1}{t} X(t) \rightarrow E(X(1))-X(0)\right) \in \mathbb{R}^{d}$ a.s.

Significance of (Q) : contd.

Then it is known (Kella and Whitt (1996)) there is G - valued random variable ξ such that

- $\Psi(X)(t) \rightarrow^{d} \xi$
- $\Psi(\xi+X(\cdot))$ is a stationary process

So $\Psi(\xi+X(t))={ }^{d} \xi$ for all t, but ξ may not be independent of the process $X(\cdot)$

This means: If the assumption $X(0)=0$ is dropped, then there is G - valued random variable $\tilde{\xi}$ such that $\Psi(\tilde{\xi}+X(\cdot))$ is stationary, and $\Phi(\tilde{\xi}+X(\cdot))$ has stationary increments; that is, $\{\Psi(X(t)): t \geq 0\}$ is tight and has a stationary version

Significance of (Q) : contd.

Missing aspects:
Q_{1} Does there exist a limiting distribution for any initial $X(0)$?
Q_{2} Does the limiting distribution depend on $X(0)$?
Q_{3} Is the stationary version unique?
Note: $X(\cdot)=$ Brownian motion with mean vector μ and $R^{-1} \mu<0$ imply "Yes" to $(Q),\left(Q_{1}\right)-\left(Q_{3}\right)$ (thanks to positive recurrence of RBM $\Psi(X)$ (Harrison and Williams(1987))

Not clear even when $X(\cdot)$ is a Levy process
$" Y e s "$ to $(Q) \Rightarrow " Y e s "$ to $\left(Q_{1}\right),\left(Q_{2}\right),\left(Q_{3}\right)$
See Kella and Whitt (1996), Konstantopoulos, Last and Lin (2004)

Some conjectures

Some suggested sufficient conditions (weaker to stronger):

- $\lim _{t \rightarrow \infty} R^{-1} X(t)=-\infty$
- $\lim \sup _{t \rightarrow \infty} \frac{1}{t} R^{-1} X(t)<0$
- $\lim _{t \rightarrow \infty} \frac{1}{t} X(t)=x$ exists, $R^{-1} x<0$

All componentwise; (here $X(\cdot)$ r.c.I.l. function)

Results: Theorem 1

Theorem

Fix $1 \leq i \leq d$. If

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} X_{i}(t)=-\infty, \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\liminf _{t \rightarrow \infty}\left(R^{-1} X\right)_{i}(t)=-\infty \tag{2}
\end{equation*}
$$

then for every $a \in G$,

$$
\lim _{t \rightarrow \infty} Z_{i}^{(a)}(t)-Z_{i}^{(0)}(t)=0
$$

Results: Theorem 2

Theorem

Fix $1 \leq i \leq d$. The following are equivalent:

- $\lim _{t \rightarrow \infty} Z_{i}^{(a)}(t)-Z_{i}^{(0)}(t)=0$, for all $a \in G$
- $\lim _{t \rightarrow \infty} Y_{i}^{(a)}(t)=+\infty$, for some $a \in G$
- $\lim _{t \rightarrow \infty} Y_{i}^{(a)}(t)=+\infty$, for all $a \in G$

Some implications, examples

Corollary

Let $X(\cdot)$ be a d-diml. Levy process such that
$E|X(1)-X(0)|<\infty, R^{-1} E(X(1)-X(0))<0$.
Then the corresponding reflected Levy process $Z(\cdot)=\Psi(X)(\cdot)$, a
Markov process, has a unique stationary probability distribution, and converges to this stationary distribution for any initial condition
(1),(2) weaker than any of the earlier suggested sufficient conditions. So (Q) and hence $\left(Q_{1}\right)-\left(Q_{3}\right)$ have satisfactory answers

Implications, examples, ...

Set up deterministic; no probabilistic assumptions
Markovian structure or existence of stationary distribution not required
So "uniqueness" question separated from "existence" question

Example

$X(\cdot) d$-diml. Brownian motion, $R=I$.
So $Z^{(a)}(\cdot)$ reflected standard BM with normal reflection, starting at $a \in G$
We know $\lim \inf _{t \rightarrow \infty} X_{i}(t)=-\infty$ a.s. for all i
Hence $Z^{(a)}(t)-Z^{(0)}(t) \rightarrow 0$ a.s. as $t \rightarrow \infty$ for all $a \in G$
For $d \geq 3 Z(\cdot)$ is transient; for $d=1,2 Z(\cdot)$ is null recurrent So no stationary probability distribution

Implications, examples, ...

Example

$X_{1}(\cdot), \cdots, X_{d}(\cdot)$ independent renewal risk processes
(Sparre-Andersen processes)

$$
X_{i}(t)=c_{i} t-\sum_{\ell=1}^{N_{i}(t)} U_{\ell}^{(i)}(t), t \geq 0,1 \leq i \leq d
$$

$\left\{N_{j}(\cdot)\right\},\left\{U_{\ell}^{(i)}: \ell \geq 1\right\}, 1 \leq i, j \leq d$ independent families of r.v.'s, $N_{i}(\cdot)$ renewal counting process with i.i.d. interarrivals $A_{\ell}^{(i)}, \ell \geq 1$, for $1 \leq i \leq d$. Assume

$$
c_{i}=\frac{E\left(U_{1}^{(i)}\right)}{E\left(A_{1}^{(i)}\right)}, 1 \leq i \leq d
$$

Example: contd.

Example

So $E\left(X_{i}(t)\right)=0, \forall t, i$; it can be shown that

$$
\begin{aligned}
\limsup _{t \rightarrow \infty} X_{i}(t) & =+\infty, \text { a.s. } \\
\liminf _{t \rightarrow \infty} X_{i}(t) & =-\infty, \text { a.s., } 1 \leq i \leq d
\end{aligned}
$$

Take $X(\cdot)=\left(X_{1}(\cdot), \cdots, X_{d}(\cdot)\right), R=I$, so normal reflection Corresponding reflected process $Z^{(a)}(\cdot)$ is not Markov, in general; also no limiting probability distribution By Theorem 1, $Z^{(a)}(t)-Z^{(0)}(t) \rightarrow 0$ with probability 1

Implications, examples, ...

Example

Sufficient condition (1),(2) in Theorem 1 not necessary for $d \geq 2$

$$
\begin{aligned}
X_{2}(t)=-X_{1}(t) & =t|\sin t|, t \geq 0 \\
R & =\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
Y_{1}^{(0)}(t) & \rightarrow+\infty \\
Y_{2}^{(0)}(2 \pi n) & \leq Y_{1}^{(0)}(2 \pi n) \rightarrow+\infty
\end{aligned}
$$

So by Theorem 2

$$
\lim _{t \rightarrow \infty} Z^{(a)}(t)-Z^{(0)}(t)=0, a \in G
$$

Implications, examples, ...

Example

Theorem 2 is not equivalent to

$$
\lim _{t \rightarrow \infty} Z^{(a)}(t)-Z^{(0)}(t)=0, \text { for some } a \in G
$$

One dimensional counterexample: $X(t)=-\min \{t, 1\}$
Then for $a \geq 0, Z^{(a)}(t)=\max \{0, a-\{t, 1\}\}$
So, if $a \leq 1$, then $Z^{(a)}(t)=0$ for all $t \geq a$
If $a>1$, then $Z^{(a)}(t)=a-1$ for all $t \geq 1$
Note that $Z^{(0)}(\cdot) \equiv 0$
Thus Theorem 2 holds for $0 \leq a \leq 1$, but does not hold for $a>1$

Next example indicates domains other than orthants may not be very simple to handle

Implications, examples, ...

Example

$D \subset \mathbb{R}^{2}$ bounded domain, $x, \hat{x} \in D$
$U(\cdot), \hat{U}(\cdot)$ reflected Brownian motion with normal reflection starting at x, \hat{x} resply.
When does

$$
\begin{equation*}
|U(t)-\hat{U}(t)| \quad \rightarrow \quad 0 ? \tag{3}
\end{equation*}
$$

If D is "Lip" domain, or if the boundary of D is a polygon or finite union of disjoint polygons, then (3) holds. Uniform distribution on D is the unique stationary distribution, spectral theory of self-adjoint operators, connection with complex function theory, ... among facts/ tools used; Burdzy and Chen (2002). See also Cranston and Le Jan (1990), Burdzy, Chen and Jones (2006)

Thank you

Talk based on

- O. Kella and S. Ramasubramanian: Asymptotic irrelevance of initial conditions for Skorokhod reflection mapping on the nonnegative orthant. Mathematics of Operations Research 37 (2012) 301 - 312.

Extension of sufficient conditions in Theorem 1 to some cases with nonconstant reflection and drift are also given

