E0 219 Linear Algebra and Applications / August-December 2016

(ME, MSc. Ph. D. Programmes)
Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel : +91-(0)80-2293 2239/(Maths Dept. 3212)	E-mails : dppatil@csa.iisc.ernet.in / patil@math.iisc.ernet.in
Lectures : Monday and Wednesday ; 11:00-12:30	Venue: CSA, Lecture Hall (Room No. 117)

6. Linear Maps and Bases; - The Rank Theorem

Submit a solution of the $*$-Exercise ONLY. Due Date : Wednesday, 14-09-2016 (Before the Class)
Let K be arbitrary field and let \mathbb{K} denote either the field \mathbb{R} or the field \mathbb{C}.
6.1 Let V and W be finite dimensional K-vector spaces. Show that
(a) There is an injective K-homomorphism from V into W if and only if $\operatorname{Dim}_{K} V \leq \operatorname{Dim}_{K} W$. Deduce that a homogeneous linear system $\sum_{j=1}^{n} a_{i j} x_{j}=0, i=1, \ldots, m$ of m equations in n unknowns over K with $n>m$ has a non-trivial solution in K^{n}.
(b) There is a surjective K-homomorphism from V onto W if and only if $\operatorname{Dim}_{K} V \geq \operatorname{Dim}_{K} W$. Deduce that a linear system $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, i=1, \ldots, m$ of m equations in n unknowns over K with $n<m$ has no solution in K^{n} for some $\left(b_{1}, \ldots, b_{m}\right) \in K^{m}$.
(c) A homogeneous linear system $\sum_{j=1}^{n} a_{i j} x_{j}=0, i=1, \ldots, n$ of n equations in n unknowns over K has a non-trivial solution in K^{n} if and only if at least one of the corresponding inhomogeneous system of linear equations $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, i=1, \ldots, n$ has no solution in K^{n}.
6.2 Let f and g be endomorphisms of the finite dimensional K-vector space V. If $g \circ f$ is an automorphism of V, then show that both g and f are also automorphisms of V.
6.3 Let f be an operator on the finite dimensional K-vector space V. Show that the following statements are equivalent: (i) $\operatorname{Ker} f=\operatorname{Im} f$. (ii) $f^{2}=0$ and $\operatorname{Dim}_{K} V=2 \cdot \operatorname{Rank} f$.
6.4 Let $f_{i}: V_{i} \rightarrow V_{i+1}, i=1, \cdots, r$, be surjective K-vector space homomorphisms with finite dimensional kernels. Then the composition $f:=f_{r} \circ \cdots \circ f_{1}$ from V_{1} to V_{r+1} also has finite dimensional kernel and

$$
\operatorname{Dim}_{K} \operatorname{Ker} f=\sum_{i=1}^{r} \operatorname{Dim}_{K} \operatorname{Ker} f_{i}
$$

(Hint : Proof by induction on r. For the inductive-step consider the K-linear map $\operatorname{Ker} f \rightarrow \operatorname{Ker} f_{r} \circ \cdots \circ f_{2}$ $x \mapsto f_{1}(x)$. Check that this map is surjective and apply the Rank-Theorem. - Remark: For example (see SupplementS3.18 and SupplementS5.5) : Let $P(X)=\left(X-\lambda_{1}\right) \cdots\left(X-\lambda_{n}\right)$ be a polynomial in $\mathbb{C}[X]$ with (not necessarily distinct) zeros $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$. Then the differential operator $P(D)=\left(D-\lambda_{1}\right) \cdots\left(D-\lambda_{n}\right)$ on $\mathrm{C}_{\mathbb{C}}^{\infty}(I)$, where $I \subseteq \mathbb{R}$ is an interval has n-dimensional kernel, since for every $\lambda \in \mathbb{C}, D-\lambda$ is surjective (proof!) and has 1-dimensional kernel $\mathbb{C} e^{\lambda t}$. Moreover, if $\lambda_{1}, \ldots, \lambda_{r}, r \leq n$, are distinct zeros of $P(X)$ with multiplicities n_{1}, \ldots, n_{r}, then the quasi-polynomials $e^{\lambda_{1} t}, t e^{\lambda_{1} t}, \ldots, t^{n_{1}-1} e^{\lambda_{1} t} ; \ldots ; e^{\lambda_{r} t}, t e^{\lambda_{r} t}, \ldots, t^{n_{r}-1} e^{\lambda_{r} t}$ are n linearly independent functions in $\operatorname{Ker} \mathbb{P}(D)$. In particular, they form a basis of $\operatorname{Ker} P(D)$ and is called a fundamental system of solutions of the differential equation $P(D) y=0$.)

