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6. Linear Maps and Bases ; — The Rank Theorem
Submit a solution of the ∗-Exercise ONLY. Due Date : Wednesday, 14-09-2016 (Before the Class)

Let K be arbitrary field and let K denote either the field R or the field C.

∗6.1 Let V and W be finite dimensional K-vector spaces. Show that
(a) There is an injective K-homomorphism from V into W if and only if Dim KV ≤ DimKW .
Deduce that a homogeneous linear system ∑

n
j=1 ai jx j = 0 , i = 1, . . . ,m of m equations in n

unknowns over K with n > m has a non-trivial solution in Kn.
(b) There is a surjective K-homomorphism from V onto W if and only if DimKV ≥ DimKW .
Deduce that a linear system ∑

n
j=1 ai jx j = bi , i = 1, . . . ,m of m equations in n unknowns over K

with n < m has no solution in Kn for some (b1, . . . ,bm) ∈ Km.
(c) A homogeneous linear system ∑

n
j=1 ai jx j = 0 , i = 1, . . . ,n of n equations in n unknowns over

K has a non-trivial solution in Kn if and only if at least one of the corresponding inhomogeneous
system of linear equations ∑

n
j=1 ai jx j = bi , i = 1, . . . ,n has no solution in Kn.

6.2 Let f and g be endomorphisms of the finite dimensional K-vector space V . If g ◦ f is an
automorphism of V , then show that both g and f are also automorphisms of V .

6.3 Let f be an operator on the finite dimensional K-vector space V . Show that the following
statements are equivalent : (i) Ker f = Im f . (ii) f 2 = 0 and DimK V = 2 ·Rank f .
6.4 Let fi :Vi→Vi+1, i = 1, · · · ,r, be surjective K-vector space homomorphisms with finite dimen-
sional kernels. Then the composition f := fr ◦ · · · ◦ f1 from V1 to Vr+1 also has finite dimensional
kernel and

Dim KKer f =
r

∑
i=1

Dim KKer fi .

(Hint : Proof by induction on r. For the inductive-step consider the K-linear map Ker f → Ker fr ◦ · · · ◦ f2
x 7→ f1(x). Check that this map is surjective and apply the Rank-Theorem. — Remark: For example (see
Supplement S3.18 and Supplement S5.5) : Let P(X) = (X −λ1) · · ·(X −λn) be a polynomial in C[X ] with
(not necessarily distinct) zeros λ1, . . . ,λn ∈ C . Then the differential operator P(D) = (D−λ1) · · ·(D−λn)
on C∞

C(I) , where I ⊆R is an interval has n-dimensional kernel, since for every λ ∈ C, D−λ is surjective
(proof!) and has 1-dimensional kernel Ceλ t . Moreover, if λ1, . . . ,λr, r ≤ n, are distinct zeros of P(X) with
multiplicities n1, . . . ,nr, then the quasi-polynomials eλ1t , teλ1t , . . . , tn1−1eλ1t ; . . . ;eλrt , teλrt , . . . , tnr−1eλrt are n
linearly independent functions in Ker P(D). In particular, they form a basis of Ker P(D) and is called a
f u n d a m e n t a l s y s t e m o f s o l u t i o n s of the differential equation P(D)y = 0.)
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