E0 219 Linear Algebra and Applications / August-December 2016
 (ME, MSc. Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel : +91-(0)80-2293 2239/(Maths Dept. 3212)		E-mails : dppatil@csa.iisc.ernet.in / patil@math.iisc.ernet.in					
Lectures : Monday and Wednesday ; 11:00-12:30					Venue: CSA, Lecture Hall (Room No. 117)		
Corrections by : Nikhil Gupta (nikhil.gupta@csa.iisc.ernet.in; Lab No.: 303)/ Vineet Nair (vineetn90@gmail . com ; Lab No.: 303) / Rahul Gupta (rahul . gupta@csa.iisc.ernet.in; Lab No.: 224) / Sayantan Mukherjee (meghanamande@gmail . com ; Lab No.: 253) / Palash Dey (palash@csa.iisc.ernet.in; Lab No.: 301, 333, 335)							
Midterms : 1-st Midterm : Saturday, September 17, 2016; 15:00-17:00				2-nd Midterm : Saturday, October 22, 2016; 15:00-17:00			
Final Examination : December ??, 2016, 09:00--12:00							
Evaluation Weightage : Assignments : 20\%			Midterms (Two) : 30\%			Final Examination : 50\%	
Range of Marks for Grades (Total 100 Marks)							
	Grade \mathbf{S}	Grad			C	Grade D	Grade F
Marks-Range	> 90	76				35-45	< 35
	Grade \mathbf{A}^{+}	Grade A	Grade B^{+}	Grade B	Grade C	Grade D	Grade F
Marks-Range	> 90	81-90	71-80	61-70	51-60	40-50	< 40

4. Dimension of vector spaces

Submit a solution of the $*$-Exercise ONLY. \quad Due Date : Wednesday, 31-08-2016 (Before the Class)
Let K be arbitrary field and let \mathbb{K} denote either the field \mathbb{R} or the field \mathbb{C}.
4.1 Let $\omega \in \mathbb{R}_{+}^{\times}$be a fixed positive real number. For $a \in \mathbb{R}$ and $\varphi \in \mathbb{R}$, let $f_{a, \varphi}: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $t \mapsto a \sin (\omega t+\varphi)$ and let $W:=\left\{f_{a, \varphi} \mid a, \varphi \in \mathbb{R}\right\}$. Then W is a \mathbb{R}-subspace of the \mathbb{R}-vector space $\mathbb{R}^{\mathbb{R}}$ of all \mathbb{R}-valued functions on \mathbb{R}.
(a) Find a \mathbb{R}-basis of the \mathbb{R}-subspace W. What is the dimension $\operatorname{Dim}_{\mathbb{R}} W$? (Hint: The functions $t \mapsto \sin \omega t$ and $t \mapsto \cos \omega t=\sin (\omega t+\pi / 2)$ form a basis of W. - Remark: Elements of W are called harmonic oscillations with the circular frequency ω.)
(b) Show that every $f \neq 0$ function in W has a unique representation

$$
f(t)=a \sin (\omega t+\varphi), \quad a>0 \quad \text { and } \quad 0 \leq \varphi<2 \pi .
$$

(Remark: This unique a is called the amplitude and φ is called the ph ase angle of f. The zero function has the amplitude 0 and an arbitrary phase angle.)
(c) From the amplitudes and the phase angles of two harmonic oscillations f and g, compute the amplitudes and the phase angles of the functions $f \pm g$.
4.2 Let V be a K-vector space of dimension $n \in \mathbb{N}$.
(a) If H_{1}, \ldots, H_{r} are hyper-planes in V, then show that $\operatorname{Dim}_{K}\left(H_{1} \cap \cdots \cap H_{r}\right) \geq n-r$.
(b) If $U \subseteq V$ is a subspace of codimension r, then show that there exist r hyper-planes H_{1}, \ldots, H_{r} in V such that $U=H_{1} \cap \cdots \cap H_{r}$.
4.3 Let $x_{1}=\left(a_{11}, \ldots, a_{1 n}\right), \ldots, x_{n}=\left(a_{n 1}, \ldots, a_{n n}\right)$ be elements of \mathbb{K}^{n} with

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{j i}\right| \quad \text { for all } i=1, \ldots, n
$$

Show that x_{1}, \ldots, x_{n} is a basis of \mathbb{K}^{n}. (Hint: It is enough to show the linear independence of x_{1}, \ldots, x_{n}. For this, suppose that $b_{1} x_{1}+\cdots+b_{n} x_{n}=0$ with $\left|b_{i}\right| \leq 1$ for all i and $b_{i_{0}}=1$ for some i_{0}. This already contradicts the give condition for i_{0}.)
4.4 Let $x_{1}, \ldots, x_{n} \in \mathbb{Z}^{n}$ be arbitrary vectors with integer components. For every $\lambda \in \mathbb{Q} \backslash \mathbb{Z}$, the vectors $x_{1}+\lambda e_{1}, \ldots, x_{n}+\lambda e_{n}$ form a basis of \mathbb{Q}^{n}. (Hint: Suppose $a_{1}\left(x_{1}+\lambda e_{1}\right)+\cdots+a_{n}\left(x_{n}+\lambda e_{n}\right)=0$ with $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ and $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$ and use $\lambda \in \mathbb{Q} \backslash \mathbb{Z}$ to contradict $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$.)
4.5 Let K be a field with at least n elements, $n \in \mathbb{N}^{}$ and V be a finite dimensional K-vector space. Let U_{1}, \ldots, U_{n} be subspaces of V of equal dimension r and $u_{1 i}, \ldots, u_{i r}$ be a basis of U_{i} for $i=1, \ldots, n$. Show that there exists $t:=\operatorname{Dim}_{K} V-r$ vectors $w_{1}, \ldots, w_{t} \in V$ such that which simultaneously extend the given bases $u_{1 i}, \ldots, u_{i r}$ of U_{i} to a basis $u_{i 1}, \ldots, u_{i r}, w_{1}, \ldots, w_{t}$ of V for every $i=1, \ldots, n$. (Hint : Use Exercise 2.2.)

