Random Toeplitz Matrices

Arnab Sen
University of Minnesota

Conference on Limits Theorems in Probability, IISc January 11, 2013

Joint work with Bálint Virág

What are Toeplitz matrices?

$$
\left[\begin{array}{ccccccc}
a_{0} & a_{1} & a_{2} & \cdots & \cdots & a_{n-2} & a_{n-1} \\
a_{-1} & a_{0} & a_{1} & a_{2} & \cdots & \cdots & a_{n-2} \\
a_{-2} & a_{-1} & a_{0} & a_{1} & \cdots & \cdots & a_{n-3} \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\cdots & \cdots & \cdots & a_{-1} & a_{0} & a_{1} & a_{2} \\
a_{-(n-2)} & \cdots & \cdots & a_{-2} & a_{-1} & a_{0} & a_{1} \\
a_{-(n-1)} & a_{-(n-2)} & \cdots & \cdots & a_{-2} & a_{-1} & a_{0}
\end{array}\right]=\left(\left(a_{j-i}\right)\right)_{n \times n}
$$

Symmetric Toeplitz matrix: $a_{-k}=a_{k}$ for all k.

Named after Otto Toeplitz (1881-1940).

Deterministic Toeplitz operators

- Toeplitz operator $=$ infinite Toeplitz matrix + $\sum_{i=-\infty}^{\infty}\left|a_{i}\right|^{2}<\infty$.
- It has a vast literature.

Toeplitz Forms and Their Applications by Grenander and Szegö (1958)

Analysis of Toeplitz operators by Böttcher and Silbermann (1990).

- Toeplitz forms are ubiquitous. For example, covariance matrix of a stationary time-series or a transition matrix of a random walk on \mathbb{Z} with absorbing barriers.

Usefulness: Toeplitz determinants and Szegö formula

- $\hat{a}: S^{1} \rightarrow \mathbb{C}$ such that $\hat{a}(t)=\sum_{n=-\infty}^{\infty} a_{n} t^{n}$. Under certain hypotheses on â, $\operatorname{det}\left(\left(a_{j-i}\right)\right)_{n \times n} \sim A \cdot \theta^{n}$, where
$A=\exp \left(\sum_{k=1}^{\infty} k(\log \hat{a})_{-k}(\log \hat{a})_{k}\right)$ and $\theta=\exp \left((\log \hat{a})_{0}\right)$.
This is known as strong Szegö limit theorem.
- The magnetization of Ising model on $n \times n$ Torus can be represented as a Toeplitz determinant: first rigorous proof of Onsagar's formula and phase transition of Ising model.
- Many generating functions in combinatorics can be expressed as Toeplitz determinants. For example, the length of the longest increasing subsequence of a random permutation (Baik, Deift, and Johansson, 1999).

Random (symmetric) Toeplitz matrices

Model

$$
\mathbf{T}_{n}=\left(\left(a_{\mid i-j j}\right)\right)_{n \times n}
$$

where $\left\{a_{i}\right\}$ is an i.i.d. sequence of random variables with $\mathbb{E}\left[a_{i}\right]=0, \mathbb{E}\left[a_{i}^{2}\right]=1$.

- Introduced by Bai (1999).
- Compare to Wigner matrix (matrix with i.i.d. entries modulo symmetry), it has additional structures and much less independence.
- Random Toeplitz matrices have connections to one dimensional random Schrödinger operators.

Eigenvalue distribution of random Toeplitz matrices

$$
\mu_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}\left(n^{-1 / 2} \mathbf{T}_{n}\right)} . \quad \text { Bai asked: } \quad \mu_{n} \rightarrow \mu_{\infty} \text { ? }
$$

Scaling by \sqrt{n} is necessary to ensure $\mathbb{E}\left[\int x^{2} \mu_{n}(d x)\right]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\lambda_{i}^{2}\left(n^{-1 / 2} \mathbf{T}_{n}\right)\right]=n^{-2} \mathbb{E}\left[\operatorname{tr}\left(\mathbf{T}_{n}^{2}\right)\right]=1$.

- μ_{∞} is not Gaussian distribution! $\int x^{4} \mu_{\infty}(d x)=8 / 3<3$.

Existence of μ_{∞}

Theorem (Bryc, Dembo, Jiang (Ann Probab, 2006))

μ_{∞} exists. μ_{∞} does not depend on the distribution of $a_{0} . \mu_{\infty}$ is nonrandom, symmetric and has unbounded support.

- The proof is based on method of moments.

$$
\int x^{k} \mathbb{E} \mu_{n}(d x)=\mathbb{E}\left[n^{-1} \operatorname{tr}\left(n^{-1 / 2} \mathbf{T}_{n}\right)^{k}\right]
$$

They show that $\int x^{k} \mathbb{E} \mu_{n}(d x) \rightarrow \gamma_{k}$ and $\mu_{n}-\mathbb{E} \mu_{n} \rightarrow 0$. The proof is combinatorial.

- $\mathbf{W}_{n}=n \times n$ Wigner matrix. $\left(w_{i j}\right)_{i \leq j}$ i.i.d. with mean 0 and variance 1. Then μ_{∞} exists and has density $\frac{1}{2 \pi} \sqrt{4-x^{2}} \mathbf{1}_{[-2,2]}$. This is famous semicircular law.

What else? Not much

- $\gamma_{2 k+1}=0$.
$\gamma_{2 k}=$ sum of $\frac{(2 k)!}{2^{k} k!}$ of $(k+1)$-dimensional integrals. But no closed form expression for $\gamma_{2 k}$ and hence for μ_{∞}.
- $\gamma_{2 k} \leq \frac{(2 k)!}{2^{k} k!} \Rightarrow$ subgaussian tail of μ_{∞}.
- There is no alternative method known to prove convergence of μ_{n} other than the method of moments.
- As of now, the toolbox to deal with random Toeplitz matrix is pretty limited.

Maximum eigenvalue of random Toeplitz matrices

- The problem of studying the maximum eigenvalue of random Toeplitz matrices is raised in Bryc, Dembo, Jiang (2006).
- Meckes (2007): If the entries have uniformly subgaussian tails, then

$$
\mathbb{E}\left[\lambda_{1}\left(\mathbf{T}_{n}\right)\right] \asymp \sqrt{n \log n}
$$

- Adamczak (2010): $\left\{a_{i}\right\}$ i.i.d. with $\mathbb{E}\left[a_{i}^{2}\right]=1$.

$$
\frac{\left\|\mathbf{T}_{n}\right\|}{\mathbb{E}\left\|\mathbf{T}_{n}\right\|} \rightarrow 1
$$

- Bose, Hazra, Saha (2010): \mathbf{T}_{n} with i.i.d. heavy-tailed entries

$$
\begin{gathered}
\mathbb{P}\left(\left|a_{i}\right|>t\right) \sim t^{-\alpha} L(t) \text { as } t \rightarrow \infty, 0<\alpha<1 \text {. Then } \\
\left\|\mathbf{T}_{n}\right\| \asymp n^{1 / \alpha} .
\end{gathered}
$$

Convergence of Maximum eigenvalue

- Let $\mathbf{W}_{n}=\left(\left(w_{i j}\right)\right)_{n \times n}$ be Wigner matrix. Assume $\mathbb{E}\left[w_{12}^{4}\right]<\infty$. Then Bai and Yin (1988) showed that

$$
n^{-1 / 2} \lambda_{1}\left(\mathbf{W}_{n}\right) \rightarrow 2
$$

- For Toeplitz matrix, μ_{∞} has unbounded support and hence there is no natural guess for the limit of $\frac{\lambda_{1}\left(\mathbf{T}_{n}\right)}{\sqrt{n \log n}}$.
- The asymptotics of $\operatorname{tr}\left(\mathbf{T}_{n}^{k_{n}}\right)=\sum_{i=1}^{n} \lambda_{i}^{k_{n}}\left(\mathbf{T}_{n}\right)$ is not known when $k_{n} \rightarrow \infty$.

First Result: Maximum eigenvalue

Assumption. $\left(a_{i}\right)_{0 \leq i \leq n-1}$ is a sequence of independent random variables. There exists constants $\gamma>2$ and C finite so that for each variable

$$
\mathbb{E} a_{i}=0, \quad \mathbb{E} a_{i}^{2}=1, \quad \text { and } \quad \mathbb{E}\left|a_{i}\right|^{\gamma}<C .
$$

Theorem (Virag, S.)

$$
\frac{\lambda_{1}\left(\mathbf{T}_{n}\right)}{\sqrt{2 n \log n}} \xrightarrow{L^{\gamma}}\|\operatorname{Sin}\|_{2 \rightarrow 4}^{2}=0.8288 \ldots \quad \text { as } n \rightarrow \infty .
$$

$$
\operatorname{Sin}(f)(x):=\int_{\mathbb{R}} \frac{\sin (\pi(x-y))}{\pi(x-y)} f(y) d y \quad \text { for } f \in L^{2}(\mathbb{R}),
$$

and its $2 \rightarrow 4$ operator norm is

$$
\|\operatorname{Sin}\|_{2 \rightarrow 4}:=\sup _{\|f\|_{2} \leq 1}\|\operatorname{Sin}(f)\|_{4}
$$

Open problem: limiting behavior of $\lambda_{1}\left(\mathbf{T}_{n}\right)$

Guess

$\lambda_{1}\left(\mathbf{T}_{n}\right)$, suitably normalized, converges to Gumbel (double exponential) distribution.

Remark. If $x_{1}, x_{2}, \ldots, x_{n}$ are i.i.d. standard Gaussians, then

$$
\frac{\max _{i} x_{i}-c_{n}}{d_{n}} \rightarrow \text { Gumbel. }
$$

Second Result: Absolute continuity

- Bryc, Dembo, Jiang (2006) conjectured that μ_{∞} (for Toeplitz matrices) has a smooth density w.r.t. Lebesgue measure.

Theorem (Virag, S.)

The limiting eigenvalue distribution of random Toeplitz matrices has a bounded density.

Connection between Toeplitz and circulant matrices

$$
\mathbf{C}_{10}=\left[\begin{array}{lllll|lllll}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} & a_{8} & a_{9} \\
a_{9} & a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} & a_{8} \\
a_{8} & a_{9} & a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} \\
a_{7} & a_{8} & a_{9} & a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
a_{6} & a_{7} & a_{8} & a_{9} & a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
\hline a_{5} & a_{6} & a_{7} & a_{8} & a_{9} & a_{0} & a_{1} & a_{2} & a_{3} & a_{4} \\
a_{4} & a_{5} & a_{6} & a_{7} & a_{8} & a_{9} & a_{0} & a_{1} & a_{2} & a_{3} \\
a_{3} & a_{4} & a_{5} & a_{6} & a_{7} & a_{8} & a_{9} & a_{0} & a_{1} & a_{2} \\
a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} & a_{8} & a_{9} & a_{0} & a_{1} \\
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} & a_{8} & a_{9} & a_{0}
\end{array}\right]
$$

- Fact: If $a_{j}=a_{2 n-j}$, then

$$
\left[\begin{array}{ll}
\mathbf{T}_{n} & \mathbf{0}_{n} \\
\mathbf{0}_{n} & \mathbf{0}_{n}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{I}_{n} & \mathbf{0}_{n} \\
\mathbf{0}_{n} & \mathbf{0}_{n}
\end{array}\right] \mathbf{C}_{2 n}^{\text {sym }}\left[\begin{array}{ll}
\mathbf{I}_{n} & \mathbf{0}_{n} \\
\mathbf{0}_{n} & \mathbf{0}_{n}
\end{array}\right] .
$$

Circulants are easy to understand

- Spectral Decomposition:

$$
\begin{gathered}
(m)^{-1 / 2} \mathbf{C}_{m}=\mathbf{U}_{m}^{*} \operatorname{diag}\left(d_{0}, d_{1}, \ldots, d_{m-1}\right) \mathbf{U}_{m} \\
\mathbf{U}_{m}(k, l)=\exp \left(\frac{2 \pi i k l}{m}\right), \quad d_{k}=m^{-1 / 2} \sum_{l=0}^{m-1} a_{l} \exp \left(\frac{2 \pi i k l}{m}\right)
\end{gathered}
$$

- $\mathbf{U}_{m}=$ discrete Fourier transform.
- Change of basis for $n^{-1 / 2}\left[\begin{array}{ll}\mathbf{T}_{n} & \mathbf{0}_{n} \\ \mathbf{0}_{n} & \mathbf{0}_{n}\end{array}\right]$

$$
\begin{aligned}
n^{-1 / 2} \mathbf{U}_{2 n}\left[\begin{array}{ll}
\mathbf{T} & 0 \\
0 & 0
\end{array}\right] \mathbf{U}_{2 n}^{*} & =\sqrt{2} \mathbf{U}_{2 n}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \mathbf{U}_{2 n}^{*} \mathbf{D}_{2 n} \mathbf{U}_{2 n}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \mathbf{U}_{2 n}^{*} \\
& =\sqrt{2} \mathbf{P} \mathbf{D P} .
\end{aligned}
$$

- \mathbf{D} is a random diagonal matrix whose entries have mean zero, variance σ^{2} and are uncorrelated.
- Thus for Gaussian Toeplitz matrices, then entries of \mathbf{D} are just i.i.d. Gaussians.
- $\mathbf{P}_{2 n}=\mathbf{U}_{2 n}\left[\begin{array}{ll}\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right] \mathbf{U}_{2 n}^{*}$ is a deterministic Hermitian projection matrix.
- $\mathbf{P}_{2 n}(i, j)$ is a function of $|i-j|($ and $n)$.
- As $n \rightarrow \infty, \mathbf{P}_{2 n}$ 'converges' to $\Pi: \ell^{2} \rightarrow \ell^{2}$.

$$
\Pi: \ell^{2}(\mathbb{Z}) \xrightarrow{\text { Fourier Transf. }} L^{2}\left(S^{1}\right) \xrightarrow{\mathbf{1}_{[0,1 / 2]}} L^{2}\left(S^{1}\right) \xrightarrow{\text { Inverse F.T. }} \ell^{2}(\mathbb{Z}) .
$$

Connection to 1-D random Schrödinger operators

- Model. $H_{\omega}=\Delta+V_{\omega}$ acts on $\ell^{2}(\mathbb{Z})$ by

$$
\left(H_{\omega} \varphi\right)(i)=\varphi(i-1)+\varphi(i+1)+v_{i}(\omega) \varphi(i)
$$

where $\left(v_{i}\right)_{i \in \mathbb{Z}}$ are i.i.d. random variables.

- Morally, $H_{\omega}=$ random multiplication operator with a local (additive) perturbation.
- Toeplitz matrix in Fourier basis = PDP.

The projection operator \mathbf{P} behaves like a "local perturbation".

- $\frac{1}{\sqrt{2 \log n}} \lambda_{1}\left(\mathbf{P}_{2 n} \mathbf{D}_{2 n} \mathbf{P}_{2 n}\right) \approx \sup _{\Theta_{k}} \lambda_{1}\left(\Pi_{k} \Theta_{k} \Pi_{k}\right)$.
- Θ_{k} is admissible if

$$
\Theta_{k}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{2 \log n}}\left(d_{i+1}, d_{i+2}, \ldots, d_{i+k}\right), \quad \text { for some } i .
$$

- When is $\Theta_{k}=\operatorname{diag}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$ inadmissible? Ans: $\sum_{i=1}^{k} \theta_{i}^{2}>1$.

$$
\mathbb{P}\left(\left|d_{i+1}\right|>\theta_{1} \sqrt{2 \log n}, \ldots,\left|d_{i+k}\right|>\theta_{k} \sqrt{2 \log n}\right) \leq n^{-\left(\theta_{1}^{2}+\ldots+\theta_{k}^{2}\right)} .
$$

- For large $k, \lambda_{1}\left(\Pi_{k} \Theta_{k} \Pi_{k}\right) \approx \lambda_{1}(\Pi \Theta \Pi)$.
- We have a double optimization problem,

$$
\begin{aligned}
\sup _{\Theta} \lambda_{1}(\Pi \Theta \Pi) & =\sup \left\{\langle\mathbf{v}, \Pi \operatorname{diag}(\boldsymbol{\theta}) \Pi \mathbf{v}\rangle:\|\mathbf{v}\|_{2} \leq 1,\|\boldsymbol{\theta}\|_{2} \leq 1\right\} \\
& =\|\Pi\|_{2 \rightarrow 4}^{2} .
\end{aligned}
$$

- Finally, $\frac{\lambda_{1}\left(\mathbf{P}_{2 n} \mathbf{D}_{22} \mathbf{P}_{2 n}\right)}{\sqrt{2 \log n}} \approx\|\Pi\|_{2 \rightarrow 4}^{2}$.

Appearance of Sine kernel

Fact (play with Fourier Transform)

$$
\|\Pi\|_{2 \rightarrow 4}^{2}=\frac{1}{\sqrt{2}}\|\operatorname{Sin}\|_{2 \rightarrow 4}^{2}
$$

Key reason :

$$
\text { F.T. of }\left(\mathbf{1}_{[-1 / 2,1 / 2]} \cdot f\right)=\widehat{\mathbf{1}_{[-1 / 2,1 / 2]}} \star \hat{f}=\frac{\sin (\pi x)}{\pi x} \star \hat{f}=\operatorname{Sin}(\hat{f})
$$

- This optimization problem has been studied by Garsia, Rodemich and Rumsey (1969).
- They computed $\|\operatorname{Sin}\|_{2 \rightarrow 4}^{4}=0.686981293033114600949413 \ldots$!

A few more words

- They are many (technical) gaps in the sketch.
- Non-Gaussian case is harder due to lack of independence.

$$
d_{k}=n^{-1 / 2} \sum_{\ell=0}^{n} a_{k} \cos \left(\frac{2 \pi k \ell}{2 n}\right)
$$

- We need normal approximation in the moderate deviation regime,

$$
\begin{aligned}
& \mathbb{P}\left(d_{1}>\theta_{1} \sqrt{2 \log n}, \ldots, d_{k}>\theta_{k} \sqrt{2 \log n}\right)= \\
& \quad(1+o(1)) \mathbb{P}\left(Z_{1}>\theta_{1} \sqrt{2 \log n}, \ldots, Z_{k}>\theta_{k} \sqrt{2 \log n}\right)
\end{aligned}
$$

- Note that CLT only gives

$$
\begin{aligned}
& \mathbb{P}\left(d_{1}>\theta_{1}, \ldots, d_{k}>\theta_{k}\right)= \\
& \quad(1+o(1)) \mathbb{P}\left(Z_{1}>\theta_{1}, \ldots, Z_{k}>\theta_{k}\right)
\end{aligned}
$$

Stieltjes transform

Definition

For a measure μ,

$$
S(z ; \mu):=\int \frac{1}{x-z} \mu(d x), \quad z \in \mathbb{C}, \operatorname{Im}(z)>0
$$

Key Fact

$$
\text { If } \sup _{z: \operatorname{Im}(z)>0} \operatorname{Im} S(z ; \mu) \leq K
$$

then μ is absolutely continuous w.r.t. the Lebesgue measure and $\frac{d \mu}{d x} \leq \frac{K}{\pi}$.

The proof follows from the inversion formula.

$$
\int_{x}^{y} \mu(d E)=\lim _{\delta \rightarrow 0+} \frac{1}{\pi} \int_{x}^{y} \operatorname{Im} S(E+i \delta ; \mu) d E, \quad x<y \in \mathcal{C}(\mu) .
$$

Stieltjes transform of Toeplitz matrices

- Enough to show

$$
\sup _{z: \operatorname{Im}(z)>0} S\left(z, \mathbb{E} \mu_{n}\right) \leq C \quad \text { for all } n
$$

for Gaussian Toeplitz matrices.
-

$$
\begin{aligned}
S\left(z, \mathbb{E} \mu_{n}\right) & =n^{-1} \mathbb{E} \operatorname{tr}\left(n^{-1 / 2} \mathbf{T}_{n}-z \mathbf{I}\right)^{-1} \\
& =\frac{\sqrt{2}}{n} \sum_{j=1}^{2 n} \mathbb{E}\left\langle\mathbf{P} e_{j},(\mathbf{P D P}-z \mathbf{I})^{-1} \mathbf{P} e_{j}\right\rangle
\end{aligned}
$$

- To show that $\sup _{z: \operatorname{Im}(z)>0} \mathbb{E}\left\langle\mathbf{P} e_{j},(\mathbf{P D P}-z \mathbf{I})^{-1} \mathbf{P} e_{j}\right\rangle \leq C$ for each j uniformly in n.
- Let $\mathbf{D}_{\theta}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{j-1}, \theta, d_{j+1}, \ldots, d_{2 n}\right)$.
- $\mathbb{E}\left[\left\langle\mathbf{P} e_{j},(\mathbf{P D P}-z \mathbf{I})^{-1} \mathbf{P} e_{j}\right\rangle \mid d_{i}, i \neq j\right]$

Spectral averaging from Random Schrödinger operator

Theorem (Combes, Hislop and Mourre, Trans. AMS 1996)

Let $H_{\theta}, \theta \in \mathbb{R}$ be a family of self-adjoint operators. Assume that there exist a finite positive constant c_{0}, and a positive bounded self-adjoint operator B such that,
I. $\frac{d H_{\theta}}{d \theta} \geq c_{0} B^{2}$.
II. $\frac{d^{2} H_{\theta}}{d \theta^{2}}=0$.

Then for all $g \in C^{2}(\mathbb{R})$ and for all φ,

$$
\begin{aligned}
& \sup _{\operatorname{Im}(z)>0}\left|\int_{\mathbb{R}} g(\theta)\left\langle B \varphi,\left(H_{\theta}-z\right)^{-1} B \varphi\right\rangle d \theta\right| \\
& \leq c_{0}^{-1}\left(\|g\|_{1}+\left\|g^{\prime}\right\|_{1}+\left\|g^{\prime \prime}\right\|_{1}\right)\|\varphi\|^{2} .
\end{aligned}
$$

- Easy to check $\frac{d}{d \theta} \mathbf{P} \mathbf{D}_{\theta} \mathbf{P}=\mathbf{P} e_{j} e_{j}^{\prime} \mathbf{P} \geq 2\left(\mathbf{P} e_{j} e_{j}^{\prime} \mathbf{P}\right)^{2}$.

Some heuristics about spectral averaging

- Let λ_{i} be an eigenvalue of PDP with eigenvector u_{i}.
- Let $\mathbf{D}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{j}, \ldots, d_{2 n}\right)$.
- Bad case: small perturbations of d_{j} 's do not perturb $\lambda_{i}(\mathbf{D})$.
- Hadamard first variational formula:

$$
\frac{\partial}{\partial d_{j}} \lambda_{i}=u_{i}^{*} \frac{\partial}{\partial d_{j}}(\mathbf{P D P}) u_{i}=u_{i}^{*} \mathbf{P} e_{j} e_{j}^{\prime} \mathbf{P} u_{i}
$$

- $u_{i}^{*} \mathbf{P} e_{j} e_{j}^{\prime} \mathbf{P} u_{i}=\left|e_{j}^{\prime} \mathbf{P} u_{i}\right|^{2}=\left|u_{i}(j)\right|^{2}>0$. Hence,

$$
\left\|\nabla \lambda_{i}(\mathbf{D})\right\|_{1}=1 \quad \forall \mathbf{D}
$$

Bad case won't happen.

Question: localized eigenvectors?

Conjecture: With high probability, the eigenvectors of PDP are localized (ℓ^{2} weight of a generic eigenvector is concentrated on $o(n)$ coordinates).

Eigenvector of PDP.
Dominated by a few coordinates.

Eigenvector of Wigner matrix.
None of the coordinates dominates others.

More open problems

- The eigenvalue process of \mathbf{T}_{n}, away from the edge, after suitable normalization, converges to a standard Poisson point process on \mathbb{R}.
- Let \mathbf{V}_{n} be the top eigenvector of PDP. Then there exist random integers K_{n} so that for each $i \in \mathbb{Z}$

$$
\mathbf{V}_{n}\left(K_{n}+i\right) \rightarrow \hat{g}(i)
$$

where \hat{g} is the Fourier transform of the function $g(x)=\sqrt{2} f(2 x-1 / 2)$ and f is the (unique) optimizer in $\sup \left\{\|f \star f\|_{2}: f(x)=f(-x),\|f\|_{2}=1, f\right.$ supported on $\left.[-1 / 2,1 / 2]\right\}$.

