Introduction Large deviations Fixed path 1 dim

On the existence of paths between points in high
level excursion sets of Gaussian random fields

Robert Adler, Elina Moldavskaya and Gennady Samorodnitsky

January 2013

Long int



Introduction

Let X = (X(t), t € RY) be a real-valued sample continuous
Gaussian random field.

Given a level u, the excursion set of X above the level u is the

random set
Ay ={teR?: X(t) > u}.

Much is know about the structure of the excursion set when the
field is smooth, and u is large (Adler and Taylor (2007), Azais and
Wschebor (2009)).
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Consider a large level v.

Question: given that two points in R? belong to the excursion
set, what is the probability that they belong to the same path
connected component of the excursion set?

Let a, b € R?, a#b. A path in R connecting a and b is a
continuous map ¢ : [0,1] — R? with £(0) = a, £(1) = b.

Denote the collection of all such paths by P(a,b). Estimate

P(H&efP(a,b): X(EW) >u, 0<v<1]|X(@)>u, X(b)>u>.



Introduction

The non-trivial part of the problem: estimate the probability
V,p(u) :=P((3 e P(a,b): X((v))>u, 0<v<1).

If the random field is stationary, we may assume that b = 0, and
use the notation V,.

If the domain of a random field is restricted to T C RY, and a, b
are in T, we consider

V,p(u) =P (3 €P(a,b): {(v) € T and X({(v)) >u, 0<v <1).
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Large deviations setup

Let A be the open set

A= Agp = {w € G(RY): 3¢ € Pa,b), w(E(v) >1,0< v < 1},

Co(RY) = {w = (w(t), teRY) € C(RY) . lim w(t)/|t] = o}.

[It]|—o0
We can write for u > 0
Vap(u)=P(u'X € A),

and use the large deviations results for Gaussian measures of
Deutschel and Stroock (1989).



Large deviations

The reproducing kernel Hilbert space (RKHS) K of the random
field X, is a subspace of C(R9).

Consider the space of finite linear combinations Zjlle ajX(t))
aeR tieRIforj=1,....k k=1,2,....

Its closure £ in the mean square norm is identified with H via the
injection £ — C(RY) given by

H = wy = (E(X(DH), te RY)
and the resulting norm

lwhll3e = E(H?).



Large deviations

Let X be stationary with spectral measure Fx.
The RKHS K can be identified with the subspace of L?(Fx) of

functions with even real parts and odd imaginary parts, via the
injection L2(Fx) — GCo(RY) given by

h— S(h) = </ 't h(x) Fx(dx), t e Rd> :
Rd
with the resulting norm

IS = Wl = [ TGO Fee).
Rd



Large deviations

Theorem 1 Let X = (X(t), t € R?) be a continuous stationary
Gaussian random field, with covariance function satisfying

limsup Rx(t) <0.

[[t]| =00
Then
.1 1
lim — log Wa(u) = —5(3)((a)7

u—o0 [

where

Cx(a) :=inf {/Rd |A(x)||? Fx(dx) : for some & € P(0,a)

/ e’ €M) h(x) Fx(dx) > 1,0 < v < 1} :
Rd



Large deviations

The constraints in the optimization problem in Theorem 1 are not
convex. However, for a fixed path, the constraints are convex, and
one can use the convex Lagrange duality.

Theorem 2 For a continuous stationary Gaussian random field X,

-1

Cx(a) = [ min / / Rx (£(u) — &(v)) p(du) p(dv)

gefp(o a) peM; ([0,1])

Here M; ([0, 1]) is the space of all probability measures on [0, 1].

An optimal path is a path of maximal Rx capacity.



Fixed path

Assume a path & € P(0,a) is fixed. Then the minimization problem

ueMm*”[]m]//RX &(v)) p(du) p(dv)

is the problem of finding a probability measures p of minimal
energy, or capacitory measures.

The set We € M;7([0,1]) over which the minimum is achieved is a
weakly compact convex subset of M; ([0, 1]).



Fixed path

If the feasible set for the primary problem is non-empty then, for
every € > 0,

P<sup
0<v<1

as u — 0o. Here H is primary optimal, and

LX) - xe(v)

u

25X(£(v))>u,0§v§1>—>0

xe(v) = E[X(E(v))He]. 0 < v<1.

Furthermore, there is a characterization of the optimal H; € £ and
the optimal € We.



Fixed path

Theorem 3
(i) For every € W¢ we have

1
He = Cx(ab; €) /0 X ((v)) i(dv)
with probability 1.

(ii) A probability measure u € M; ([0,1]) is a measure of minimal
energy if and only if

1
min /0 Rx (£(u), £(v)) u(dlu)

0<v<1

1 1
- /0 /O R (6(un), €(u2)) u(duy) () > 0.
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Remarks
@ By Theorem 3, the function

1
v r—)/ Rx (§(u), &(v)) p(du), 0 < v < 1,
0

is constant on the support of any measure ;1 € W¢. This
seems to indicate that the support of any measure of minimal
energy may not be ‘large’. However, this intuition holds only
in some cases.

@ If the random field is stationary, and the spectral measure is
of the full support, then the image of any measure 1 € W¢ on
the path £ is unique.
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One-dimensional case

In this case there is, essentially, a single path between two points.

Let X = (X(t), t € R) be a stationary continuous Gaussian
process. We are interested in understanding how the probability

W, (u) = P(X(t) >0, 0<t< a>

changes with a > 0, and what happens with the optimal
probability measures i, and limiting shapes x,.
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For some processes (in particular, those with a finite second
spectral moment), on short intervals we get an easy descrption.

Proposition 1 Suppose that for some a > 0
Rx(t) + Rx(a—t) > Rx(0) + Rx(a) >0 forall0 <t < a.

Then a measure in W, is given by

1 1
= Z6g+ =d1.
j 20+21

Furthermore, 5
x(a) = ==,
x(a) Rx(0) + Rx(a)
R _
o) = Rx(t) + Rx(a —t) 0<t<a
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In any case, the measure = (dp + 91)/2 does NOT remain
optimal for longer intervals.

Example 1 Consider the centered stationary Gaussian process
with the Gaussian covariance function

R(t) = e ¥/% teR.

Since the spectral measure has a Gaussian spectral density which is
of full support in R, for every a > 0 there is a unique (symmetric)
measure of minimal energy. Furthermore, the second spectral
moment is finite, so that, for a > 0 sufficiently small this process
satisfies the conditions of Proposition 1.
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The measure = (g + 91)/2 remains optimal for a < a; ~ 2.2079.
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In the next regime the optimal measure acquires a point in the
middle of the interval. This continues for a; < a < ap, ~ 3.9283.

limiting shape
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In the next regime the middle point of the optimal measure splits
in two and starts moving away from the middle. This continues for
a» < a < a3 ~ 5.4508.

a=4.5
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Example 2 Consider an Ornstein-Uhlenbeck process, i.e. a
centered stationary Gaussian process with the covariance function

R(t)=ell teR.

For this process the spectral measure has a Cauchy spectral
density, which has a full support in R. Therefore, for every a > 0
there is a unique (symmetric) measure of minimal energy.

In this case even the first spectral moment is infinite. Proposition
1 does not apply here.
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The optimal probability measure is

1 1 a
= 0 ) A
=2 e ot

where )\ is Lebesgue measure on (0, 1).

There are no phase transitions. We have
Cx(a) =(a+2)/2 foralla>0

and the limiting shape x, is identically equal to 1 on [0, a].
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Long intervals

As the length a of the interval increases, a difference between short
and long memory processes arises. In the short memory case, the
uniform measure is asymptotically optimal.

Theorem 4 Assume that Ry is positive, and satisfies

/OOOR(t)dt<oo.

Then, with X\ denoting the uniform probability measure on [0, 1],

JL’&%CX <a||_>r‘goa/ / Ry (a(u — v )A(du)A(dv))

27 R(t) dt’

-1
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In the long memory case the uniform measure is no longer
asymptotically optimal. We will assume that the covariance
function of the process is regularly varying at infinity:

Rx(t):@ 0<p<1l,

where L is slowly varying at infinity.

Consider the minimization problem with respect to Riesz kernel,

min 0<p <l
uer’([O,l])/ / |U - V‘ﬁ ’

An optimal measure pg exists, but it is different from the uniform
measure.
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Theorem 5 Assume that Ry is positive and regularly varying.
Then for any ug € Wg, the set of optimal measures for the Riesz

kernel,
(d
lim Ry(a / / ps(du)ps(dv)
a—00 |u — v‘ﬁ

In particular, Cx(a) is regularly varying with exponent f.



	Introduction
	Large deviations
	Fixed path
	1 dim
	Long int

