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What are Toeplitz matrices?



a0 a1 a2 · · · · · · an−2 an−1

a−1 a0 a1 a2 · · · · · · an−2

a−2 a−1 a0 a1 · · · · · · an−3
...

. . .
. . .

. . .
. . .

. . .
...

· · · · · · · · · a−1 a0 a1 a2

a−(n−2) · · · · · · a−2 a−1 a0 a1

a−(n−1) a−(n−2) · · · · · · a−2 a−1 a0


= ((aj−i ))n×n.

Symmetric Toeplitz matrix: a−k = ak for all k.

Named after Otto Toeplitz (1881 - 1940).
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Deterministic Toeplitz operators

Toeplitz operator = infinite Toeplitz matrix +∑∞
i=−∞ |ai |2 <∞.

It has a vast literature.

Toeplitz Forms and Their Applications by
Grenander and Szegö (1958)

Analysis of Toeplitz operators by
Böttcher and Silbermann (1990).

Toeplitz forms are ubiquitous. For example, covariance matrix
of a stationary time-series or a transition matrix of a random
walk on Z with absorbing barriers.
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Usefulness: Toeplitz determinants and Szegö formula

â : S1 → C such that â(t) =
∑∞

n=−∞ ant
n. Under certain

hypotheses on â,
det((aj−i ))n×n ∼ A · θn, where

A = exp (
∑∞

k=1 k(log â)−k(log â)k) and θ = exp
(

(log â)0

)
.

This is known as strong Szegö limit theorem.

The magnetization of Ising model on n × n Torus can be
represented as a Toeplitz determinant: first rigorous proof of
Onsagar’s formula and phase transition of Ising model.

Many generating functions in combinatorics can be expressed
as Toeplitz determinants. For example, the length of the
longest increasing subsequence of a random permutation
(Baik, Deift, and Johansson, 1999).
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Random (symmetric) Toeplitz matrices

Model

Tn = ((a|i−j |))n×n

where {ai} is an i.i.d. sequence of random variables with
E[ai ] = 0,E[a2

i ] = 1.

Introduced by Bai (1999).

Compare to Wigner matrix (matrix with i.i.d. entries modulo
symmetry), it has additional structures and much less
independence.

Random Toeplitz matrices have connections to one
dimensional random Schrödinger operators.
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Eigenvalue distribution of random Toeplitz matrices

µn :=
1

n

n∑
i=1

δλi (n−1/2Tn). Bai asked: µn → µ∞?

Scaling by
√
n is necessary to ensure

E[
∫
x2µn(dx)] = 1

n

∑n
i=1 E[λ2

i (n−1/2Tn)] = n−2E[tr(T2
n)] = 1.
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µ∞ is not Gaussian distribution!
∫
x4µ∞(dx) = 8/3 < 3.
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Existence of µ∞

Theorem (Bryc, Dembo, Jiang (Ann Probab, 2006))

µ∞ exists. µ∞ does not depend on the distribution of a0. µ∞ is
nonrandom, symmetric and has unbounded support.

The proof is based on method of moments.∫
xkEµn(dx) = E

[
n−1tr(n−1/2Tn)k

]
.

They show that
∫
xkEµn(dx)→ γk and µn − Eµn → 0. The

proof is combinatorial.

Wn = n × n Wigner matrix. (wij)i≤j i.i.d. with mean 0 and
variance 1. Then µ∞ exists and has density 1

2π

√
4− x21[−2,2].

This is famous semicircular law.
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What else? Not much

γ2k+1 = 0.

γ2k = sum of (2k)!
2kk!

of (k + 1)-dimensional integrals. But no
closed form expression for γ2k and hence for µ∞.

γ2k ≤ (2k)!
2kk!
⇒ subgaussian tail of µ∞.

There is no alternative method known to prove convergence
of µn other than the method of moments.

As of now, the toolbox to deal with random Toeplitz matrix is
pretty limited.
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Maximum eigenvalue of random Toeplitz matrices

The problem of studying the maximum eigenvalue of random
Toeplitz matrices is raised in Bryc, Dembo, Jiang (2006).

Meckes (2007): If the entries have uniformly subgaussian
tails, then

E[λ1(Tn)] �
√
n log n.

Adamczak (2010): {ai} i.i.d. with E[a2
i ] = 1.

‖Tn‖
E‖Tn‖

→ 1.

Bose, Hazra, Saha (2010): Tn with i.i.d. heavy-tailed entries
P(|ai | > t) ∼ t−αL(t) as t →∞, 0 < α < 1. Then

‖Tn‖ � n1/α.
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Convergence of Maximum eigenvalue

Let Wn = ((wij))n×n be Wigner matrix. Assume E[w4
12] <∞.

Then Bai and Yin (1988) showed that

n−1/2λ1(Wn)→ 2.

For Toeplitz matrix, µ∞ has unbounded support and hence
there is no natural guess for the limit of λ1(Tn)√

n log n
.

The asymptotics of tr(Tkn
n ) =

∑n
i=1 λ

kn
i (Tn) is not known

when kn →∞.
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First Result: Maximum eigenvalue

Assumption. (ai )0≤i≤n−1 is a sequence of independent random
variables. There exists constants γ > 2 and C finite so that for
each variable

Eai = 0, Ea2
i = 1, and E|ai |γ < C .

Theorem (Virag, S.)

λ1(Tn)√
2n log n

Lγ−→ ‖Sin‖2
2→4 = 0.8288 . . . as n→∞.

Sin(f )(x) :=

∫
R

sin(π(x − y))

π(x − y)
f (y)dy for f ∈ L2(R),

and its 2→ 4 operator norm is

‖Sin‖2→4 := sup
‖f ‖2≤1

‖Sin(f )‖4
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Open problem: limiting behavior of λ1(Tn)

Guess

λ1(Tn), suitably normalized, converges to Gumbel (double
exponential) distribution.

Remark. If x1, x2, . . . , xn are i.i.d. standard Gaussians, then

maxi xi − cn
dn

→ Gumbel.
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Second Result: Absolute continuity

Bryc, Dembo, Jiang (2006) conjectured that µ∞ (for Toeplitz
matrices) has a smooth density w.r.t. Lebesgue measure.

Theorem (Virag, S.)

The limiting eigenvalue distribution of random Toeplitz matrices
has a bounded density.
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Connection between Toeplitz and circulant matrices

C10 =



a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

a9 a0 a1 a2 a3 a4 a5 a6 a7 a8

a8 a9 a0 a1 a2 a3 a4 a5 a6 a7

a7 a8 a9 a0 a1 a2 a3 a4 a5 a6

a6 a7 a8 a9 a0 a1 a2 a3 a4 a5

a5 a6 a7 a8 a9 a0 a1 a2 a3 a4

a4 a5 a6 a7 a8 a9 a0 a1 a2 a3

a3 a4 a5 a6 a7 a8 a9 a0 a1 a2

a2 a3 a4 a5 a6 a7 a8 a9 a0 a1

a1 a2 a3 a4 a5 a6 a7 a8 a9 a0


Fact: If aj = a2n−j , then[

Tn 0n
0n 0n

]
=

[
In 0n
0n 0n

]
Csym

2n

[
In 0n
0n 0n

]
.
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Circulants are easy to understand

Spectral Decomposition:

(m)−1/2Cm = U∗mdiag(d0, d1, . . . , dm−1)Um,

Um(k , l) = exp

(
2πikl

m

)
, dk = m−1/2

m−1∑
l=0

al exp

(
2πikl

m

)
.

Um = discrete Fourier transform.

Change of basis for n−1/2

[
Tn 0n
0n 0n

]
n−1/2U2n

[
T 0
0 0

]
U∗2n =

√
2U2n

[
I 0
0 0

]
U∗2nD2nU2n

[
I 0
0 0

]
U∗2n

=
√

2PDP.
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PDP decomposition

D is a random diagonal matrix whose entries have mean zero,
variance σ2 and are uncorrelated.

Thus for Gaussian Toeplitz matrices, then entries of D are
just i.i.d. Gaussians.

P2n = U2n

[
I 0
0 0

]
U∗2n is a deterministic Hermitian projection

matrix.

P2n(i , j) is a function of |i − j | (and n).

As n→∞, P2n ‘converges’ to Π : `2 → `2.

Π : `2(Z)
Fourier Transf .−→ L2(S1)

1[0,1/2]−→ L2(S1)
Inverse F .T .−→ `2(Z).

Arnab Sen University of Minnesota Random Toeplitz Matrices



Connection to 1-D random Schrödinger operators

Model. Hω = ∆ + Vω acts on `2(Z) by

(Hωϕ)(i) = ϕ(i − 1) + ϕ(i + 1) + vi (ω)ϕ(i),

where (vi )i∈Z are i.i.d. random variables.

Morally, Hω = random multiplication operator with a local
(additive) perturbation.

Toeplitz matrix in Fourier basis = PDP.

The projection operator P behaves like a “local perturbation”.
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How 2→ 4 norm arises: Gaussian case

1√
2 log n

λ1(P2nD2nP2n) ≈ supΘk
λ1(ΠkΘkΠk).

Θk is admissible if

Θk = lim
n→∞

1√
2 log n

(di+1, di+2, . . . , di+k), for some i .

When is Θk = diag(θ1, θ2, . . . , θk) inadmissible? Ans:
∑k

i=1 θ
2
i > 1.

P(|di+1| > θ1

√
2 log n, . . . , |di+k | > θk

√
2 log n) ≤ n−(θ2

1+...+θ2
k ).

For large k , λ1(ΠkΘkΠk) ≈ λ1(ΠΘΠ).

We have a double optimization problem,

sup
Θ
λ1(ΠΘΠ) = sup

{〈
v,Πdiag(θ)Πv

〉
: ‖v‖2 ≤ 1, ‖θ‖2 ≤ 1

}
= ‖Π‖2

2→4.

Finally, λ1(P2nD2nP2n)√
2 log n

≈ ‖Π‖2
2→4.
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Appearance of Sine kernel

Fact (play with Fourier Transform)

‖Π‖2
2→4 =

1√
2
‖Sin‖2

2→4.

Key reason :

F.T. of (1[−1/2,1/2] · f ) = ̂1[−1/2,1/2] ? f̂ =
sin(πx)

πx
? f̂ = Sin(f̂ )

This optimization problem has been studied by Garsia,
Rodemich and Rumsey (1969).

They computed ‖Sin‖4
2→4 = 0.686981293033114600949413...!
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A few more words

They are many (technical) gaps in the sketch.

Non-Gaussian case is harder due to lack of independence.

dk = n−1/2
n∑
`=0

ak cos(
2πk`

2n
).

We need normal approximation in the moderate deviation
regime,

P(d1 > θ1

√
2 log n, . . . , dk > θk

√
2 log n) =(

1 + o(1)
)
P(Z1 > θ1

√
2 log n, . . . ,Zk > θk

√
2 log n).

Note that CLT only gives

P(d1 > θ1, . . . , dk > θk) =(
1 + o(1)

)
P(Z1 > θ1, . . . ,Zk > θk).
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Stieltjes transform

Definition

For a measure µ,

S(z ;µ) :=

∫
1

x − z
µ(dx), z ∈ C, Im(z) > 0.

Key Fact

If sup
z :Im(z)>0

ImS(z ;µ) ≤ K ,

then µ is absolutely continuous w.r.t. the Lebesgue measure and
dµ
dx ≤

K
π .

The proof follows from the inversion formula.∫ y

x
µ(dE ) = lim

δ→0+

1

π

∫ y

x
ImS(E + iδ;µ)dE , x < y ∈ C(µ).
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Stieltjes transform of Toeplitz matrices

Enough to show

sup
z :Im(z)>0

S(z ,Eµn) ≤ C for all n

for Gaussian Toeplitz matrices.

S(z ,Eµn) = n−1Etr(n−1/2Tn − zI)−1

=

√
2

n

2n∑
j=1

E〈Pej , (PDP− zI)−1Pej〉

To show that supz :Im(z)>0 E〈Pej , (PDP− zI)−1Pej〉 ≤ C for
each j uniformly in n.

Let Dθ = diag(d1, d2, . . . , dj−1, θ, dj+1, . . . , d2n).

E
[
〈Pej , (PDP− zI)−1Pej〉|di , i 6= j

]
=

∫
〈Pej , (PDθP− zI)−1Pej〉

1√
2π

e−θ
2/2dθ.
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Spectral averaging from Random Schrödinger operator

Theorem (Combes, Hislop and Mourre, Trans. AMS 1996)

Let Hθ, θ ∈ R be a family of self-adjoint operators. Assume that
there exist a finite positive constant c0, and a positive bounded
self-adjoint operator B such that,

I. dHθ
dθ ≥ c0B

2.

II. d2Hθ
dθ2 = 0.

Then for all g ∈ C 2(R) and for all ϕ,

sup
Im(z)>0

∣∣∣∣∫
R
g(θ)〈Bϕ, (Hθ − z)−1Bϕ〉dθ

∣∣∣∣
≤ c−1

0 (‖g‖1 + ‖g ′‖1 + ‖g ′′‖1)‖ϕ‖2.

Easy to check d
dθPDθP = Peje

′
jP ≥ 2(Peje

′
jP)2.
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Some heuristics about spectral averaging

Let λi be an eigenvalue of PDP with eigenvector ui .

Let D = diag(d1, d2, . . . , dj , . . . , d2n).

Bad case: small perturbations of dj ’s do not perturb λi (D).

Hadamard first variational formula:

∂

∂dj
λi = u∗i

∂

∂dj
(PDP)ui = u∗i Peje

′
jPui .

u∗i Peje
′
jPui = |e ′jPui |2 = |ui (j)|2 > 0. Hence,

‖∇λi (D)‖1 = 1 ∀D.

Bad case won’t happen.
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Question: localized eigenvectors?

Conjecture: With high probability, the eigenvectors of PDP are
localized (`2 weight of a generic eigenvector is concentrated on
o(n) coordinates).
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Eigenvector of PDP.
Dominated by a few coordinates.
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Eigenvector of Wigner matrix.
None of the coordinates dominates others.
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More open problems

The eigenvalue process of Tn, away from the edge, after
suitable normalization, converges to a standard Poisson point
process on R.

Let Vn be the top eigenvector of PDP. Then there exist
random integers Kn so that for each i ∈ Z

Vn(Kn + i)→ ĝ(i),

where ĝ is the Fourier transform of the function
g(x) =

√
2f (2x − 1/2) and f is the (unique) optimizer in

sup{‖f ?f ‖2 : f (x) = f (−x), ‖f ‖2 = 1, f supported on [−1/2, 1/2]}.
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