# E0 219 Linear Algebra and Applications / August-December 2016 

(ME, MSc. Ph. D. Programmes)
Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

| Tel : +91-(0)80-2293 2239/(Maths Dept. 3212) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lectures : Monday and Wednesday ; 11:00-12:30 |  |  |  |  | Venue: CSA, Lecture Hall (Room No. 117) |  |  |
| Corrections by : Nikhil Gupta (nikhil.gupta@csa.iisc.ernet.in; Lab No.: 303)/ <br> Vineet Nair (vineetn90@gmail . com ; Lab No.: 303) / <br> Rahul Gupta (rahul .gupta@csa.iisc. ernet.in; Lab No.: 224) / <br> Sayantan Mukherjee (meghanamande@gmail . com ; Lab No.: 253) / <br> Palash Dey (palash@csa.iisc.ernet.in; Lab No.: 301, 333,335) |  |  |  |  |  |  |  |
| Midterms : 1-st Midterm : Saturday, September 17, 2016; 15:00-17:00 2-nd Midterm : Saturday, October 22, 2016; 15:00-17:00 |  |  |  |  |  |  |  |
| Final Examination : December ??, 2016, 09:00--12:00 |  |  |  |  |  |  |  |
| Evaluation Weightage : Assignments : 20\% |  |  | Midterms (Two) : 30\% |  |  | Final Examination : 50\% |  |
| Range of Marks for Grades (Total 100 Marks) |  |  |  |  |  |  |  |
|  | Grade S | Grade A |  |  | C | Grade D | Grade F |
| Marks-Range | > 90 | 76-90 |  |  |  | 35-45 | < 35 |
|  | Grade $\mathbf{A}^{+}$ | Grade A | Grade B ${ }^{+}$ | Grade B | Grade C | Grade D | Grade F |
| Marks-Range | > 90 | 81-90 | 71-80 | 61-70 | 51-60 | 40-50 | < 40 |

## 1. Basic Algebraic Concepts

Submit a solution of the $*$-Exercise ONLY. Due Date : Wednesday, 10-08-2011 (Before the Class)
1.1 (a) Let $G \subseteq \mathbb{Z}$ be a subset of integers which contains at least one positive integer and at least one negative integer. Suppose that $G$ is closed under the usual addition in $\mathbb{Z}$ i.e. $a+b \in G$ whenever $a, b \in G$. Prove that $(G,+)$ is a group. (Hint : Use the minimum principle, see Supplement S1.1)
(b) Let $N \subseteq \mathbb{N}$ be a submonoid $\neq 0$ of the additive monoid $\mathbb{N}$ with the following property: If $a, b \in N$ and $a \leq b$, then $b-a \in N$. Show that $N=\mathbb{N} n=\{a n \mid a \in \mathbb{N}\}$ for some uniquely determined $n \in N^{*}:=N \cap \mathbb{N}^{*}$. (Remark : For application see Supplement S1.4.)
1.2 For $a, b \in \mathbb{R}$, let $f_{a, b}: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f_{a, b}(x):=a x+b, x \in \mathbb{R}$. Then $\operatorname{Aff}(1, \mathbb{R}):=\left\{f_{a, b} \mid a, b \in \mathbb{R}, a \neq 0\right\}$ with the composition as a binary operation is not a commutative group. (Remark: The group $\operatorname{Aff}(1, \mathbb{R})$ is called the affine group of $\mathbb{R}$ and its elements are called the affine linear maps.)
1.3 A non-empty finite subset $H$ of a group $G$ is a subgroup of $G$ if $a b \in H$ whenever $a, b \in H$. A finite submonoid $H$ of a group $G$ is a subgroup of $G$. (Hint : If $a \in H$, then left translation $\lambda_{a}: H \rightarrow H$ is injective and hence bijective by the Pigeonhole Principl\& ${ }^{1}$ )
*1.4 (a) Let $G$ be a finite group with the identity element $e$. Suppose that $\# G=n$ and $\left(a_{1}, \ldots, a_{n}\right) \in$ $G^{n}=G \times \cdots \times G$ ( $n$-times). Then there exist $r, s$ with $0 \leq r<s \leq n$ such that $a_{r+1} \cdots a_{s}=e$.
(Hint : The $n+1$ products $a_{1} \cdots a_{s}, s=0, \ldots, n$, cannot be pairwise distinct. Note that $a_{1} \cdots a_{s}:=e$ for $s=0$.)
(b) For any given $a_{1}, \ldots, a_{n} \in \mathbb{Z}, n \in \mathbb{N}^{+}$, show that there exist $r, s$ with $0 \leq r<s \leq n$ such that $a_{r+1}+\cdots+a_{s}$ is divisible by $n$. (Hint : Consider $a_{1}, \ldots, a_{n}$ in the group $\left(\mathbb{Z}_{n},+_{n}\right)$ and apply part (a).)
1.5 Let $n \in \mathbb{N}^{*}$. Show that:
(a) A residue class $[k]_{n} \in \mathbb{Z}_{n}, k \in \mathbb{Z}$, is invertible in the multiplicative monoid $\left(\mathbb{Z}_{n}, \cdot\right)$ if and only if $\operatorname{gcd}(k, n)=1$, i. e. $\left(\mathbb{Z}_{n}, \cdot{ }_{n}\right)^{\times}=\left\{[k]_{n} \mid \operatorname{gcd}(k, n)=1\right\}$. In particular, the unit group $\left(\mathbb{Z}_{n}\right)^{\times}$is a group of order $\varphi(n)$, where $\varphi$ is the Euler's totient function, see Supplement S1.3. (Hint : Use the Bezout's Lemma Supplement S1.2 (d).) Compute the inverse of [69] 100 in $\mathbb{Z}_{100}$.
(b) $\left(\mathbb{Z}_{n},+_{n},{ }_{n}\right)$ is a field if and only if $n$ is a prime number.

[^0]
[^0]:    ${ }^{1}$ Pigeonhole Principle (Dirichlet): For finite sets $X, Y$ of the same cardinality and a map $f: X \rightarrow Y$, the following statements are equivalent: (i) $f$ is injective. (ii) $f$ is surjective. (iii) $f$ is bijective. .

