On the existence of paths between points in high level excursion sets of Gaussian random fields

Robert Adler, Elina Moldavskaya and Gennady Samorodnitsky

January 2013

Let $\mathbf{X}=\left(X(\mathbf{t}), \mathbf{t} \in \mathbb{R}^{d}\right)$ be a real-valued sample continuous Gaussian random field.

Given a level u, the excursion set of \mathbf{X} above the level u is the random set

$$
A_{u}=\left\{\mathbf{t} \in \mathbb{R}^{d}: X(\mathbf{t})>u\right\} .
$$

Much is know about the structure of the excursion set when the field is smooth, and u is large (Adler and Taylor (2007), Azaïs and Wschebor (2009)).

Consider a large level u.
Question: given that two points in \mathbb{R}^{d} belong to the excursion set, what is the probability that they belong to the same path connected component of the excursion set?

Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{d}, \mathbf{a} \neq \mathbf{b}$. A path in \mathbb{R}^{d} connecting \mathbf{a} and \mathbf{b} is a continuous map $\xi:[0,1] \rightarrow \mathbb{R}^{d}$ with $\xi(0)=\mathbf{a}, \xi(1)=\mathbf{b}$.

Denote the collection of all such paths by $\mathcal{P}(\mathbf{a}, \mathbf{b})$. Estimate
$P(\exists \xi \in \mathcal{P}(\mathbf{a}, \mathbf{b}): X(\xi(v))>u, 0 \leq v \leq 1 \mid X(\mathbf{a})>u, X(\mathbf{b})>u)$.

The non-trivial part of the problem: estimate the probability

$$
\Psi_{\mathbf{a}, \mathbf{b}}(u):=P(\exists \xi \in \mathcal{P}(\mathbf{a}, \mathbf{b}): X(\xi(v))>u, 0 \leq v \leq 1) .
$$

If the random field is stationary, we may assume that $\mathbf{b}=\mathbf{0}$, and use the notation Ψ_{a}.

If the domain of a random field is restricted to $T \subset \mathbb{R}^{d}$, and \mathbf{a}, \mathbf{b} are in T, we consider
$\Psi_{\mathbf{a}, \mathbf{b}}(u)=P(\exists \xi \in \mathcal{P}(\mathbf{a}, \mathbf{b}): \xi(v) \in T$ and $X(\xi(v))>u, 0 \leq v \leq 1)$.

Large deviations setup

Let A be the open set

$$
\begin{aligned}
& A \equiv A_{\mathbf{a}, \mathbf{b}}:=\left\{\omega \in C_{0}\left(\mathbb{R}^{d}\right): \exists \xi \in \mathcal{P}(\mathbf{a}, \mathbf{b}), \omega(\xi(v))>1,0 \leq v \leq 1\right\} \\
& C_{0}\left(\mathbb{R}^{d}\right)=\left\{\omega=\left(\omega(\mathbf{t}), \mathbf{t} \in \mathbb{R}^{d}\right) \in C\left(\mathbb{R}^{d}\right): \lim _{\|\mathbf{t}\| \rightarrow \infty} \omega(\mathbf{t}) /\|\mathbf{t}\|=0\right\}
\end{aligned}
$$

We can write for $u>0$

$$
\Psi_{\mathbf{a}, \mathbf{b}}(u)=P\left(u^{-1} \mathbf{X} \in A\right),
$$

and use the large deviations results for Gaussian measures of Deutschel and Stroock (1989).

The reproducing kernel Hilbert space (RKHS) \mathcal{H} of the random field \mathbf{X}, is a subspace of $C\left(\mathbb{R}^{d}\right)$.

Consider the space of finite linear combinations $\sum_{j=1}^{k} a_{j} X\left(\mathbf{t}_{j}\right)$ $a_{j} \in \mathbb{R}, \mathbf{t}_{j} \in \mathbb{R}^{d}$ for $j=1, \ldots, k, k=1,2, \ldots$

Its closure \mathcal{L} in the mean square norm is identified with \mathcal{H} via the injection $\mathcal{L} \rightarrow C\left(\mathbb{R}^{d}\right)$ given by

$$
H \rightarrow w_{H}=\left(E(X(\mathbf{t}) H), \mathbf{t} \in \mathbb{R}^{d}\right)
$$

and the resulting norm

$$
\left\|w_{H}\right\|_{\mathscr{H}}^{2}=E\left(H^{2}\right) .
$$

Let \mathbf{X} be stationary with spectral measure $F_{\mathbf{X}}$.
The RKHS \mathcal{H} can be identified with the subspace of $L^{2}\left(F_{\mathbf{X}}\right)$ of functions with even real parts and odd imaginary parts, via the injection $L^{2}\left(F_{\mathbf{X}}\right) \rightarrow C_{0}\left(\mathbb{R}^{d}\right)$ given by

$$
h \rightarrow S(h)=\left(\int_{\mathbb{R}^{d}} e^{i(\mathbf{t}, \mathbf{x})} \bar{h}(\mathbf{x}) F_{\mathbf{X}}(d \mathbf{x}), \mathbf{t} \in \mathbb{R}^{d}\right)
$$

with the resulting norm

$$
\|S(h)\|_{\mathscr{H}}^{2}=\|h\|_{L^{2}\left(F_{\mathbf{x}}\right)}^{2}=\int_{\mathbb{R}^{d}}\|h(x)\|^{2} F_{\mathbf{X}}(d \mathbf{x})
$$

Theorem 1 Let $\mathbf{X}=\left(X(\mathbf{t}), \mathbf{t} \in \mathbb{R}^{d}\right)$ be a continuous stationary Gaussian random field, with covariance function satisfying

$$
\limsup _{\|\mathbf{t}\| \rightarrow \infty} R_{\mathbf{x}}(\mathbf{t}) \leq 0 .
$$

Then

$$
\lim _{u \rightarrow \infty} \frac{1}{u^{2}} \log \Psi_{\mathrm{a}}(u)=-\frac{1}{2} \mathcal{C}_{\mathbf{x}}(\mathbf{a})
$$

where

$$
\begin{gathered}
\mathcal{C}_{\mathbf{x}}(\mathbf{a}):=\inf \left\{\int_{\mathbb{R}^{d}}\|h(\mathbf{x})\|^{2} F_{\mathbf{X}}(d \mathbf{x}): \text { for some } \xi \in \mathcal{P}(\mathbf{0}, \mathbf{a})\right. \\
\\
\left.\int_{\mathbb{R}^{d}} e^{i(\xi(v), \mathbf{x})} \bar{h}(\mathbf{x}) F_{\mathbf{X}}(d \mathbf{x})>1,0 \leq v \leq 1\right\}
\end{gathered}
$$

The constraints in the optimization problem in Theorem 1 are not convex. However, for a fixed path, the constraints are convex, and one can use the convex Lagrange duality.

Theorem 2 For a continuous stationary Gaussian random field X,
$\mathcal{C}_{\mathbf{X}}(\mathbf{a})=\left[\sup _{\xi \in \mathcal{P}(\mathbf{0}, \mathbf{a})} \min _{\mu \in M_{1}^{+}([0,1])} \int_{0}^{1} \int_{0}^{1} R_{\mathbf{X}}(\xi(u)-\xi(v)) \mu(d u) \mu(d v)\right]^{-1}$.

Here $M_{1}^{+}([0,1])$ is the space of all probability measures on $[0,1]$.
An optimal path is a path of maximal R_{X} capacity.

Assume a path $\xi \in \mathcal{P}(\mathbf{0}, \mathbf{a})$ is fixed. Then the minimization problem

$$
\min _{\mu \in M_{1}^{+}([0,1])} \int_{0}^{1} \int_{0}^{1} R_{\mathbf{X}}(\xi(u), \xi(v)) \mu(d u) \mu(d v)
$$

is the problem of finding a probability measures μ of minimal energy, or capacitory measures.

The set $\mathcal{W}_{\xi} \subseteq M_{1}^{+}([0,1])$ over which the minimum is achieved is a weakly compact convex subset of $M_{1}^{+}([0,1])$.

If the feasible set for the primary problem is non-empty then, for every $\varepsilon>0$,

$$
P\left(\left.\sup _{0 \leq v \leq 1}\left|\frac{1}{u} X(\xi(v))-x_{\xi}(v)\right| \geq \varepsilon \right\rvert\, X(\xi(v))>u, 0 \leq v \leq 1\right) \rightarrow 0
$$

as $u \rightarrow \infty$. Here H_{ξ} is primary optimal, and

$$
x_{\xi}(v)=E\left[X(\xi(v)) H_{\xi}\right], 0 \leq v \leq 1
$$

Furthermore, there is a characterization of the optimal $H_{\xi} \in \mathcal{L}$ and the optimal $\mu \in \mathcal{W}_{\xi}$.

Theorem 3

(i) For every $\mu \in \mathcal{W}_{\xi}$ we have

$$
H_{\xi}=\mathcal{C}_{\mathbf{X}}(\mathbf{a}, \mathbf{b} ; \xi) \int_{0}^{1} X(\xi(v)) \mu(d v)
$$

with probability 1.
(ii) A probability measure $\mu \in M_{1}^{+}([0,1])$ is a measure of minimal energy if and only if

$$
\begin{gathered}
\min _{0 \leq v \leq 1} \int_{0}^{1} R_{\mathbf{X}}(\xi(u), \xi(v)) \mu(d u) \\
=\int_{0}^{1} \int_{0}^{1} R_{\mathbf{X}}\left(\xi\left(u_{1}\right), \xi\left(u_{2}\right)\right) \mu\left(d u_{1}\right) \mu\left(d u_{2}\right)>0 .
\end{gathered}
$$

Remarks

- By Theorem 3, the function

$$
v \mapsto \int_{0}^{1} R_{\mathbf{X}}(\xi(u), \xi(v)) \mu(d u), 0 \leq v \leq 1
$$

is constant on the support of any measure $\mu \in \mathcal{W}_{\xi}$. This seems to indicate that the support of any measure of minimal energy may not be 'large'. However, this intuition holds only in some cases.

- If the random field is stationary, and the spectral measure is of the full support, then the image of any measure $\mu \in \mathcal{W}_{\xi}$ on the path ξ is unique.

One-dimensional case

In this case there is, essentially, a single path between two points.
Let $\mathbf{X}=(X(t), t \in \mathbb{R})$ be a stationary continuous Gaussian process. We are interested in understanding how the probability

$$
\Psi_{a}(u)=P(X(t)>u, 0 \leq t \leq a)
$$

changes with $a>0$, and what happens with the optimal probability measures μ_{a} and limiting shapes x_{a}.

For some processes (in particular, those with a finite second spectral moment), on short intervals we get an easy descrption.

Proposition 1 Suppose that for some $a>0$

$$
R_{\mathbf{X}}(t)+R_{\mathbf{X}}(a-t) \geq R_{\mathbf{X}}(0)+R_{\mathbf{X}}(a)>0 \text { for all } 0 \leq t \leq a
$$

Then a measure in \mathcal{W}_{a} is given by

$$
\mu=\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1} .
$$

Furthermore,

$$
\begin{gathered}
C_{\mathbf{X}}(a)=\frac{2}{R_{\mathbf{X}}(0)+R_{\mathbf{X}}(a)} \\
x_{a}(t)=\frac{R_{\mathbf{X}}(t)+R_{\mathbf{X}}(a-t)}{R_{\mathbf{X}}(0)+R_{\mathbf{X}}(a)}, \quad 0 \leq t \leq a
\end{gathered}
$$

In any case, the measure $\mu=\left(\delta_{0}+\delta_{1}\right) / 2$ does NOT remain optimal for longer intervals.

Example 1 Consider the centered stationary Gaussian process with the Gaussian covariance function

$$
R(t)=e^{-t^{2} / 2}, t \in \mathbb{R}
$$

Since the spectral measure has a Gaussian spectral density which is of full support in \mathbb{R}, for every $a>0$ there is a unique (symmetric) measure of minimal energy. Furthermore, the second spectral moment is finite, so that, for $a>0$ sufficiently small this process satisfies the conditions of Proposition 1.

The measure $\mu=\left(\delta_{0}+\delta_{1}\right) / 2$ remains optimal for $a \leq a_{1} \approx 2.2079$.

In the next regime the optimal measure acquires a point in the middle of the interval. This continues for $a_{1}<a \leq a_{2} \approx 3.9283$.

$a=3.925$

In the next regime the middle point of the optimal measure splits in two and starts moving away from the middle. This continues for $a_{2}<a \leq a_{3} \approx 5.4508$.

Example 2 Consider an Ornstein-Uhlenbeck process, i.e. a centered stationary Gaussian process with the covariance function

$$
R(t)=e^{-|t|}, t \in \mathbb{R}
$$

For this process the spectral measure has a Cauchy spectral density, which has a full support in \mathbb{R}. Therefore, for every $a>0$ there is a unique (symmetric) measure of minimal energy.

In this case even the first spectral moment is infinite. Proposition 1 does not apply here.

The optimal probability measure is

$$
\mu=\frac{1}{a+2} \delta_{0}+\frac{1}{a+2} \delta_{1}+\frac{a}{a+2} \lambda,
$$

where λ is Lebesgue measure on $(0,1)$.
There are no phase transitions. We have

$$
C_{\mathbf{X}}(a)=(a+2) / 2 \text { for all } a>0
$$

and the limiting shape x_{a} is identically equal to 1 on $[0, a]$.

Long intervals

As the length a of the interval increases, a difference between short and long memory processes arises. In the short memory case, the uniform measure is asymptotically optimal.

Theorem 4 Assume that $R_{\mathbf{X}}$ is positive, and satisfies

$$
\int_{0}^{\infty} R(t) d t<\infty
$$

Then, with λ denoting the uniform probability measure on $[0,1]$,

$$
\begin{aligned}
\lim _{a \rightarrow \infty} \frac{1}{a} C_{\mathbf{X}}(a)=\left(\lim _{a \rightarrow \infty} a\right. & \left.\int_{0}^{1} \int_{0}^{1} R_{\mathbf{X}}(a(u-v)) \lambda(d u) \lambda(d v)\right)^{-1} \\
& =\frac{1}{2 \int_{0}^{\infty} R(t) d t}
\end{aligned}
$$

In the long memory case the uniform measure is no longer asymptotically optimal. We will assume that the covariance function of the process is regularly varying at infinity:

$$
R_{\mathbf{X}}(t)=\frac{L(t)}{|t|^{\beta}}, \quad 0<\beta<1
$$

where L is slowly varying at infinity.
Consider the minimization problem with respect to Riesz kernel,

$$
\min _{\mu \in M_{1}^{+}([0,1])} \int_{0}^{1} \int_{0}^{1} \frac{\mu(d u) \mu(d v)}{|u-v|^{\beta}} \quad 0<\beta<1
$$

An optimal measure μ_{β} exists, but it is different from the uniform measure.

Theorem 5 Assume that $R_{\mathbf{X}}$ is positive and regularly varying. Then for any $\mu_{\beta} \in \mathcal{W}_{\beta}$, the set of optimal measures for the Riesz kernel,

$$
\lim _{a \rightarrow \infty} R_{\mathbf{X}}(a) \mathcal{C}_{\mathbf{X}}(\mathbf{a})=\left(\int_{0}^{1} \int_{0}^{1} \frac{\mu_{\beta}(d u) \mu_{\beta}(d v)}{|u-v|^{\beta}}\right)^{-1}
$$

In particular, $\mathcal{C}_{\mathbf{X}}(\mathbf{a})$ is regularly varying with exponent β.

