
Introduction Large deviations Fixed path 1 dim Long int

On the existence of paths between points in high
level excursion sets of Gaussian random fields

Robert Adler, Elina Moldavskaya and Gennady Samorodnitsky

January 2013



Introduction Large deviations Fixed path 1 dim Long int

Let X = (X (t), t ∈ Rd) be a real-valued sample continuous
Gaussian random field.

Given a level u, the excursion set of X above the level u is the
random set

Au =
{
t ∈ Rd : X (t) > u

}
.

Much is know about the structure of the excursion set when the
field is smooth, and u is large (Adler and Taylor (2007), Azäıs and
Wschebor (2009)).
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Consider a large level u.

Question: given that two points in Rd belong to the excursion
set, what is the probability that they belong to the same path
connected component of the excursion set?

Let a, b ∈ Rd , a 6= b. A path in Rd connecting a and b is a
continuous map ξ : [0, 1]→ Rd with ξ(0) = a, ξ(1) = b.

Denote the collection of all such paths by P(a,b). Estimate

P
(
∃ ξ ∈ P(a,b) : X (ξ(v)) > u, 0 ≤ v ≤ 1

∣∣∣ X (a) > u, X (b) > u
)
.
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The non-trivial part of the problem: estimate the probability

Ψa,b(u) := P (∃ ξ ∈ P(a,b) : X (ξ(v)) > u, 0 ≤ v ≤ 1) .

If the random field is stationary, we may assume that b = 0, and
use the notation Ψa.

If the domain of a random field is restricted to T ⊂ Rd , and a, b
are in T , we consider

Ψa,b(u) = P (∃ξ ∈ P(a,b) : ξ(v) ∈ T and X (ξ(v)) > u, 0 ≤ v ≤ 1) .
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Large deviations setup

Let A be the open set

A ≡ Aa,b :=
{
ω ∈ C0(Rd) : ∃ ξ ∈ P(a,b), ω(ξ(v)) > 1, 0 ≤ v ≤ 1

}
,

C0(Rd) =
{
ω = (ω(t), t ∈ Rd) ∈ C (Rd) : lim

‖t‖→∞
ω(t)/‖t‖ = 0

}
.

We can write for u > 0

Ψa,b(u) = P
(
u−1X ∈ A

)
,

and use the large deviations results for Gaussian measures of
Deutschel and Stroock (1989).
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The reproducing kernel Hilbert space (RKHS) H of the random
field X, is a subspace of C (Rd).

Consider the space of finite linear combinations
∑k

j=1 ajX (tj)

aj ∈ R, tj ∈ Rd for j = 1, . . . , k, k = 1, 2, . . ..

Its closure L in the mean square norm is identified with H via the
injection L→ C (Rd) given by

H → wH =
(
E
(
X (t)H

)
, t ∈ Rd

)
and the resulting norm

‖wH‖2H = E (H2) .
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Let X be stationary with spectral measure FX.

The RKHS H can be identified with the subspace of L2(FX) of
functions with even real parts and odd imaginary parts, via the
injection L2(FX)→ C0(Rd) given by

h→ S(h) =

(∫
Rd

e i(t,x) h̄(x)FX(dx), t ∈ Rd

)
,

with the resulting norm

‖S(h)‖2H = ‖h‖2L2(FX)
=

∫
Rd

‖h(x)‖2 FX(dx) .
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Theorem 1 Let X = (X (t), t ∈ Rd) be a continuous stationary
Gaussian random field, with covariance function satisfying

lim sup
‖t‖→∞

RX(t) ≤ 0 .

Then

lim
u→∞

1

u2
log Ψa(u) = −1

2
CX(a),

where

CX(a) := inf

{∫
Rd

‖h(x)‖2 FX(dx) : for some ξ ∈ P(0, a)

∫
Rd

e i(ξ(v),x) h̄(x)FX(dx) > 1, 0 ≤ v ≤ 1

}
.
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The constraints in the optimization problem in Theorem 1 are not
convex. However, for a fixed path, the constraints are convex, and
one can use the convex Lagrange duality.

Theorem 2 For a continuous stationary Gaussian random field X,

CX(a) =

[
sup

ξ∈P(0,a)
min

µ∈M+
1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
ξ(u)− ξ(v)

)
µ(du)µ(dv)

]−1
.

Here M+
1 ([0, 1]) is the space of all probability measures on [0, 1].

An optimal path is a path of maximal RX capacity.
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Assume a path ξ ∈ P(0, a) is fixed. Then the minimization problem

min
µ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
ξ(u), ξ(v)

)
µ(du)µ(dv)

is the problem of finding a probability measures µ of minimal
energy, or capacitory measures.

The set Wξ ⊆ M+
1 ([0, 1]) over which the minimum is achieved is a

weakly compact convex subset of M+
1 ([0, 1]).
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If the feasible set for the primary problem is non-empty then, for
every ε > 0,

P

(
sup

0≤v≤1

∣∣∣∣1uX (ξ(v))− xξ(v)

∣∣∣∣ ≥ ε∣∣∣∣X (ξ(v)) > u, 0 ≤ v ≤ 1

)
→ 0

as u →∞. Here Hξ is primary optimal, and

xξ(v) = E
[
X (ξ(v)

)
Hξ
]
, 0 ≤ v ≤ 1 .

Furthermore, there is a characterization of the optimal Hξ ∈ L and
the optimal µ ∈Wξ.
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Theorem 3
(i) For every µ ∈Wξ we have

Hξ = CX(a,b; ξ)

∫ 1

0
X
(
ξ(v)

)
µ(dv)

with probability 1.
(ii) A probability measure µ ∈ M+

1 ([0, 1]) is a measure of minimal
energy if and only if

min
0≤v≤1

∫ 1

0
RX

(
ξ(u), ξ(v)

)
µ(du)

=

∫ 1

0

∫ 1

0
RX

(
ξ(u1), ξ(u2)

)
µ(du1)µ(du2) > 0 .
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Remarks

By Theorem 3, the function

v 7→
∫ 1

0
RX

(
ξ(u), ξ(v)

)
µ(du), 0 ≤ v ≤ 1,

is constant on the support of any measure µ ∈Wξ. This
seems to indicate that the support of any measure of minimal
energy may not be ‘large’. However, this intuition holds only
in some cases.

If the random field is stationary, and the spectral measure is
of the full support, then the image of any measure µ ∈Wξ on
the path ξ is unique.
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One-dimensional case

In this case there is, essentially, a single path between two points.

Let X =
(
X (t), t ∈ R

)
be a stationary continuous Gaussian

process. We are interested in understanding how the probability

Ψa(u) = P
(
X (t) > u, 0 ≤ t ≤ a

)
changes with a > 0, and what happens with the optimal
probability measures µa and limiting shapes xa.
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For some processes (in particular, those with a finite second
spectral moment), on short intervals we get an easy descrption.

Proposition 1 Suppose that for some a > 0

RX(t) + RX(a− t) ≥ RX(0) + RX(a) > 0 for all 0 ≤ t ≤ a.

Then a measure in Wa is given by

µ =
1

2
δ0 +

1

2
δ1.

Furthermore,

CX(a) =
2

RX(0) + RX(a)
,

xa(t) =
RX(t) + RX(a− t)

RX(0) + RX(a)
, 0 ≤ t ≤ a .
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In any case, the measure µ = (δ0 + δ1)/2 does NOT remain
optimal for longer intervals.

Example 1 Consider the centered stationary Gaussian process
with the Gaussian covariance function

R(t) = e−t
2/2, t ∈ R .

Since the spectral measure has a Gaussian spectral density which is
of full support in R, for every a > 0 there is a unique (symmetric)
measure of minimal energy. Furthermore, the second spectral
moment is finite, so that, for a > 0 sufficiently small this process
satisfies the conditions of Proposition 1.
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The measure µ = (δ0 + δ1)/2 remains optimal for a ≤ a1 ≈ 2.2079.
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In the next regime the optimal measure acquires a point in the
middle of the interval. This continues for a1 < a ≤ a2 ≈ 3.9283.
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In the next regime the middle point of the optimal measure splits
in two and starts moving away from the middle. This continues for
a2 < a ≤ a3 ≈ 5.4508.

0 1 2 3 4

1.
00

1.
01

1.
02

1.
03

1.
04

1.
05

a=4.5

t

lim
iti

ng
 s

ha
pe



Introduction Large deviations Fixed path 1 dim Long int

Example 2 Consider an Ornstein-Uhlenbeck process, i.e. a
centered stationary Gaussian process with the covariance function

R(t) = e−|t|, t ∈ R .

For this process the spectral measure has a Cauchy spectral
density, which has a full support in R. Therefore, for every a > 0
there is a unique (symmetric) measure of minimal energy.

In this case even the first spectral moment is infinite. Proposition
1 does not apply here.
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The optimal probability measure is

µ =
1

a + 2
δ0 +

1

a + 2
δ1 +

a

a + 2
λ ,

where λ is Lebesgue measure on (0, 1).

There are no phase transitions. We have

CX(a) = (a + 2)/2 for all a > 0

and the limiting shape xa is identically equal to 1 on [0, a].
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Long intervals

As the length a of the interval increases, a difference between short
and long memory processes arises. In the short memory case, the
uniform measure is asymptotically optimal.

Theorem 4 Assume that RX is positive, and satisfies∫ ∞
0

R(t) dt <∞ .

Then, with λ denoting the uniform probability measure on [0, 1],

lim
a→∞

1

a
CX(a) =

(
lim
a→∞

a

∫ 1

0

∫ 1

0
RX

(
a(u − v)

)
λ(du)λ(dv)

)−1
=

1

2
∫∞
0 R(t) dt

.



Introduction Large deviations Fixed path 1 dim Long int

In the long memory case the uniform measure is no longer
asymptotically optimal. We will assume that the covariance
function of the process is regularly varying at infinity:

RX(t) =
L(t)

|t|β
, 0 < β < 1,

where L is slowly varying at infinity.

Consider the minimization problem with respect to Riesz kernel,

min
µ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0

µ(du)µ(dv)

|u − v |β
0 < β < 1.

An optimal measure µβ exists, but it is different from the uniform
measure.
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Theorem 5 Assume that RX is positive and regularly varying.
Then for any µβ ∈Wβ, the set of optimal measures for the Riesz
kernel,

lim
a→∞

RX(a)CX(a) =

(∫ 1

0

∫ 1

0

µβ(du)µβ(dv)

|u − v |β

)−1
.

In particular, CX(a) is regularly varying with exponent β.
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