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What are Toeplitz matrices?
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Symmetric Toeplitz matrix: a_x = a, for all k.

Named after Otto Toeplitz (1881 -

Amab Sen University of Minnesota

1940).

Random Toeplitz Matrices

= ((aj-1))nxn-




Deterministic Toeplitz operators

@ Toeplitz operator = infinite Toeplitz matrix +
ZI**OO ‘al‘2 < 0.
@ It has a vast literature.

Toeplitz Forms and Their Applications by A?alysis of Toelplitz operators by
Grenander and Szegd (1958) Bottcher and Silbermann (1990).

@ Toeplitz forms are ubiquitous. For example, covariance matrix
of a stationary time-series or a transition matrix of a random
walk on Z with absorbing barriers.
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Usefulness: Toeplitz determinants and Szego formula

@ 5:5' — Csuch that 4(t) = Y22 a,t". Under certain
hypotheses on 3,
det((aj—i))nxn ~ A- 0", where

A=exp (D o k(log 8)_k(log 8)x) and 6§ = exp ((Iog 5)()).
This is known as strong Szegd limit theorem.

@ The magnetization of Ising model on n x n Torus can be
represented as a Toeplitz determinant: first rigorous proof of
Onsagar’s formula and phase transition of Ising model.

@ Many generating functions in combinatorics can be expressed
as Toeplitz determinants. For example, the length of the
longest increasing subsequence of a random permutation
(Baik, Deift, and Johansson, 1999).
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Random (symmetric) Toeplitz matrices

T, = ((a|i—j|))n><n

where {a;} is an i.i.d. sequence of random variables with
El[a;] = 0,E[a?] = 1.

@ Introduced by Bai (1999).

e Compare to Wigner matrix (matrix with i.i.d. entries modulo
symmetry), it has additional structures and much less
independence.

@ Random Toeplitz matrices have connections to one
dimensional random Schrodinger operators.
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Eigenvalue distribution of random Toeplitz matrices

1< :
pn = ;5/\[(”_1/21-"). Bai asked:  pp = pioo?
i=

Scaling by /n is necessary to ensure
E[f x*pn(dx)] = 5 30 EDNF(n™ /2T 0)] = n?E[tr(T7)] = 1.

® /i is not Gaussian distribution! [ x*u.(dx) =8/3 < 3.
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Existence of fis

Theorem (Bryc, Dembo, Jiang (Ann Probab, 2006))

Lo EXISS. |10 does not depend on the distribution of ag. fieo IS
nonrandom, symmetric and has unbounded support.

@ The proof is based on method of moments.
/kuEu,,(dx) =E [n " Yr(n~ V2T ,)k].

They show that [ x*Epun(dx) — vk and p1n — Epy — 0. The
proof is combinatorial.

e W, = n x n Wigner matrix. (w;j)i<; i.i.d. with mean 0 and
variance 1. Then puo exists and has density %\/4 — x21[,272].
This is famous .
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What else? Not much

® k1 =0. |
Y2k = sum of (22k/2!' of (k + 1)-dimensional integrals. But no
closed form expression for o, and hence for fiso.

—

@ Yo < 22:2[! = subgaussian tail of .

@ There is no alternative method known to prove convergence
of pn, other than the method of moments.

@ As of now, the toolbox to deal with random Toeplitz matrix is
pretty limited.
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Maximum eigenvalue of random Toeplitz matrices

@ The problem of studying the maximum eigenvalue of random
Toeplitz matrices is raised in Bryc, Dembo, Jiang (2006).

@ Meckes (2007): If the entries have uniformly subgaussian

tails, then
E[M(T,)] < +/nlogn.

o Adamczak (2010): {a;} i.i.d. with E[a?] = 1.
ITall |
E[Tx|

@ Bose, Hazra, Saha (2010): T, with i.i.d. heavy-tailed entries
P(|aj] > t) ~t~*L(t) as t - 00, 0 < a < 1. Then

- l/a
[T al| < n*/e.
Arnab Sen U anerSlty of Minnesota Random Toeplitz Matrices



Convergence of Maximum eigenvalue

o Let W, = ((wj))nxn be Wigner matrix. Assume E[wj,] < oco.
Then Bai and Yin (1988) showed that

2N (W) — 2.

@ For Toeplitz matrix, o, has unbounded support and hence
there is no natural guess for the limit of 21Tl
g vnlogn’

o The asymptotics of tr(Tk") =>"" Aff"(T,,) is not known
when k, — oo.
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First Result: Maximum eigenvalue

Assumption. (aj)o<j<n—1 is a sequence of independent random
variables. There exists constants v > 2 and C finite so that for
each variable

Ea; =0, Ea?=1, and E|a|’ < C.

Theorem (Virag, S.)

>‘1(Tn) LY .
Vonlogn Sin|3_, = 0.8288... asn — co.

Sin(f)(x) ::AWf(y)dy for f € [2(R),

and its 2 — 4 operator norm is

|Sinfl24 := sup [|Sin(f)[ls
Ifll2<1
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Open problem: limiting behavior of A\;(T,)

A1(Tr), suitably normalized, converges to Gumbel (double
exponential) distribution.

Remark. If xq,x2,...,x, are i.i.d. standard Gaussians, then

maxX; X;j — Cp

d — Gumbel.
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Second Result: Absolute continuity

@ Bryc, Dembo, Jiang (2006) conjectured that p, (for Toeplitz
matrices) has a smooth density w.r.t. Lebesgue measure.

Theorem (Virag, S.)

The limiting eigenvalue distribution of random Toeplitz matrices
has a bounded density.
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Connection between Toeplitz and circulant matrices

dy) d1 d2 a3 a4 | ds de 4dy 4dg 49
dg dp 41 4d2 a3 | a4 as de 4y as
dg d9 4o 4d1 a2 | a3 a4 as ag ary
dy dg 4dg9 4dp 41| d a3 a4 as dae
dp d7 dg 49 4o | 41 a2 a3 44 as
ds de dy dg dg | dp 41 42 a3 a4
dqy ds d¢ 4d7y dg | d 4dp 41 a2 as
d3 d4 as adp 4y | dg 49 4o 4di1 a2
d a3 d4 as d¢ | dy dg d9 4dg a1
dl a2 a3 a4 as | adsg 4dy dg 4dg 4do

Cuo=

e Fact: If a; = ap,_j, then
Tn On _ In On Sym In On
On On o On On 2n On On '
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Circulants are easy to understand

@ Spectral Decomposition:

(m)"2Cpy = Uj,diag(do, ch, - .., dm—1)Upm,

. m—1 .
_ 2mikl 1 2mikl
Un(k,1) =exp < - > , de=m E ajexp < )

/=0

@ U,, = discrete Fourier transform.

n n

@ Change of basis for n=1/2 [-g” g"]

nY2Up, [§ 8 U3, = V2 D2n
— V2PD
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PDP decomposition

@ D is a random diagonal matrix whose entries have mean zero,
variance o and are uncorrelated.

@ Thus for Gaussian Toeplitz matrices, then entries of D are
just i.i.d. Gaussians.

e Py, = Uy, [0 g] U3, is a deterministic Hermitian projection

matrix.
@ Py,(i,j) is a function of |i — j| (and n).
@ As n — oo, Py, ‘converges’ to I : 02— 02
1,1/9

n Z£2(Z) Fouri(ﬂ;ransf. LZ(SI) 10,1/ L2(51) InveieI;.T. ZZ(Z)
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Connection to 1-D random Schrodinger operators

o Model. H,, = A + V,, acts on £%(7Z) by
(Hop)(i) = + vi(w)e (i),

where (v;)jcz are i.i.d. random variables.

e Morally, H, = random multiplication operator with a local
(additive) perturbation.

@ Toeplitz matrix in Fourier basis = PDP.

The projection operator P behaves like a “local perturbation”.

Arnab Sen U anerSlty of Minnesota Random Toeplitz Matrices



How 2 — 4 norm arises: Gaussian case

o ﬁgn}\l(Pangnpgn) ~ Supek Al(ﬂk@kl'lk).

@ O is admissible if

@k = lim 7(di+1,d,'+2,...,d;+k), for some J.
n—oo /2 log n

e When is ©, = diag(61,6,,...,0k) inadmissible? Ans: Zf'(:l 6? > 1.

1
P(|dj+1| > 01+/2l0gn, ..., |di | > Ox\/2log n) < n=CFt-+00),
o For large k, Ai(MOkMy) = A (MNOMN).
@ We have a double optimization problem,

sup \1(NO) = sup { (v, Ndiag(6)v ) : [v]2 < 1, 0] < 1}
(€]

2
= [IM2-s-
o Finally, 2:(P2sP20P2) o |2,
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Appearance of Sine kernel

Fact (play with Fourier Transform)

1 ias
M35, = ﬁIISmII%%-

Key reason :

Sin(mx) , £ _ sin(f)

F.T.of (U112 ) =1 1/21/2 % f=

™

@ This optimization problem has been studied by Garsia,
Rodemich and Rumsey (1969).

@ They computed |Sin||3_,, = 0.686981293033114600949413...!
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A few more words

@ They are many (technical) gaps in the sketch.
@ Non-Gaussian case is harder due to lack of independence.

n
2kl
de =n"Y? ak Cos .
k Z K cos( on )
=0
@ We need normal approximation in the moderate deviation
regime,

P(dy > 611/2logn, ..., dx > 0i\/2log n) =
(1 n o(1))1@(z1 > 01\/2log ..., Zx > Ok/2log ).
@ Note that CLT only gives
P(dy > 601,...,dx > 0k) =
(1 + o(l))IP(Zl >0, Zk > 6y).
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Stieltjes transform

For a measure p,

S(z;p) = / i,u(dx)7 z e C,Im(z) > 0.

If sup ImS(z;p) <K,
z:Im(z)>0
then p is absolutely continuous w.r.t. the Lebesgue measure and
dp ~ K
dx — m°

The proof follows from the inversion formula.

y 1 /Y
/ u(dE) = lim / ImS(E + id; p)dE, x <y € C(p).

60—0+ T
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Stieltjes transform of Toeplitz matrices

e Enough to show

sup  S(z,Epn) < C forall n
z:Im(z)>0

for Gaussian Toeplitz matrices.
o

S(z,Epp) = n'Etr(n 2T, — z1)™*
V2

n

2n
Y E(Pe;, (PDP — z1)"'P¢;)
j=1

o To show that sup,.jy(,)~0 E(Pe;, (PDP — z1)71Pe;) < C for
each j uniformly in n.

o Let Dy = diag(dl, doy ...,y dj—la 0, dj+1, RN dg,,).
o E [(Pej, (PDP — z1)~'Pe))|d;, i # ]



Spectral averaging from Random Schrodinger operator

Theorem (Combes, Hislop and Mourre, Trans. AMS 1996)

Let Hy,0 € R be a family of self-adjoint operators. Assume that
there exist a finite positive constant ¢y, and a positive bounded
self-adjoint operator B such that,

I o> B2

I, LHo _
. EHy

Then for all g € C%(R) and for all ¢,

s / g(0)(By, (Hy — ) Bp)do
Im(z)>0 [/R

< ¢ (gl + llg'lls + llg” ) llll.

o Easy to check %;PDyP = Peje/P > 2(Peje/P)>.
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Some heuristics about spectral averaging

@ Let \; be an eigenvalue of PDP with eigenvector u;.
o Let D = diag(di,d>,...,d},...,da).

e Bad case: small perturbations of d;'s do not perturb \;(D).

@ Hadamard first variational formula:
0 . 0 X
87dj>\i = u; de(PDP)U, = u; Pejej{Pu;.

ufPejeiPu; = |lePu,-]2 = |u;(j)|> > 0. Hence,
[VAi(D)1=1 VD.
Bad case won't happen.

Arnab Sen U anerSlty of Minnesota Random Toeplitz Matrices



Question: localized eigenvectors?

Conjecture: With high probability, the eigenvectors of PDP are
localized (#2 weight of a generic eigenvector is concentrated on
o(n) coordinates).

R " b " W " LA I]JML‘Ludihmhnuma Js“h’ﬂ LLM..W.\‘LM“W J‘J m
Eigenvector of PDP. Eigenvector of Wigner matrix.
Dominated by a few coordinates. None of the coordinates dominates others.
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More open problems

@ The eigenvalue process of T,, away from the edge, after
suitable normalization, converges to a standard Poisson point
process on R.

@ Let V,, be the top eigenvector of PDP. Then there exist
random integers K, so that for each i € Z

Vi (Kn + 1) — &(i),

where g is the Fourier transform of the function
g(x) = v2f(2x — 1/2) and f is the (unique) optimizer in

sup{||fxf|l2 : f(x) = f(—x),]||fll2 =1, f supported on [-1/2,1/2]}.

Arnab Sen U anerSlty of Minnesota Random Toeplitz Matrices



