Random Toeplitz Matrices

Arnab Sen University of Minnesota

Conference on Limits Theorems in Probability, IISc January 11, 2013

Joint work with Bálint Virág

Arnab Sen University of Minnesota Random Toeplitz Matrices

What are Toeplitz matrices?

$$\begin{bmatrix} a_0 & a_1 & a_2 & \cdots & \cdots & a_{n-2} & a_{n-1} \\ a_{-1} & a_0 & a_1 & a_2 & \cdots & \cdots & a_{n-2} \\ a_{-2} & a_{-1} & a_0 & a_1 & \cdots & \cdots & a_{n-3} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \cdots & \cdots & \cdots & a_{-1} & a_0 & a_1 & a_2 \\ a_{-(n-2)} & \cdots & \cdots & a_{-2} & a_{-1} & a_0 & a_1 \\ a_{-(n-1)} & a_{-(n-2)} & \cdots & \cdots & a_{-2} & a_{-1} & a_0 \end{bmatrix} = ((a_{j-i}))_{n \times n}.$$

Symmetric Toeplitz matrix: $a_{-k} = a_k$ for all k.

Named after Otto Toeplitz (1881 - 1940).

Deterministic Toeplitz operators

- Toeplitz operator = infinite Toeplitz matrix + $\sum_{i=-\infty}^{\infty} |a_i|^2 < \infty$.
- It has a vast literature.

Toeplitz Forms and Their Applications by Grenander and Szegö (1958)

Analysis of Toeplitz operators by Böttcher and Silbermann (1990).

• Toeplitz forms are ubiquitous. For example, covariance matrix of a stationary time-series or a transition matrix of a random walk on \mathbb{Z} with absorbing barriers.

Usefulness: Toeplitz determinants and Szegö formula

- $\hat{a}: S^1 \to \mathbb{C}$ such that $\hat{a}(t) = \sum_{n=-\infty}^{\infty} a_n t^n$. Under certain hypotheses on \hat{a} , $\det((a_{j-i}))_{n \times n} \sim A \cdot \theta^n$, where $A = \exp\left(\sum_{k=1}^{\infty} k(\log \hat{a})_{-k}(\log \hat{a})_k\right)$ and $\theta = \exp\left((\log \hat{a})_0\right)$. This is known as strong Szegö limit theorem.
- The magnetization of Ising model on $n \times n$ Torus can be represented as a Toeplitz determinant: first rigorous proof of Onsagar's formula and phase transition of Ising model.
- Many generating functions in combinatorics can be expressed as Toeplitz determinants. For example, the length of the longest increasing subsequence of a random permutation (Baik, Deift, and Johansson, 1999).

Random (symmetric) Toeplitz matrices

Model

$$\mathbf{T}_n = ((a_{|i-j|}))_{n \times n}$$

where $\{a_i\}$ is an i.i.d. sequence of random variables with $\mathbb{E}[a_i] = 0, \mathbb{E}[a_i^2] = 1.$

- Introduced by Bai (1999).
- Compare to Wigner matrix (matrix with i.i.d. entries modulo symmetry), it has additional structures and much less independence.
- Random Toeplitz matrices have connections to one dimensional random Schrödinger operators.

Eigenvalue distribution of random Toeplitz matrices

$$\mu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(n^{-1/2} \mathbf{T}_n)}.$$
 Bai asked: $\mu_n \to \mu_\infty$?

Scaling by \sqrt{n} is necessary to ensure $\mathbb{E}[\int x^2 \mu_n(dx)] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[\lambda_i^2(n^{-1/2}\mathbf{T}_n)] = n^{-2}\mathbb{E}[\operatorname{tr}(\mathbf{T}_n^2)] = 1.$

• μ_{∞} is not Gaussian distribution! $\int x^4 \mu_{\infty}(dx) = 8/3 < 3$. Arnab Sen University of Minnesota Random Toeplitz Matrices

Theorem (Bryc, Dembo, Jiang (Ann Probab, 2006))

 μ_∞ exists. μ_∞ does not depend on the distribution of a_0. μ_∞ is nonrandom, symmetric and has unbounded support.

• The proof is based on method of moments.

$$\int x^{k} \mathbb{E}\mu_{n}(dx) = \mathbb{E}\left[n^{-1} \operatorname{tr}(n^{-1/2}\mathbf{T}_{n})^{k}\right].$$

They show that $\int x^k \mathbb{E}\mu_n(dx) \to \gamma_k$ and $\mu_n - \mathbb{E}\mu_n \to 0$. The proof is combinatorial.

• $\mathbf{W}_n = n \times n$ Wigner matrix. $(w_{ij})_{i \leq j}$ i.i.d. with mean 0 and variance 1. Then μ_{∞} exists and has density $\frac{1}{2\pi}\sqrt{4-x^2}\mathbf{1}_{[-2,2]}$. This is famous semicircular law.

伺 ト イヨト イヨト

What else? Not much

• $\gamma_{2k+1} = 0$. $\gamma_{2k} = \text{sum of } \frac{(2k)!}{2^k k!}$ of (k+1)-dimensional integrals. But no closed form expression for γ_{2k} and hence for μ_{∞} .

•
$$\gamma_{2k} \leq rac{(2k)!}{2^k k!} \Rightarrow$$
 subgaussian tail of μ_{∞} .

- There is no alternative method known to prove convergence of μ_n other than the method of moments.
- As of now, the toolbox to deal with random Toeplitz matrix is pretty limited.

Maximum eigenvalue of random Toeplitz matrices

- The problem of studying the maximum eigenvalue of random Toeplitz matrices is raised in Bryc, Dembo, Jiang (2006).
- Meckes (2007): If the entries have uniformly subgaussian tails, then

 $\mathbb{E}[\lambda_1(\mathbf{T}_n)] \asymp \sqrt{n \log n}.$

- Adamczak (2010): $\{a_i\}$ i.i.d. with $\mathbb{E}[a_i^2] = 1$. $\frac{\|\mathbf{T}_n\|}{\mathbb{E}\|\mathbf{T}_n\|} \to 1.$
- Bose, Hazra, Saha (2010): \mathbf{T}_n with i.i.d. heavy-tailed entries $\mathbb{P}(|a_i| > t) \sim t^{-\alpha} L(t)$ as $t \to \infty$, $0 < \alpha < 1$. Then $\|\mathbf{T}_n\| \asymp n^{1/\alpha}$.

Convergence of Maximum eigenvalue

• Let $\mathbf{W}_n = ((w_{ij}))_{n \times n}$ be Wigner matrix. Assume $\mathbb{E}[w_{12}^4] < \infty$. Then Bai and Yin (1988) showed that

$$n^{-1/2}\lambda_1(\mathbf{W}_n) \to 2.$$

- For Toeplitz matrix, μ_∞ has unbounded support and hence there is no natural guess for the limit of λ₁(T_n)/√n log n.
- The asymptotics of $tr(\mathbf{T}_n^{k_n}) = \sum_{i=1}^n \lambda_i^{k_n}(\mathbf{T}_n)$ is not known when $k_n \to \infty$.

First Result: Maximum eigenvalue

Assumption. $(a_i)_{0 \le i \le n-1}$ is a sequence of independent random variables. There exists constants $\gamma > 2$ and C finite so that for each variable

$$\mathbb{E}a_i = 0$$
, $\mathbb{E}a_i^2 = 1$, and $\mathbb{E}|a_i|^{\gamma} < C$.

$${\tt Sin}(f)(x):=\int_{\mathbb{R}}rac{{
m sin}(\pi(x-y))}{\pi(x-y)}f(y)dy \quad ext{ for } f\in L^2(\mathbb{R}),$$

and its $2 \rightarrow 4$ operator norm is

$$\|{ t Sin}\|_{2 o 4}:=\sup_{\|f\|_2\leq 1}\|{ t Sin}(f)\|_4$$

Open problem: limiting behavior of $\lambda_1(\mathbf{T}_n)$

Guess

 $\lambda_1(\mathbf{T}_n)$, suitably normalized, converges to Gumbel (double exponential) distribution.

Remark. If x_1, x_2, \ldots, x_n are i.i.d. standard Gaussians, then

$$\frac{\max_i x_i - c_n}{d_n} \to \text{Gumbel}.$$

• Bryc, Dembo, Jiang (2006) conjectured that μ_{∞} (for Toeplitz matrices) has a smooth density w.r.t. Lebesgue measure.

Theorem (Virag, S.)

The limiting eigenvalue distribution of random Toeplitz matrices has a bounded density.

Connection between Toeplitz and circulant matrices

${f C}_{10}=$	<i>a</i> 0	a_1	a 2	a 3	a 4	a 5	a_6	<i>a</i> 7	a_8	a 9
	a 9	a_0	a_1	a 2	a 3	<i>a</i> 4	a_5	a_6	a_7	a 8
	<i>a</i> 8	a 9	a_0	a_1	a 2	a 3	a 4	a_5	a_6	a7
	a ₇	a_8	a_9	a_0	a_1	a 2	a 3	a_4	a_5	<i>a</i> 6
	<i>a</i> 6	<i>a</i> 7	a_8	a 9	a_0	a_1	a 2	a ₃	a_4	<i>a</i> 5
	a 5	a 6	a_7	a_8	a 9	<i>a</i> 0	a_1	a 2	a 3	a 4
	a ₄	a_5	a_6	a_7	a_8	a 9	a_0	a_1	a 2	a ₃
	a ₃	a_4	a_5	a_6	a_7	a 8	a 9	a_0	a_1	a 2
	a 2	a 3	a 4	a_5	a_6	a7	a_8	a 9	a_0	a_1
	l a ₁	a 2	a 3	a_4	a_5	<i>a</i> ₆	a ₇	a_8	a ₉	<i>a</i> 0 _

• Fact: If $a_j = a_{2n-j}$, then

$$\begin{bmatrix} \mathbf{T}_n & \mathbf{0}_n \\ \mathbf{0}_n & \mathbf{0}_n \end{bmatrix} = \begin{bmatrix} \mathbf{I}_n & \mathbf{0}_n \\ \mathbf{0}_n & \mathbf{0}_n \end{bmatrix} \mathbf{C}_{2n}^{\mathrm{sym}} \begin{bmatrix} \mathbf{I}_n & \mathbf{0}_n \\ \mathbf{0}_n & \mathbf{0}_n \end{bmatrix}$$

.

Circulants are easy to understand

• Spectral Decomposition:

$$(m)^{-1/2}\mathbf{C}_m = \mathbf{U}_m^* \operatorname{diag}(d_0, d_1, \ldots, d_{m-1})\mathbf{U}_m,$$

$$\mathbf{U}_m(k,l) = \exp\left(rac{2\pi ikl}{m}
ight), \quad d_k = m^{-1/2}\sum_{l=0}^{m-1}a_l\exp\left(rac{2\pi ikl}{m}
ight).$$

• $\mathbf{U}_m = \text{discrete Fourier transform.}$

• Change of basis for
$$n^{-1/2} \begin{bmatrix} \mathsf{T}_n & \mathsf{0}_n \\ \mathsf{0}_n & \mathsf{0}_n \end{bmatrix}$$

 $n^{-1/2} \mathsf{U}_{2n} \begin{bmatrix} \mathsf{T} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} \end{bmatrix} \mathsf{U}_{2n}^* = \sqrt{2} \mathsf{U}_{2n} \begin{bmatrix} \mathsf{I} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} \end{bmatrix} \mathsf{U}_{2n}^* \mathsf{D}_{2n} \mathsf{U}_{2n} \begin{bmatrix} \mathsf{I} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} \end{bmatrix} \mathsf{U}_{2n}^*$

 $=\sqrt{2}\mathbf{PDP}.$

PDP decomposition

- **D** is a random diagonal matrix whose entries have mean zero, variance σ^2 and are uncorrelated.
- Thus for Gaussian Toeplitz matrices, then entries of **D** are just i.i.d. Gaussians.

•
$$\mathbf{P}_{2n} = \mathbf{U}_{2n} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{U}_{2n}^*$$
 is a deterministic Hermitian projection matrix.

- $\mathbf{P}_{2n}(i,j)$ is a function of |i-j| (and n).
- As $n \to \infty$, \mathbf{P}_{2n} 'converges' to $\Pi : \ell^2 \to \ell^2$.

$$\Pi: \ell^2(\mathbb{Z}) \xrightarrow{\text{Fourier Transf.}} L^2(S^1) \xrightarrow{\mathbf{1}_{[0,1/2]}} L^2(S^1) \xrightarrow{\text{Inverse F.T.}} \ell^2(\mathbb{Z}).$$

Connection to 1-D random Schrödinger operators

• Model. $H_{\omega} = \Delta + V_{\omega}$ acts on $\ell^2(\mathbb{Z})$ by

 $(H_{\omega}\varphi)(i) = \varphi(i-1) + \varphi(i+1) + v_i(\omega)\varphi(i),$

where $(v_i)_{i \in \mathbb{Z}}$ are i.i.d. random variables.

- Morally, H_{ω} = random multiplication operator with a local (additive) perturbation.
- Toeplitz matrix in Fourier basis = **PDP**.

The projection operator P behaves like a "local perturbation".

伺 と く ヨ と く ヨ と

How $2 \rightarrow 4$ norm arises: Gaussian case

•
$$\frac{1}{\sqrt{2\log n}}\lambda_1(\mathbf{P}_{2n}\mathbf{D}_{2n}\mathbf{P}_{2n})\approx \sup_{\Theta_k}\lambda_1(\Pi_k\Theta_k\Pi_k).$$

• Θ_k is admissible if

$$\Theta_k = \lim_{n \to \infty} \frac{1}{\sqrt{2 \log n}} (d_{i+1}, d_{i+2}, \dots, d_{i+k}), \quad \text{for some } i.$$

• When is
$$\Theta_k = \operatorname{diag}(\theta_1, \theta_2, \dots, \theta_k)$$
 inadmissible? Ans: $\sum_{i=1}^k \theta_i^2 > 1$.
 $\mathbb{P}(|d_{i+1}| > \theta_1 \sqrt{2 \log n}, \dots, |d_{i+k}| > \theta_k \sqrt{2 \log n}) \le n^{-(\theta_1^2 + \dots + \theta_k^2)}$.

• For large k,
$$\lambda_1(\Pi_k\Theta_k\Pi_k) \approx \lambda_1(\Pi\Theta\Pi)$$
.

• We have a double optimization problem,

$$\begin{split} \sup_{\Theta} \lambda_1(\Pi \Theta \Pi) &= \sup \left\{ \left\langle \mathbf{v}, \Pi \operatorname{diag}(\boldsymbol{\theta}) \Pi \mathbf{v} \right\rangle : \|\mathbf{v}\|_2 \leq 1, \|\boldsymbol{\theta}\|_2 \leq 1 \right\} \\ &= \|\Pi\|_{2 \to 4}^2. \end{split}$$

$$\bullet \text{ Finally, } \frac{\lambda_1(\mathbf{P}_{2n} \mathbf{D}_{2n} \mathbf{P}_{2n})}{\sqrt{2 \log n}} \approx \|\Pi\|_{2 \to 4}^2. \end{split}$$

Fact (play with Fourier Transform)

$$\|\Pi\|_{2\to 4}^2 = \frac{1}{\sqrt{2}} \|\mathtt{Sin}\|_{2\to 4}^2.$$

Key reason :

F.T. of
$$(\mathbf{1}_{[-1/2,1/2]} \cdot f) = \widehat{\mathbf{1}_{[-1/2,1/2]}} \star \hat{f} = \frac{\sin(\pi x)}{\pi x} \star \hat{f} = \operatorname{Sin}(\hat{f})$$

- This optimization problem has been studied by Garsia, Rodemich and Rumsey (1969).
- They computed $\|Sin\|_{2\to 4}^4 = 0.686981293033114600949413...!$

Image: A image: A

A few more words

- They are many (technical) gaps in the sketch.
- Non-Gaussian case is harder due to lack of independence.

$$d_k = n^{-1/2} \sum_{\ell=0}^n a_k \cos(\frac{2\pi k\ell}{2n}).$$

• We need normal approximation in the moderate deviation regime,

$$\mathbb{P}(d_1 > \theta_1 \sqrt{2\log n}, \dots, d_k > \theta_k \sqrt{2\log n}) = \\ (1 + o(1)) \mathbb{P}(Z_1 > \theta_1 \sqrt{2\log n}, \dots, Z_k > \theta_k \sqrt{2\log n}).$$

Note that CLT only gives

$$\mathbb{P}(d_1 > heta_1, \dots, d_k > heta_k) = \ ig(1 + o(1)ig) \mathbb{P}(Z_1 > heta_1, \dots, Z_k > heta_k).$$

Stieltjes transform

Definition

For a measure μ ,

$$S(z;\mu):=\int rac{1}{x-z}\mu(dx), \ \ z\in\mathbb{C}, \mathrm{Im}(z)>0.$$

Key Fact

If
$$\sup_{z:\operatorname{Im}(z)>0}\operatorname{Im} S(z;\mu) \leq K$$
,

then μ is absolutely continuous w.r.t. the Lebesgue measure and $\frac{d\mu}{dx} \leq \frac{K}{\pi}.$

The proof follows from the inversion formula.

$$\int_{x}^{y} \mu(dE) = \lim_{\delta \to 0+} \frac{1}{\pi} \int_{x}^{y} \operatorname{Im} S(E + i\delta; \mu) dE, \quad x < y \in \mathcal{C}(\mu).$$

Stieltjes transform of Toeplitz matrices

Enough to show

۲

 $\sup_{z: \mathrm{Im}(z) > 0} S(z, \mathbb{E}\mu_n) \leq C \quad \text{for all } n$

for Gaussian Toeplitz matrices.

$$S(z, \mathbb{E}\mu_n) = n^{-1} \mathbb{E} \operatorname{tr}(n^{-1/2} \mathbf{T}_n - z \mathbf{I})^{-1}$$
$$= \frac{\sqrt{2}}{n} \sum_{j=1}^{2n} \mathbb{E} \langle \mathsf{P} e_j, (\mathsf{PDP} - z \mathbf{I})^{-1} \mathsf{P} e_j \rangle$$

- To show that $\sup_{z:Im(z)>0} \mathbb{E} \langle \mathbf{P}e_j, (\mathbf{PDP} z\mathbf{I})^{-1}\mathbf{P}e_j \rangle \leq C$ for each j uniformly in n.
- Let $\mathbf{D}_{\theta} = \operatorname{diag}(\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_{j-1}, \theta, \mathbf{d}_{j+1}, \dots, \mathbf{d}_{2n}).$

•
$$\mathbb{E}\left[\langle \mathsf{P} e_j, (\mathsf{P} \mathsf{D} \mathsf{P} - z \mathsf{I})^{-1} \mathsf{P} e_j \rangle | d_i, i \neq j\right]$$

Theorem (Combes, Hislop and Mourre, Trans. AMS 1996)

Let $H_{\theta}, \theta \in \mathbb{R}$ be a family of self-adjoint operators. Assume that there exist a finite positive constant c_0 , and a positive bounded self-adjoint operator B such that,

$$\begin{array}{ll} \mathsf{I}. & \frac{d \mathsf{H}_{\theta}}{d \theta} \geq c_0 B^2. \\ \mathsf{II}. & \frac{d^2 \mathsf{H}_{\theta}}{d \theta^2} = \mathsf{0}. \end{array} \\ \text{Then for all } g \in C^2(\mathbb{R}) \text{ and for all } \varphi, \end{array}$$

$$\sup_{\mathrm{Im}(z)>0}\left|\int_{\mathbb{R}}g(heta)\langle Barphi,(H_ heta-z)^{-1}Barphi
angle d heta
ight| \ \leq c_0^{-1}(\|g\|_1+\|g'\|_1+\|g''\|_1)\|arphi\|^2.$$

• Easy to check
$$\frac{d}{d\theta} \mathbf{P} \mathbf{D}_{\theta} \mathbf{P} = \mathbf{P} e_j e'_j \mathbf{P} \ge 2(\mathbf{P} e_j e'_j \mathbf{P})^2$$
.

Some heuristics about spectral averaging

- Let λ_i be an eigenvalue of **PDP** with eigenvector u_i .
- Let $\mathbf{D} = \text{diag}(d_1, d_2, ..., d_j, ..., d_{2n}).$
- Bad case: small perturbations of d_j 's do not perturb $\lambda_i(\mathbf{D})$.
- Hadamard first variational formula:

$$\frac{\partial}{\partial d_j}\lambda_i = u_i^* \frac{\partial}{\partial d_j} (\mathsf{PDP})u_i = u_i^* \mathsf{P} e_j e_j' \mathsf{P} u_i.$$

• $u_i^* \mathbf{P} e_j e'_j \mathbf{P} u_i = |e'_j \mathbf{P} u_i|^2 = |u_i(j)|^2 > 0$. Hence,

$$\|\nabla \lambda_i(\mathbf{D})\|_1 = 1 \quad \forall \mathbf{D}.$$

Bad case won't happen.

Conjecture: With high probability, the eigenvectors of **PDP** are localized (ℓ^2 weight of a generic eigenvector is concentrated on o(n) coordinates).

Eigenvector of **PDP**. Dominated by a few coordinates.

Eigenvector of Wigner matrix. None of the coordinates dominates others.

Arnab Sen University of Minnesota

Random Toeplitz Matrices

- The eigenvalue process of T_n, away from the edge, after suitable normalization, converges to a standard Poisson point process on ℝ.
- Let \mathbf{V}_n be the top eigenvector of **PDP**. Then there exist random integers K_n so that for each $i \in \mathbb{Z}$

$$\mathbf{V}_n(K_n+i)\to \hat{g}(i),$$

where \hat{g} is the Fourier transform of the function $g(x) = \sqrt{2}f(2x - 1/2)$ and f is the (unique) optimizer in $\sup\{\|f \star f\|_2 : f(x) = f(-x), \|f\|_2 = 1, f \text{ supported on } [-1/2, 1/2]\}.$

- < E > < E >