MA 312 Commutative Algebra / Aug–Dec 2017

(Int PhD. and Ph. D. Programmes)

Download from : http	p://www.math	.iisc.err	net.in/pat	il/co	urses	/courses	s/Current Co	ourses/	
Tel: +91-(0)80-2293 3212/09449076304					E-mails: patil@math.iisc.ernet.in				
Lectures : Wednesday and Friday ; 14:00–15:30					Venue: MA LH-2 (if LH-1 is not free)/LH-1				
Seminars : Sat, Nov 18 (1	0:30–12:45) ; Sa	at, Nov 25 (10:3	30-12:45)						
Final Examination : Tu	esday, Decembe	r 05, 2017, 0	9:00-12:00						
Evaluation Weightage : Assignments : 20% Seminars					30% Final Examination : 50%				
Range of Marks for Grades (Total 100 Marks)									
	Grade S	Grade A	A Grad	Grade B		ade C	Grade D	Grade F	
Marks-Range	> 90	76-90	61-	—75		-60	35-45	< 35	
	Grade A ⁺	Grade A	Grade B ⁺	Gra	de B	Grade C	Grade D	Grade F	
Marks-Range	> 90	81-90	71-80	61-	-70	51-60	40-50	< 40	
3. Rings and Modules with Chain Conditions									
Submit a solutions of * - Exercises ONLY.						Due Date : Wednesday, 13-09-2017			

3.1 Let *A* be a ring and V_i , $i \in I$, be a family of *A*-modules $V_i \neq 0$. If *I* not finite, then the *A*-module $\bigoplus_{i \in I} V_i$ is neither noetherian nor artinian.

3.2 Let *I* be an infinite set and *A* be a ring $\neq 0$. The product ring A^{I} is neither noetherian nor artinian.

3.3 Let *k* be a field.

(a) Let B = k[x] be a cyclic k-algebra. Then every k-subalgebra A of B is a finite type k-algebra. (Hint: If $f \in A$, $f = \sum_{i=0}^{m} a_i x^i$, $a_m \neq 0$, $m \ge 1$, then $B = \sum_{i=0}^{m-1} k[f] x^i$ is a finite over $k[f] \subseteq A$.)

(b) Let $B = k[\mathbb{N}^2]$ be the monoid algebra over k of the additive monoid \mathbb{N}^2 and let $X := e_{(1,0)}, Y := e_{(0,1)}$. Then B = k[X,Y], and the monomials $X^iY^j = e_{(i,j)}, (i,j) \in \mathbb{N}^2$, form a k-basis of B. Let A be the k-subalgebra of B generated by the monomials $X, X^2Y, \ldots, X^{n+1}Y^n, \ldots$ Then A is not a noetherian ring, much less than a finite type k-algebra. (**Hint :** Note that B is the polynomial algebra in two indeterinates X, Y over k and $X^{n+1}Y^n$ does not belong to the ideal (in A) generated by X, \ldots, X^nY^{n-1} , for every $n \in \mathbb{N}$.)

3.4 Let *A* be a ring in which every ideal has a generating system consisting of *r* elements. If *V* is an *A*-module generated by *n* elements, then every submodule *U* of *V* has a genarting system of cardinality *nr*. In particular, over a PID every submodule of a module with generating system of cardinality *n* is also generated by *n* elements. (**Hint :** By induction on *n*. Suppose $V = Ax_1 + \cdots + Ax_n$ and $f : V \to V/Ax_1$ is the residue-class map, then consider the restriction map $f|U: U \to V/Ax_1$. See¹)

3.5 Let *V* be amodule over the noetherian ring *A* with a generating system x_i , $i \in I$, where *I* is infinite. Then every submodule *U* of *V* has a generating system for the form y_i , $i \in I$.

3.6 Let *A* be a ring, *V* an *A*-module, $0 = V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n = V$ be a chain of submodule of *V* and *f* be an endomorphism of *V* with $f(V_i) \subseteq V_i$ for all i = 1, ..., n. Let $f_i : V_i/V_{i-1} \to V_i/V_{i-1}$, i = 1, ..., n, denote the endomorphism induced by *f*. Then

(a) If all but endomorphisms f, f_1, \ldots, f_n are automorphisms, then all are automorphisms.

(b) If f is an automorphism, then all f_1, \ldots, f_n are automorphisms if any one of the following condition is satisfied: (1) V/V_1 is noetherian. (2) $V_2/V_1, \ldots, V_n/V_{n-1}$ are finite A-modules. (3) V_{n-1} is artinian.

3.7 Let *A* be a noetherian ring. Then every surjective ring endomorphism of *A* is an automorphism.

3.8 Let *A* be a finite type (commutative) algebra over the ring *R*. Then every surjective *R*-algebra endomorphism φ of *A* is an automorphism. (**Hint**: Suppose that $\varphi(x) = 0$ and x_1, \ldots, x_m ia a *R*-algebra generating system for *A*. The construct a finitely generated \mathbb{Z} -subalgebra *R'* of *R* such that $R'[x_1, \ldots, x_m]$ contain *x* as well as φ is a surjective endomorphism $R'[x_1, \ldots, x_m]$. — Note that the assertion does not hold for arbitrary commutative algebra. Examples!)

3.9 Let V be a module over a ring A and U be a submodule $\neq 0$ of V. If V noetherian or if V finite, then V and V/U are not isomorphic as A-modules. (**Hint:** If they are isomorphic the give a surjective surjective A-endomorphism of V with kernel U.)

3.10 Let \mathfrak{a} be a non-zero ideal is a noetherian ring A. Then A and A/\mathfrak{a} are not isomorphic rings.

3.11 Let \mathfrak{a} be a non-zero ideal in a finite type commutative algebra *A* over the ring *R*. Then *A* and *A*/ \mathfrak{a} are not isomorphic as *R*-algebras.

3.12 Let *K* be a field, $I := \mathbb{N} \cup \{\infty\}$, $V := K^{(I)}$ and $e_i, i \in I$, be the standard basis of *V* and $V_n := \sum_{i=0}^n Ke_i$ for $n \in \mathbb{N}$, $V_{\infty} := \sum_{i \in \mathbb{N}} Ke_i$. The set of *K*-endomorphisms *f* of *V* with $f(V_n) \subseteq V_n$ for all $n \in \mathbb{N}$ is a *K*-subalgebra

¹ Note that if V_1, V_2 and U are submodules of V with $V_1 \subseteq V_2$. Then $(V_2 \cap U)/(V_1 \cap U)$ is isomorphic to a submodule of V_2/V_1 , and $(V_2 + U)/(V_1 + U)$ is isomorphic to a residue-class module of V_2/V_1 .

A of $\operatorname{End}_{K} V$. With respect to the natural A-module structure on V, besides 0 and V, V_{n} , $n \in \mathbb{N}$, and V_{∞} are the only A-submodules of V. The A-module $V(=Ae_{\infty})$ is cyclic and artinian, but not noetherian.

3.13 Let *A* be a commutative ring.

(a) Let V be a finite A-module and W a noetherian (resp. artinian) A-module. Then $\text{Hom}_A(V, W)$ is also noetherian (resp. artinian).

(b) Let V be an A-module which is noetherian (resp. finite and artinian). Then $\text{End}_A V$ is a noetherian (resp. finite and artinian) A-module. In particular, every A-subalgebra of $\text{End}_A V$ is noetherian (resp. finite artinian).

3.14 Let *A* be a noetherian ring and *B* be an *A*-algebra of finite type. Let \mathfrak{b} be an ideal in *B* such that the residue-class algebra B/\mathfrak{b} is finite over *A*. Then \mathfrak{b} is a finitely generated ideal in *B*, and for every $n \in \mathbb{N}$, the residue-class algebra B/\mathfrak{b}^n is finite over *A*.

(**Hint**: There exists an A-algebra generating system b_1, \ldots, b_m of B with $B = \mathfrak{b} + Ab_1 + \cdots + Ab_m$ and there exist elements $a_{ij}^k \in A$ with $a_{ij} := b_i b_j - \sum_{k=1}^m a_{ij}^k b_k \in \mathfrak{b}$ for $1 \le i, j \le m$. FoÂAr the ideal $\mathfrak{c} (\subseteq \mathfrak{b})$ generated by the a_{ij} , $1 \le i, j \le m$, it follows that $B = \mathfrak{c} + Ab_1 + \cdots + Ab_m$. Further, it follows that \mathfrak{b} is finitely generated and hence the $\mathfrak{b}^n/\mathfrak{b}^{n+1}, n \in \mathbb{N}$, are finite *A*-modules.)