E0 219 Linear Algebra and Applications / August-December 2016 (ME, MSc. Ph. D. Programmes)

Download from : http://www.math.ii	<pre>sc.ernet.in/patil/courses/courses/Current Courses/</pre>
Tel: +91-(0)80-2293 2239/(Maths Dept. 3212)	E-mails: dppatil@csa.iisc.ernet.in / patil@math.iisc.ernet.in
Lectures : Monday and Wednesday ; 11:00-12:30	Venue: CSA, Lecture Hall (Room No. 117)

Corrections by: Nikhil Gupta (nikhil.gupta@csa.iisc.ernet.in;Lab No.:303)/ Vineet Nair (vineetn90@gmail.com;Lab No.:303)/ Rahul Gupta (rahul.gupta@csa.iisc.ernet.in;Lab No.:224)/ Sayantan Mukherjee (meghanamande@gmail.com;Lab No.:253) / Palash Dey (palash@csa.iisc.ernet.in;Lab No.:301,333,335)

Evaluation Weightage : Assignments : 20%				Midterms (Two) : 30%				Final Examination: 50%		
Range of Marks for Grades (Total 100 Marks)										
	Grade S	Grade A	ł	Grad	e B	Gr	ade C		Grade D	Grade F
Marks-Range	> 90	76-90 61-		75	5 46-60		35-45		< 35	
	Grade A ⁺	Grade A	G	rade B ⁺	Gra	de B	Grade	С	Grade D	Grade F
Marks-Range	> 90	81-90	71	l — 80	61-	- 70	51-6	0	40-50	< 40

6. Linear Maps and Bases ; — The Rank Theorem							
Submit a solution of the *-Exercise ONLY.	Due Date: Wednesday, 14-09-2016	(Before the Class)					

Let *K* be arbitrary field and let \mathbb{K} denote either the field \mathbb{R} or the field \mathbb{C} .

*6.1 Let *V* and *W* be finite dimensional *K*-vector spaces. Show that

(a) There is an injective K-homomorphism from V into W if and only if $\text{Dim}_K V \leq \text{Dim}_K W$. Deduce that a homogeneous linear system $\sum_{j=1}^n a_{ij} x_j = 0$, i = 1, ..., m of m equations in n unknowns over K with n > m has a non-trivial solution in K^n .

(b) There is a surjective *K*-homomorphism from *V* onto *W* if and only if $\text{Dim}_K V \ge \text{Dim}_K W$. Deduce that a linear system $\sum_{j=1}^n a_{ij} x_j = b_i$, i = 1, ..., m of *m* equations in *n* unknowns over *K* with n < m has no solution in K^n for some $(b_1, ..., b_m) \in K^m$.

(c) A homogeneous linear system $\sum_{j=1}^{n} a_{ij}x_j = 0$, i = 1, ..., n of *n* equations in *n* unknowns over *K* has a non-trivial solution in K^n if and only if at least one of the corresponding inhomogeneous system of linear equations $\sum_{j=1}^{n} a_{ij}x_j = b_i$, i = 1, ..., n has no solution in K^n .

6.2 Let f and g be endomorphisms of the finite dimensional K-vector space V. If $g \circ f$ is an automorphism of V, then show that both g and f are also automorphisms of V.

6.3 Let *f* be an operator on the finite dimensional *K*-vector space *V*. Show that the following statements are equivalent: (i) Ker f = Im f. (ii) $f^2 = 0$ and $\text{Dim}_K V = 2 \cdot \text{Rank } f$. **6.4** Let $f_i: V_i \to V_{i+1}, i = 1, \dots, r$, be surjective *K*-vector space homomorphisms with finite dimensional kernels. Then the composition $f := f_r \circ \cdots \circ f_1$ from V_1 to V_{r+1} also has finite dimensional kernel and

$$\operatorname{Dim}_{K}\operatorname{Ker} f = \sum_{i=1}^{r} \operatorname{Dim}_{K}\operatorname{Ker} f_{i}.$$

(**Hint :** Proof by induction on *r*. For the inductive-step consider the *K*-linear map Ker $f \to \text{Ker } f_r \circ \cdots \circ f_2$ $x \mapsto f_1(x)$. Check that this map is surjective and apply the Rank-Theorem. — **Remark:** For example (see **Supplement S3.18** and **Supplement S5.5**) : Let $P(X) = (X - \lambda_1) \cdots (X - \lambda_n)$ be a polynomial in $\mathbb{C}[X]$ with (not necessarily distinct) zeros $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. Then the differential operator $P(D) = (D - \lambda_1) \cdots (D - \lambda_n)$ on $C^{\infty}_{\mathbb{C}}(I)$, where $I \subseteq \mathbb{R}$ is an interval has *n*-dimensional kernel, since for every $\lambda \in \mathbb{C}$, $D - \lambda$ is surjective (proof!) and has 1-dimensional kernel $\mathbb{C}e^{\lambda t}$. Moreover, if $\lambda_1, \ldots, \lambda_r, r \leq n$, are distinct zeros of P(X) with multiplicities n_1, \ldots, n_r , then the quasi-polynomials $e^{\lambda_1 t}, te^{\lambda_1 t}, \ldots, t^{n_1-1}e^{\lambda_1 t}; \ldots; e^{\lambda_r t}, te^{\lambda_r t}, \ldots, t^{n_r-1}e^{\lambda_r t}$ are *n* linearly independent functions in Ker $\mathbb{P}(D)$. In particular, they form a basis of Ker P(D) and is called a f u n d a m e n t a 1 s y s t e m of s o l u t i o n s of the differential equation P(D)y = 0.)