E0 219 Linear Algebra and Applications / August-December 2016
 (ME, MSc. Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel : $+91-(0) 80-22932239 /(M a t h s$ Dept. 3212)	E-mails : dppatil@csa.iisc.ernet.in / patil@math.iisc.ernet.in
Lectures : Monday and Wednesday ; 11:00-12:30	Venue: CSA, Lecture Hall (Room No. 117)

Corrections by : Nikhil Gupta (nikhil.gupta@csa.iisc.ernet.in; Lab No.: 303)/
Vineet Nair (vineetn90@gmail. com ; Lab No.: 303) /
Rahul Gupta (rahul. gupta@csa.iisc.ernet.in; Lab No.: 224) /
Sayantan Mukherjee (meghanamande@gmail . com ; Lab No.: 253) /
Palash Dey (palash@csa.iisc.ernet. in; Lab No.: 301, 333, 335)

5. Linear Maps

Submit a solution of the $*$-Exercise ONLY. Due Date : Wednesday, 07-09-2016 (Before the Class)
Let K be arbitrary field and let \mathbb{K} denote either the field \mathbb{R} or the field \mathbb{C}.
5.1 (Pointer representation) Let $\omega \in \mathbb{R}_{+}^{\times}$and W be the \mathbb{R}-vector space of the functions $a \sin (\omega t+\varphi), a, \varphi \in \mathbb{R}$, with basis $\sin \omega t, \cos \omega t$, (see Exercise 4.1). Then the map

$$
\gamma: a \sin (\omega t+\varphi) \longmapsto a e^{\mathrm{i} \varphi}, a \geq 0,
$$

is a \mathbb{R}-vector space isomorphism of W onto \mathbb{C}. (Remark: This isomorphism is called the pointer representation of the simple harmonic motion with the circular frequency ω. The differentiation in W correspond to the multiplication by $\mathrm{i} \omega$ to the pointer representation, i.e. $\gamma(\dot{x})=\mathrm{i} \omega \gamma(x)$ for $x \in W$. In the representation $a e^{i \varphi}$ of $a \sin (\omega t+\varphi), a \geq 0, a=\left|a e^{i \varphi}\right|$ is called the (maximal) amplitude and $e^{i \varphi}$ is called the phase factor.)

5.2 Let $I \subseteq \mathbb{R}$ be an interval with more than one point and let $a \in I$. For $n \in \mathbb{N}^{}$, let

$$
T_{a, n}: \mathrm{C}_{\mathbb{K}}^{n-1}(I) \rightarrow \mathbb{K}[t]_{n}
$$

be the map which maps every function $f \in \mathrm{C}_{\mathrm{K}}^{n-1}(I)$ to its Taylor-polynomial of degree $<n$ of f at a, i. e.,

$$
f \mapsto T_{a, n}(f)=\sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!}(t-a)^{k}
$$

Show that $T_{a, n}$ is \mathbb{K}-linear. Determine the kernel and the image of this map $T_{a, n}$. (Remark : See also Exercise 3.5 and Supplement S5.15.)
5.3 Let V be a K-vector space with $\operatorname{Dim}_{K} V \geq 2$ (i. e. V contain at least two linearly independent vectors). Then every additive map $f: V \rightarrow V$ with $f(K x) \subseteq K x$ for all $x \in V$ is a homothecy $\vartheta_{a}: V \rightarrow V, x \mapsto a x$, of V by a scalar $a \in K$.
5.4 Let $f_{1}: V \rightarrow V_{1}$ and $f_{2}: V \rightarrow V_{2}$ be homomorphisms of K-vector spaces. The K-linear map $f: V \rightarrow V_{1} \times V_{2}$ defined by $f(x)=\left(f_{1}(x), f_{2}(x)\right)$ is an isomorphism if and only if f_{1} surjective and the restriction $\left.f_{2}\right|_{\operatorname{Ker} f_{1}}: \operatorname{Ker} f_{1} \rightarrow V_{2}$ is bijective.
${ }^{\dagger} 5.5$ (Characters) Let M and N be two monoids with neutral elements e_{M} and e_{N}, respectively. A map $\varphi: M \rightarrow N$ is called a (monoid-) homomorphismif $\varphi(x y)=\varphi(x) \varphi(y)$ for all $x, y \in M$ and $\varphi\left(e_{M}\right)=e_{N}$.
Let M be a monoid and let K be a field. By a character of M in K we mean a homomorphism of M in the multiplicative group (K^{\times}, \cdot) of K. The map $M \rightarrow K^{\times}, x \mapsto 1_{K}$ is a character of M in K, called the trivial character. If $a \in K^{\times}$, then the conjugation by $a \varkappa_{a}: K \rightarrow K^{\times}$, $b \mapsto a b a^{-1}$ is a character of the multiplicative monoid of K with values in K.
(Lemma of Dedekind-Artin Let M be a monoid and et K be a field. Then the set $\chi(M, K)$ of characters of M in K is linearly independent (in the K-vector space K^{M} of all K-valued functions on M) over K. (Hint : Suppose that $a_{1} \chi_{1}+\cdots+a_{n} \chi_{n}=0$ with $a_{1}, \ldots, a_{n} \in K^{\times}$, pairwise distinct $\chi_{1}, \ldots, \chi_{n} \in \chi(M, K)$ is a linear dependence relation with minimal $n \in \mathbb{N}$. Note that $n \geq 2$, since every character $\chi \neq 0$. Let $x \in M$ be fixed and $y \in M$ be arbitrary. Then $0=\left(a_{1} \chi_{1}+\cdots+a_{n} \chi_{n}\right)(x y)=$ $a_{1} \chi_{1}(x y)+\cdots+a_{n} \chi_{n}(x y)=a_{1} \chi_{1}(x) \chi_{1}(y)+\cdots+a_{r} \chi_{n}(x) \chi_{r}(y)$ and hence $a_{1} \chi_{1}(x) \chi_{1}+\cdots+a_{n} \chi_{n}(x) \chi_{n}=0$. Now, conclude that $\chi_{1}=\cdots=\chi_{n}$ a contradiction to $n \geq 2$.)

[^0]
[^0]: ${ }^{1}$ This assertion is used frequently (especially in Galois Theory).

