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Set-up

A an m × n matrix, real entries.

Attach a probability pj with j th column of A. The pj sum to 1.
In s i.i.d. trials, pick s columns of A with these probabilities.
Scale picked columns.
Form m × s matrix B of sampled, scaled columns.
Want Bm×s ≈ Am×n. Makes sense??
Try BBT ≈ AAT . Both are m × m !
With correct scaling, can make it Unbiased:

E(BBT ) = AAT .
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Length Squared Sampling

Large Matrix A. Sampling and scaling some columns to form B
got us

E(BBT ) = AAT .

Minimize Variance. [Of a matrix?]
Frieze, K., Vempala Sampling probabilities proportional to
SQUARED LENGTHS of columns minimize the variance.
Many applications of length-squared sampling:

Estimate of invariants of matrix.
Matrix Compression by sampling: Sample of rows and columns
sufficient to approximate any matrix. Drineas, K., Mahoney
Approximate maximization of cubic and higher forms.

() Sampling, Matrices, Tensors January 11, 2013 3 / 1



Length Squared Sampling

Large Matrix A. Sampling and scaling some columns to form B
got us

E(BBT ) = AAT .

Minimize Variance. [Of a matrix?]

Frieze, K., Vempala Sampling probabilities proportional to
SQUARED LENGTHS of columns minimize the variance.
Many applications of length-squared sampling:

Estimate of invariants of matrix.
Matrix Compression by sampling: Sample of rows and columns
sufficient to approximate any matrix. Drineas, K., Mahoney
Approximate maximization of cubic and higher forms.

() Sampling, Matrices, Tensors January 11, 2013 3 / 1



Length Squared Sampling

Large Matrix A. Sampling and scaling some columns to form B
got us

E(BBT ) = AAT .

Minimize Variance. [Of a matrix?]
Frieze, K., Vempala Sampling probabilities proportional to
SQUARED LENGTHS of columns minimize the variance.

Many applications of length-squared sampling:

Estimate of invariants of matrix.
Matrix Compression by sampling: Sample of rows and columns
sufficient to approximate any matrix. Drineas, K., Mahoney
Approximate maximization of cubic and higher forms.

() Sampling, Matrices, Tensors January 11, 2013 3 / 1



Length Squared Sampling

Large Matrix A. Sampling and scaling some columns to form B
got us

E(BBT ) = AAT .

Minimize Variance. [Of a matrix?]
Frieze, K., Vempala Sampling probabilities proportional to
SQUARED LENGTHS of columns minimize the variance.
Many applications of length-squared sampling:

Estimate of invariants of matrix.
Matrix Compression by sampling: Sample of rows and columns
sufficient to approximate any matrix. Drineas, K., Mahoney
Approximate maximization of cubic and higher forms.

() Sampling, Matrices, Tensors January 11, 2013 3 / 1



Length Squared Sampling

Large Matrix A. Sampling and scaling some columns to form B
got us

E(BBT ) = AAT .

Minimize Variance. [Of a matrix?]
Frieze, K., Vempala Sampling probabilities proportional to
SQUARED LENGTHS of columns minimize the variance.
Many applications of length-squared sampling:

Estimate of invariants of matrix.

Matrix Compression by sampling: Sample of rows and columns
sufficient to approximate any matrix. Drineas, K., Mahoney
Approximate maximization of cubic and higher forms.

() Sampling, Matrices, Tensors January 11, 2013 3 / 1



Length Squared Sampling

Large Matrix A. Sampling and scaling some columns to form B
got us

E(BBT ) = AAT .

Minimize Variance. [Of a matrix?]
Frieze, K., Vempala Sampling probabilities proportional to
SQUARED LENGTHS of columns minimize the variance.
Many applications of length-squared sampling:

Estimate of invariants of matrix.
Matrix Compression by sampling: Sample of rows and columns
sufficient to approximate any matrix. Drineas, K., Mahoney
Approximate maximization of cubic and higher forms.

() Sampling, Matrices, Tensors January 11, 2013 3 / 1



How many Samples do we need?

We fix one measure of error, namely, relative spectral norm for this
talk:

Spectral Norm of (AAT − BBT )

Spectral Norm of AAT .

How many samples (= s, the number of columns of B) do we
need to ensure that with high probability, the error is at most 0.01?
Let r =rank(A). [Actually, r = ||A||2F/||A||2 which is at most rank
will do.]

Original FKV: s = r3 works.
Drineas, K., Mahoney s = r2 suffices.
Rudelson and Vershynin s = r log r suffices. Uses some nice ideas
from Functional Analysis. (Decoupling). Simpler proof of main tool
by Ahlswede and Winter in Information Theory.
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Variance-covariance matrices

v a vector valued random variable (with a probability distribution
(or density) in n− space.)

Eg. 1: v is a random column of a fixed matrix.
Eg. 2: v has general (non-spherical) Gaussian or other densities.

How many i.i.d. samples of v are sufficient to ensure relative
error approximation to the variance-covariance matrix - EvvT ?
Want:
Sample Variance-Covariance matrix ≈ε true Variance-Covariance
matrix. (M1 ≈ε M2 if xT M1x ≈ε xT M2x ∀x .)
Question raised for log-concave densities by K., Lovász,
Simonovits for computing volumes of convex sets. First
improvement by Bourgain, then Rudelson to O(n log n) and most
recently Srivatsava, Vershynin to O(n). Relative error is important
(and more difficult) for

Linear Regression when we are looking for x minimizing xT

Var-Covar x .
Graph, Matrix Sparsification Spielman, Srivatsava, Batman, Teng.
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Matrix-Valued Random Variables

Last Slide: prove concentration for vvT , v random vector. Rank 1.

Generally, concentration for ||X ||, X = X1 + X2 + · · ·+ Xn
independent d × d matrix-valued r.v.s’s. with

0 ≤ Xi ≤ I.

Traditional methods: Wigner ... Bound E Tr(X1 + X2 + · · ·+ Xn)m,
m large even.
Ahlswede and Winter A Chernoff bound using Bernstein method.
Crucial: Golden-Thompson inequality.

Theorem Xi i.i.d.. Pr (X /∈ (1 − ε)EX , (1 + ε)EX ) ≤ d e−ε2n, for
ε ≤ 1.

Tropp Independence suffices; don’t need i.i.d. [Lieb’s inequality
instead of Golden-Thompson.]
Open: Prove such concentration for negatively correlated (but not
independent) Xi .
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Matrix Sparsification

n × m matrix A. [Think of m >> n.] [Each column is a record in a
database.]

Sample s columns of A (with a probability distribution of your
choice) to get matrix B so that for every x :

xT (AAT )x ≈ε xT (BBT )x ≡ |xT A| ≈ε |xT B|.
What probability distribution and what s ?
Length-squared sampling only gives us∣∣|xT A|−| xT B|

∣∣ ≤ 0.01||A||. Bad for x with small |xT A|.
Do length-squared sampling on (basically) A−1A (!!??!!) -
Isometry, equally good for all x ! Spielman, Srivatisava, Batsman;
Drineas, Mahoney, Muthukrishnan
s = O∗(n) will do (whatever m is). Implies:
Theorem For any n × m matrix A, there is a subset B of O(n)
(scaled) columns of A such that for every x ,

|xT A| ≈0.01 |xT B|.
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Graph Spasification - a special case of Matrix
Sparsification

Sample edges to represent every cut size to relative error. Then find
sparsest cut in sampled graph.

Indeed, for graphs, sampling probabilities proportional to electrical
resistances work and make sparsification possible in nearly linear
time. No such fast algorithm is known for general matrix sparsification.
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Maximizing Cubic and higher forms

Given m × n × p array Aijk , find
||A|| = Max|x |=|y |=|z|=1A(x , y , z) =

∑
ijk Aijkxiyjzk .

All we say here applies higher forms, Aijkl , etc..

No clean, nice theory, algorithms as for matrices. In fact, exact
maximization is computationally hard for quartic and higher forms.
Theorem Using length squared sampling, we can find (in
polynomial time) a x , y , z such that with high probability

A(x , y , z) ≥ ||A||− 0.01||A||F ,

where, ||A||2F is the sum of squares of all entries of A. [Alas, we
cannot replace || · || on the left by || · ||F or vice varsa.] de la Vega,
Karpinski, K., Vempala
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Maximizing cubic forms
Central Problem: Find x , y , z unit vectors to maximize

∑
ijk Aijklxiyjzk .

If we knew the optimizing y , z, then the optimizing x is easy to
find: it is just the vector A(·, y , z) (whose i th component is
A(ei , y , z)) scaled to length 1.
Now, A(ei , y , z) =

∑
j,k ,l Ai,j,kyjzk .

The sum can be estimated by having just a few terms, namely, yj , zk
values for a few j , k .
Of course don’t know these values, but FEW =⇒ we can
enumerate all possibilities.
How do we make sure the variance is not too high, since the entries
can have disparate values ?
Length squared sampling works ! [Stated here without proof.]

This gives us many candidate x ’s. How do we check which one is
good ? For each x , form the matrix A(x). Solve the quadratic form
maximization for the matrix to find best y , z. Take the best
candidate x .
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Combinatorial Application of Low-rank approximations

Szemeredi’s Regularity Lemma:

Graph G on n vertices (n → ∞).
Can partition the vertex set into O(1) parts so that the edge sets
between most pairs behave as if they were thrown in at random
with the correct density.

Beautiful Theorem with many applications including van der
Warden conjecture.
Gowers The number of parts has to be at least a tower of height
1/ε20 in error parameter ε.
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Weak Regularity Lemma

Vertex set V of a graph partitioned into V1,V2, . . . ,Vk .

Density dij between part Vi and Vj is the fraction of number of
edges between Vi ,Vj .
Think of edges between a vertex in Vi and one in Vj being thrown
in at random with probability dij .
Partition is “weakly” ε regular if for any subsets S,T of vertices we
have

Number of edges between S and T = E( of that number ) ±εn2.

Frieze, K. There is a weakly ε regular partition with 21/ε2 parts.
Such a partition can be found in poly time.
But why state this in this talk?
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Combinatorial Rank 1 matrices and Regularity

A cut matrix is of the form αv ⊗ u, where, α is a real number and
u, v are 0-1 vectors.

(Easy) Any matrix can be approximated by a sum of a small
number of cut matrices. Specifically, at most 1/ε2 cut matrices, so
that the error in “cut norm” is at most ε||A||F .
Cut Norm: Max. absolute value of the sum of entries in a
rectangle (any subset of rows × any subset of columns)
Hard: Such an approximation can be found.
Easy: Such an approximation gives a weakly regular partition.
Weak regularity partition not sufficient for many purely structural
results. (Otherwise would contradict lower bounds for van der
Warden problem). It suffices for algorithmic applications.
Extends to higher dimensional arrays (tensors).
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