E0 219 Linear Algebra and Applications / August-December 2016
 (ME, MSc. Ph. D. Programmes)

Download from: http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

3. Generating systems, Linear independence, Bases

Submit a solution of the $*$-Exercise ONLY. Due Date : Wednesday, 24-08-2011 (Before the Class)

Complete Correct solution of the Exercise 3.4 (b) carry BONUS POINTS!!!

3.1 (a) Let K be a field of characteristic $\neq 2$, i. e. $1+1 \neq 0$ in K and let $a \in K$. Compute the solution set of the following systems of linear equations over K :

$$
\begin{aligned}
a x_{1}+x_{2}+x_{3} & =1 \\
x_{1}+a x_{2}+x_{3} & =1 \\
x_{1}+x_{2}+a x_{3} & =1 ;
\end{aligned}
$$

$$
\begin{aligned}
x_{1}+x_{2}-x_{3} & =1 \\
2 x_{1}+3 x_{2}+a x_{3} & =3 \\
x_{1}+a x_{2}+3 x_{3} & =2
\end{aligned}
$$

For which a these systems have exactly one solution ?
(b) The set of m-tuples $\left(b_{1}, \ldots, b_{m}\right) \in K^{m}$ for which a linear system of equations $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$, $i=1, \ldots, m$, over a field K has a solution is a K-subspace of K^{m}.
(c) Let K be a subfield of the field L and let $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, i=1, \ldots, m$ be a system of linear equations over K. If this system has a solution $\left(x_{1}, \ldots, x_{n}\right) \in L^{n}$, then it also has a solution in K^{n}.
3.2 (a) Let $x_{1}, \ldots, x_{n} \in V$ be linearly independent (over K) in a K-vector space V and let $x:=$ $\sum_{i=1}^{n} a_{i} x_{i} \in V$ with $a_{i} \in K$. Show that $x_{1}-x, \ldots, x_{n}-x$ are linearly independent over K if and only if $a_{1}+\cdots+a_{n} \neq 1$.
(b) Let x_{1}, \ldots, x_{n} be a basis of the K-vector space V and let $a_{i j} \in K, 1 \leq i \leq j \leq n$. Show that

$$
y_{1}=a_{11} x_{1}, \quad y_{2}=a_{12} x_{1}+a_{22} x_{2}, \ldots, \quad y_{n}=a_{1 n} x_{1}+a_{2 n} x_{2}+\cdots+a_{n n} x_{n}
$$

is a basis of V if and only if $a_{11} \cdots a_{n n} \neq 0$.
(c) Show that the family $\{\ln p \mid p$ prime number $\}$ of real numbers is linearly independent over \mathbb{Q}. (Hint : Use the Fundamental Theorem of Arithmetic, see Supplement S1.2 (f).)
3.3 Let K be a field and let $K[X]$ (respectively, $K[X]_{m}, m \in \mathbb{N}$) be the K-vector space of all polynomials (respectively, polynomials of degree $<m$) with coefficients in K. Let $f_{n} \in K[X], n \in \mathbb{N}$, be a sequence of polynomials with $\operatorname{deg} f_{n} \leq n$ for all $n \in \mathbb{N}$. Show that:
(a) For every $m \in \mathbb{N}, f_{0}, \ldots, f_{m-1}$ is a K-basis of the subspace $K[X]_{m}$ if and only if $\operatorname{deg} f_{n}=n$ for all $n=0, \ldots, m-1$. (Hint : Use Exercise 3.2 (b).)
(b) $f_{n}, n \in \mathbb{N}$, is a basis of the K-vector space $K[X]$ if and only if $\operatorname{deg} f_{n}=n$ for all $n \in \mathbb{N}$.
3.4 (a) The geometric sequences $\left(1, \lambda, \lambda^{2}, \ldots, \lambda^{n}, \ldots\right) \in K^{\mathbb{N}}, \lambda \in K$, are linearly independent over K in the K-vector space of the sequences $K^{\mathbb{N}}$. (Hint : Let $y_{j}:=\left(\lambda_{j}^{i-1}\right)_{i \in \mathbb{N}^{}}$. Suppose that $\lambda_{1}, \ldots, \lambda_{n} \in K$
are distinct and $\sum_{j=1}^{n} a_{j} y_{j}=0$ with $a_{1}, \ldots, a_{n} \in K$. Then $a_{1} x_{1}+\cdots+a_{n} x_{n}=0$, where $x_{j}:=\left(1, \lambda_{j}, \ldots, \lambda_{j}^{n-1}\right)$, and hence $a_{1}=\cdots=a_{n}=0$, See Supplement S3.4 (a).,
(b) Let $f: I \rightarrow K$ be a K-valued function with image $f(I)$ infinite. Then the family $f^{n}, n \in \mathbb{N}$ of powers of f is linearly independent (over K) in the K-vector space K^{I} of all K-valued function on the set I. (Hint : Since the image $f(I)$ of f is infinite, I is infinite. By restricting f to a suitable subset of I, we may assume that f is a sequence $f=\left(\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}, \ldots,\right)$ with pairwise distinct $\lambda_{m}, m \in \mathbb{N}$. Now, use the Supplement S3.4(b).)
3.5 Let $F=a_{0}+a_{1} X+\cdots+a_{n} X^{n} \in K[X]$ be an arbitrary polynomial of degree n and for $i \in \mathbb{N}$, let $F^{(i)}$ denote the i-derivative of F. Suppose that $m \cdot 1_{K} \neq 0$ for all $m=1, \ldots, n$ (i. e., the characteristic Char $K>n$ or 0). Then :
(a) The polynomials $F=F^{(0)}, F^{(1)}, \ldots, F^{(n)}=n!a_{n}$, is a basis of the K-vector space $K[X]_{n+1}$. (Recall that the (formal) k-th derivative (defined inductively) ${ }^{1} F^{(k)}(X)=\sum_{j=k}^{n} j(j-1) \cdots(j-k+1) a_{j} X^{j-k}$ of a polynomial $F=\sum_{i=0}^{n} a_{i} X^{i} \in K[X]$ is a polynomial of degree $n-k$ for every $k=0, \ldots, n$ (if K is an arbitrary field of characteristic 0 or $>n$). -Hint : Use Exercise 3.2 (b).,
(b) If $\lambda_{0}, \ldots, \lambda_{n}$ are pairwise distinct, the the polynomials $F\left(X-\lambda_{0}\right), \ldots, F\left(X-\lambda_{n}\right) \in K[X]$ are linearly independent over K. (Hint : For this first we will prove the well-known Taylor's formula for polynomial functions:

$$
F(X-\lambda)=\sum_{k=0}^{n}(-1)^{k} \lambda^{k} \frac{F^{(k)}(X)}{k!} .
$$

By using binomial formuld ${ }^{2}$ and interchanging the summations, we get:

$$
\begin{aligned}
F(X-\lambda)=\sum_{j=0}^{n} a_{j}(X-\lambda)^{j}=\sum_{j=0}^{n} a_{j} \sum_{k=0}^{j}\binom{j}{k} X^{j-k}(-\lambda)^{k} & =\sum_{k=0}^{n}(-1)^{k} \lambda^{k} \sum_{j=k}^{n} j(j-1) \cdots(j-k+1) a_{j} \frac{X^{j-k}}{k!} \\
& =\sum_{k=0}^{n}(-1)^{k} \lambda^{k} \frac{F^{(k)}(X)}{k!} .
\end{aligned}
$$

Now, to prove linear independence $F\left(X-\lambda_{0}\right), \ldots, F\left(X-\lambda_{n}\right)$ over K, consider $0=\sum_{i=0}^{n} c_{i} F\left(X-\lambda_{i}\right)$ with coefficients $c_{i} \in K$. Using the above Taylor's formula, it follows that

$$
0=\sum_{i=0}^{n} c_{i} F\left(X-\lambda_{i}\right)=\sum_{i=0}^{n} c_{i} \sum_{k=0}^{n}(-1)^{k} \lambda_{i}^{k} \frac{F^{(k)}(X)}{k!}=\sum_{i=0}^{n} \frac{(-1)^{k}}{k!}\left(\sum_{i=0}^{n} c_{i} \lambda_{i}^{k}\right) F^{(k)}(X)
$$

and hence by the linear independence of $F=F^{(0)}, F^{(1)}, \ldots, F^{(n)}$ over K (see part (a)) we have $\sum_{i=0}^{n} c_{i} \lambda_{i}^{k}=0$ for all $k=0, \ldots, n$. Now, use the SupplementS3.4 (a) to conclude that $c_{0}=\cdots=c_{n}=0$.)

[^0]${ }^{2}$ Binomial Formula: For elements x and y in a commutative ring A and a natural number $n \in \mathbb{N}$, we have $(x+y)^{n}=\sum_{m=0}^{n}\binom{n}{m} x^{m} y^{n-m}$.

[^0]: ${ }^{1}$ Formal derivatives Let K be a field. For a polynomial $F=\sum_{n \in \mathbb{N}} a_{n} X^{n} \in K[X]$, we define the (formal) derivative of F by $F^{\prime}:=\sum_{n \in \mathbb{N}} n a_{n} X^{n-1} \in K[X]$. This formal derivative satisfies usual product and quotientrulesl $(F G)^{\prime}=F^{\prime} G+F G^{\prime}$ for all $F, G \in K[X]$ and $(F / G)^{\prime}=\left(G F^{\prime}-G^{\prime} F\right) / G^{2}$ for all $F, G \in K[X], G \neq 0$.

