An asymptotic result on Skorokhod problem in an orthant

S.Ramasubramanian Indian Statistical Institute Bangalore

Joint work with Offer Kella, Hebrew Univ., Jerusalem

Talk at IISc.-Conference, Bangalore

Jan. 9, 2013

SP: Asymptotic result

We consider the problem of asymptotic irrelevance of initial condition for the Skorokhod problem in an orthant. A characterization of this property is given. Also a useful sufficient condition is presented. Some implications for stochastic processes are also pointed out. This is a joint work with Offer Kella

$$G = \mathbb{R}^d_+ = \{x \in \mathbb{R}^d : x_i \ge 0 \forall i\} \ d$$
-dimensional orthant

$$a \ge b$$
 denotes $a_i \ge b_i \forall i$
 $a > b$ denotes $a_i > b_i \forall i$

 $R = I - P \ d \times d$ reflection matrix

$$P = ((P_{ij})), P_{ii} = 0, P_{ij} \ge 0, j \ne i,$$

spectral radius of $P < 1$
 $R^{-1} = (I - P)^{-1} = I + P + P^2 + \cdots$ has nonnegative entries

Given $a \in G$, $X(\cdot)$ an \mathbb{R}^d -valued r.c.l.l. function on $[0, \infty)$, with X(0) = 0

白 ト ・ ヨ ト ・

Find \mathbb{R}^d -valued r.c.l.l. functions $Y^{(a)}, Z^{(a)}$ such that

 $Z^{(a)}(\cdot)$ regulated/ reflected part $Y^{(a)}(\cdot)$ pushing part

♬▶ ◀ 늘 ▶ ◀

 $d = 1 \Rightarrow G = [0, \infty), R = I = 1$; normal reflection Explicit solution given by

•
$$y^{(a)}(t) = \sup_{0 \le s \le t} \max\{0, -(a + x(s))\}$$

• $z^{(a)}t = a + x(t) + y^{(a)}(t), \ t \ge 0$

For $d \ge 2$, one-dimensional result above + spectral radius condition \Rightarrow appropriate map on $(D([0,\infty):G)) \times (D([0,\infty):G))$ having unique fixed point \Rightarrow unique solution to $SP(a + X(\cdot), R)$

Also solution map $a + X(\cdot) \mapsto (Y^{(a)}(\cdot), Z^{(a)}(\cdot))$ Lipschitz continuous

Harrison and Reiman (1981), many others ...

When is

$$\lim_{t \to \infty} Z^{(a)}(t) - Z^{(0)}(t) = 0$$

for all $a \in G$?

SP: Asymptotic result

æ

▲□ ▶ ▲ 三 ▶ ▲

For \mathbb{R}^d – valued r.c.l.l. function f with $f(0) \in G$ denote $\Psi(f)$: regulated part (z part) of solution to SP(f, R) $\Phi(f)$: pushing part (y part) of solution to SP(f, R) So $Y^{(a)}(\cdot) = \Phi(a + X(\cdot)), Z^{(a)}(\cdot) = \Psi(a + X(\cdot))$ Suppose X arises as sample paths of a stochastic process, again denoted $X(\cdot)$ such that

X(0) = 0 a.s.,

 $X(\cdot)$ has stationary ergodic increments (not necessarily independent increments) with finite mean,

 $R^{-1}(E(X(1) - X(0))) < 0$ (componentwise)

In particular, $\{X(t+s) - X(s) : t \ge 0\} =^d \{X(t) - X(0) : t \ge 0\}$ in distribution as processes for all s, and

$$rac{1}{t}X(t)
ightarrow E(X(1))-X(0))\in \mathbb{R}^d$$
 a.s.

Then it is known (Kella and Whitt (1996)) there is G-valued random variable ξ such that

- $\Psi(X)(t) \rightarrow^d \xi$
- $\Psi(\xi + X(\cdot))$ is a stationary process

So $\Psi(\xi + X(t)) =^d \xi$ for all t,

but ξ may not be independent of the process $X(\cdot)$

This means: If the assumption X(0) = 0 is dropped, then there is G-valued random variable $\tilde{\xi}$ such that $\Psi(\tilde{\xi} + X(\cdot))$ is stationary, and $\Phi(\tilde{\xi} + X(\cdot))$ has stationary increments; that is, $\{\Psi(X(t)) : t \ge 0\}$ is tight and has a stationary version

Missing aspects:

- Q_1 Does there exist a limiting distribution for any initial X(0)?
- Q_2 Does the limiting distribution depend on X(0)?
- Q_3 Is the stationary version unique?

Note: $X(\cdot) =$ Brownian motion with mean vector μ and $R^{-1}\mu < 0$ imply "Yes" to $(Q), (Q_1) - (Q_3)$ (thanks to positive recurrence of RBM $\Psi(X)$ (Harrison and Williams(1987))

Not clear even when $X(\cdot)$ is a Levy process

"Yes" to $(Q) \Rightarrow$ "Yes" to $(Q_1), (Q_2), (Q_3)$

See Kella and Whitt (1996), Konstantopoulos, Last and Lin (2004)

同 ト イ ヨ ト イ ヨ ト

Some suggested sufficient conditions (weaker to stronger):

•
$$\lim_{t\to\infty} R^{-1}X(t) = -\infty$$

•
$$\limsup_{t\to\infty} \frac{1}{t}R^{-1}X(t) < 0$$

•
$$\lim_{t\to\infty} \frac{1}{t}X(t) = x$$
 exists, $R^{-1}x < 0$

All componentwise; (here $X(\cdot)$ r.c.l.l. function)

Theorem

Fix $1 \leq i \leq d$. If

$$\liminf_{t\to\infty} X_i(t) = -\infty, \qquad (1)$$

or

$$\liminf_{t\to\infty} (R^{-1}X)_i(t) = -\infty, \qquad (2)$$

then for every $a \in G$,

$$\lim_{t \to \infty} Z_i^{(a)}(t) - Z_i^{(0)}(t) = 0$$

▲□→ ▲ □→ ▲

글▶ 글

Theorem

Fix $1 \le i \le d$. The following are equivalent:

• $\lim_{t \to \infty} Z_i^{(a)}(t) - Z_i^{(0)}(t) = 0$, for all $a \in G$

•
$$\lim_{t\to\infty} Y_i^{(a)}(t) = +\infty$$
, for some $a \in G$

•
$$\lim_{t\to\infty} Y_i^{(a)}(t) = +\infty$$
, for all $a \in G$

1 >

- **→** → **→**

э

Corollary

Let $X(\cdot)$ be a d-diml. Levy process such that $E|X(1) - X(0)| < \infty$, $R^{-1}E(X(1) - X(0)) < 0$. Then the corresponding reflected Levy process $Z(\cdot) = \Psi(X)(\cdot)$, a Markov process, has a unique stationary probability distribution, and converges to this stationary distribution for any initial condition

(1),(2) weaker than any of the earlier suggested sufficient conditions. So (Q) and hence $(Q_1) - (Q_3)$ have satisfactory answers

Set up deterministic; no probabilistic assumptions

Markovian structure or existence of stationary distribution not required

So "uniqueness" question separated from "existence" question

Example

 $X(\cdot)$ *d*-diml. Brownian motion, R = I. So $Z^{(a)}(\cdot)$ reflected standard BM with normal reflection, starting at $a \in G$ We know $\liminf_{t\to\infty} X_i(t) = -\infty$ a.s. for all *i* Hence $Z^{(a)}(t) - Z^{(0)}(t) \to 0$ a.s. as $t \to \infty$ for all $a \in G$ For $d \ge 3 Z(\cdot)$ is transient; for $d = 1, 2 Z(\cdot)$ is null recurrent So no stationary probability distribution

 $X_1(\cdot), \cdots, X_d(\cdot)$ independent renewal risk processes (Sparre-Andersen processes)

$$X_i(t) \;\; = \;\; c_i t - \sum_{\ell=1}^{N_i(t)} U_\ell^{(i)}(t), \; t \geq 0, 1 \leq i \leq d$$

 $\{N_j(\cdot)\}, \{U_\ell^{(i)} : \ell \ge 1\}, 1 \le i, j \le d \text{ independent families of r.v.'s,} N_i(\cdot) \text{ renewal counting process with i.i.d. interarrivals } A_\ell^{(i)}, \ell \ge 1, \text{ for } 1 \le i \le d. \text{ Assume}$

$$c_i = rac{E(U_1^{(i)})}{E(A_1^{(i)})}, \ 1 \leq i \leq d$$

So $E(X_i(t)) = 0, \forall t, i$; it can be shown that

$$\begin{array}{lll} \limsup_{t \to \infty} X_i(t) &=& +\infty, \ \text{a.s.} \\ \liminf_{t \to \infty} X_i(t) &=& -\infty, \ \text{a.s.}, \ 1 \leq i \leq d \end{array}$$

Take $X(\cdot) = (X_1(\cdot), \cdots, X_d(\cdot)), R = I$, so normal reflection Corresponding reflected process $Z^{(a)}(\cdot)$ is not Markov, in general; also no limiting probability distribution By Theorem 1, $Z^{(a)}(t) - Z^{(0)}(t) \rightarrow 0$ with probability 1

Sufficient condition (1),(2) in Theorem 1 not necessary for $d \ge 2$

$$egin{array}{rcl} X_2(t) = -X_1(t) &=& t |\sin t|, \ t \geq 0, \ R &=& igg(egin{array}{cc} 1 & 0 \ -1 & 1 \end{array} igg) \end{array}$$

Then

$$egin{array}{rcl} Y_1^{(0)}(t) & o & +\infty \ Y_2^{(0)}(2\pi n) & \leq & Y_1^{(0)}(2\pi n) o +\infty \end{array}$$

So by Theorem 2

$$\lim_{t \to \infty} Z^{(a)}(t) - Z^{(0)}(t) = 0, \ a \in G$$

A (1) > A (2) > A

Theorem 2 is not equivalent to

$$\lim_{t \to \infty} Z^{(\mathsf{a})}(t) - Z^{(0)}(t) = 0,$$
 for some $\mathsf{a} \in G$

One dimensional counterexample: $X(t) = -\min\{t, 1\}$ Then for $a \ge 0$, $Z^{(a)}(t) = \max\{0, a - \{t, 1\}\}$ So, if $a \le 1$, then $Z^{(a)}(t) = 0$ for all $t \ge a$ If a > 1, then $Z^{(a)}(t) = a - 1$ for all $t \ge 1$ Note that $Z^{(0)}(\cdot) \equiv 0$ Thus Theorem 2 holds for $0 \le a \le 1$, but does not hold for a > 1

Next example indicates domains other than orthants may not be very simple to handle

♬▶ ◀ ☱ ▶ ◀

 $D \subset \mathbb{R}^2$ bounded domain, $x, \hat{x} \in D$ $U(\cdot), \hat{U}(\cdot)$ reflected Brownian motion with normal reflection starting at x, \hat{x} resply. When does

$$|U(t) - \hat{U}(t)| \rightarrow 0?$$
 (3)

If D is "Lip" domain, or if the boundary of D is a polygon or finite union of disjoint polygons, then (3) holds. Uniform distribution on D is the unique stationary distribution, spectral theory of self-adjoint operators, connection with complex function theory, ... among facts/ tools used; Burdzy and Chen (2002). See also Cranston and Le Jan (1990), Burdzy, Chen and Jones (2006)

Talk based on

• O. Kella and S. Ramasubramanian: Asymptotic irrelevance of initial conditions for Skorokhod reflection mapping on the nonnegative orthant. *Mathematics of Operations Research* **37** (2012) 301 – 312.

Extension of sufficient conditions in Theorem 1 to some cases with nonconstant reflection and drift are also given