(Int PhD. and Ph. D. Programmes)
Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...
Tel : +91-(0)80-2293 3212/09449076304
E-mails : patil@math.iisc.ernet.in
Lectures : Wednesday and Friday ; 14:00-15:30
Venue: MA LH-2 (if LH-1 is not free) / LH-1
Seminars : Sat, Nov 18 (10:30-12:45) ; Sat, Nov 25 (10:30-12:45)
Final Examination : \quad Tuesday, December 05, 2017, 09:00-12:00

Evaluation Weightage : Assignments : 20%			Seminars : 30\%			Final Examination : 50\%	
Range of Marks for Grades (Total 100 Marks)							
	Grade S	Grade A	Grade B		Grade C	Grade D	Grade F
Marks-Range	> 90	76				-45	< 35
	Grade ${ }^{+}$	Grade A	Grade B ${ }^{+}$	Grade B	Grade C	Grade D	Grade \mathbf{F}
Marks-Range	> 90	81-90	71-80	61-70	51-60	40-50	< 40

3. Rings and Modules with Chain Conditions

Submit a solutions of $*$-Exercises ONLY.

Due Date: Wednesday, 13-09-2017
3.1 Let A be a ring and $V_{i}, i \in I$, be a family of A-modules $V_{i} \neq 0$. If I not finite, then the A-module $\bigoplus_{i \in I} V_{i}$ is neither noetherian nor artinian.
3.2 Let I be an infinite set and A be a ring $\neq 0$. The product ring A^{I} is neither noetherian nor artinian.
3.3 Let k be a field.
(a) Let $B=k[x]$ be a cyclic k-algebra. Then every k-subalgebra A of B is a finite type k-algebra. (Hint : If $f \in A, f=\sum_{i=0}^{m} a_{i} x^{i}, a_{m} \neq 0, m \geq 1$, then $B=\sum_{i=0}^{m-1} k[f] x^{i}$ is a finite over $k[f] \subseteq A$.)
(b) Let $B=k\left[\mathbb{N}^{2}\right]$ be the monoid algebra over k of the additive monoid \mathbb{N}^{2} and let $X:=e_{(1,0)}, Y:=e_{(0,1)}$. Then $B=k[X, Y]$, and the monomials $X^{i} Y^{j}=e_{(i, j)},(i, j) \in \mathbb{N}^{2}$, form a k-basis of B. Let A be the k-subalgebra of B generated by the monomials $X, X^{2} Y, \ldots, X^{n+1} Y^{n}, \ldots$ Then A is not a noetherian ring, much less than a finite type k-algebra. (Hint : Note that B is the polynomial algebra in two indeterinates X, Y over k and $X^{n+1} Y^{n}$ does not belong to the ideal (in A) generated by $X, \ldots, X^{n} Y^{n-1}$, for every $n \in \mathbb{N}$.)
3.4 Let A be a ring in which every ideal has a generating system consisting of r elements. If V is an A-module generated by n elements, then every submodule U of V has a genarting system of cardinality $n r$. In particular, over a PID every submodule of a module with generating system of cardinality n is also generated by n elements. (Hint : By induction on n. Suppose $V=A x_{1}+\cdots+A x_{n}$ and $f: V \rightarrow V / A x_{1}$ is the residue-class map, then consider the restriction map $f \mid U: U \rightarrow V / A x_{1}$. Seq 1
3.5 Let V be amodule over the noetherian ring A with a generating system $x_{i}, i \in I$, where I is infinite. Then every submodule U of V has a generating system for the form $y_{i}, i \in I$.
3.6 Let A be a ring, V an A-module, $0=V_{0} \subseteq V_{1} \subseteq \cdots \subseteq V_{n}=V$ be a chain of submodule of V and f be an endomorphism of V with $f\left(V_{i}\right) \subseteq V_{i}$ for all $i=1, \ldots, n$. Let $f_{i}: V_{i} / V_{i-1} \rightarrow V_{i} / V_{i-1}, i=1, \ldots, n$, denote the endomorphism induced by f. Then
(a) If all but endomorphisms f, f_{1}, \ldots, f_{n} are automorphisms, then all are automorphisms.
(b) If f is an automorphism, then all f_{1}, \ldots, f_{n} are automorphisms if any one of the following condition is satisfied: (1) V / V_{1} is noetherian. (2) $V_{2} / V_{1}, \ldots, V_{n} / V_{n-1}$ are finite A-modules. (3) V_{n-1} is artinian.
3.7 Let A be a noetherian ring. Then every surjective ring endomorphism of A is an automorphism.
3.8 Let A be a finite type (commutative) algebra over the ring R. Then every surjective R-algebra endomorphism φ of A is an automorphism. (Hint : Suppose that $\varphi(x)=0$ and x_{1}, \ldots, x_{m} ia a R-algebra generating system for A. The construct a finitely generated \mathbb{Z}-subalgebra R^{\prime} of R such that $R^{\prime}\left[x_{1}, \ldots, x_{m}\right]$ contain x as well as φ is a surjective endomorphism $R^{\prime}\left[x_{1}, \ldots, x_{m}\right]$. - Note that the assertion does not hold for arbitrary commutative algebra. Examples!)
3.9 Let V be a module over a ring A and U be a submodule $\neq 0$ of V. If V noetherian or if V finite, then V and V / U are not isomorphic as A-modules. (Hint : If they are isomorphic the give a surjective surjective A-endomorphism of V with kernel U.)
3.10 Let \mathfrak{a} be a non-zero ideal is a noetherian ring A. Then A and A / \mathfrak{a} are not isomorphic rings.
3.11 Let \mathfrak{a} be a non-zero ideal in a finite type commutative algebra A over the $\operatorname{ring} R$. Then A and A / \mathfrak{a} are not isomorphic as R-algebras.
3.12 Let K be a field, $I:=\mathbb{N} \cup\{\infty\}, V:=K^{(I)}$ and $e_{i}, i \in I$, be the standard basis of V and $V_{n}:=\sum_{i=0}^{n} K e_{i}$ for $n \in \mathbb{N}, V_{\infty}:=\sum_{i \in \mathbb{N}} K e_{i}$. The set of K-endomorphisms f of V with $f\left(V_{n}\right) \subseteq V_{n}$ for all $n \in \mathbb{N}$ is a K-subalgebra

[^0]A of $\operatorname{End}_{K} V$. With respect to the natural A-module structure on V, besides 0 and $V, V_{n}, n \in \mathbb{N}$, and V_{∞} are the only A-submodules of V. The A-module $V\left(=A e_{\infty}\right)$ is cyclic and artinian, but not noetherian.
3.13 Let A be a commutative ring.
(a) Let V be a finite A-module and W a noetherian (resp. artinian) A-module. Then $\operatorname{Hom}_{A}(V, W)$ is also noetherian (resp. artinian).
(b) Let V be an A-module which is noetherian (resp. finite and artinian). Then $\operatorname{End}_{A} V$ is a noetherian (resp. finite and artinian) A-module. In particular, every A-subalgebra of $\operatorname{End}_{A} V$ is noetherian (resp. finite artinian).
3.14 Let A be a noetherian ring and B be an A-algebra of finite type. Let \mathfrak{b} be an ideal in B such that the residue-class algebra B / \mathfrak{b} is finite over A. Then \mathfrak{b} is a finitely generated ideal in B, and for every $n \in \mathbb{N}$, the residue-class algebra B / \mathfrak{b}^{n} is finite over A.
(Hint: There exists an A-algebra generating system b_{1}, \ldots, b_{m} of B with $B=\mathfrak{b}+A b_{1}+\cdots+A b_{m}$ and there exist elements $a_{i j}^{k} \in A$ with $a_{i j}:=b_{i} b_{j}-\sum_{k=1}^{m} a_{i j}^{k} b_{k} \in \mathfrak{b}$ for $1 \leq i, j \leq m$. FoÂAr the ideal $\mathfrak{c}(\subseteq \mathfrak{b})$ generated by the $a_{i j}$, $1 \leq i, j \leq m$, it follows that $B=\mathfrak{c}+A b_{1}+\cdots+A b_{m}$. Further, it follows that \mathfrak{b} is finitely generated and hence the $\mathfrak{b}^{n} / \mathfrak{b}^{n+1}, n \in \mathbb{N}$, are finite A-modules.)

[^0]: ${ }^{1}$ Note that if V_{1}, V_{2} and U are submodules of V with $V_{1} \subseteq V_{2}$. Then $\left(V_{2} \cap U\right) /\left(V_{1} \cap U\right)$ is isomorphic to a submodule of V_{2} / V_{1}, and $\left(V_{2}+U\right) /\left(V_{1}+U\right)$ is isomorphic to a residue-class module of V_{2} / V_{1}.

