E0 219 Linear Algebra and Applications / August-December 2016
 (ME, MSc. Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

7. Direct Sums and Projections ; -Dual spaces

Submit a solution of the $*$-Exercise ONLY. Due Date : Monday, 26-09-2016 (Before the Class)
Let K be arbitrary field and let \mathbb{K} denote either the field \mathbb{R} or the field \mathbb{C}.
7.1 Let $f: U \rightarrow V$ and $g: V \rightarrow W$ be homomorphisms of K-vector spaces. If $g f$ is an isomorphism of U onto W, then show that V is the direct sum of $\operatorname{Im} f$ and $\operatorname{Ker} g$, i. e., $V=\operatorname{Im} f \oplus \operatorname{Ker} g$.
7.2 Assume that K has at least n elements. Let U_{1}, \ldots, U_{n} be subspaces (of a finite dimensional K-vector space V) of equal dimension. Then show that U_{1}, \ldots, U_{n} have a common complement in V, i. e. $V=U_{i} \oplus W$ for every $i=1, \ldots, n$. (Hint : Use the Exercise 4.5.)
7.3 Suppose that the K-vector space V is the direct sum of the subspaces U and W.
(a) For every linear map $g: U \rightarrow W$, show that the graph $\Gamma(g):=\{u+g(u) \mid u \in U\} \subseteq V$ of g is a complement of W in V.

(b) Show that the map $\operatorname{Hom}_{K}(U, W) \rightarrow \mathcal{C}(W, V)$ defined by $g \mapsto \Gamma(g)$ is bijective, where $\mathcal{C}(W, V)$ denote the set of all complements of W in V. Describe this bijection for $V=\mathbb{R}^{2}$ and $U=\mathbb{R} \times\{0\}(=$ x-axis explicitly.
(c) Suppose that $\operatorname{Dim}_{K} U=\operatorname{Dim}_{K} W=n$. Let u_{1}, \ldots, u_{n} and w_{1}, \ldots, w_{n} be bases of U and W, respectively. Then show that $u_{1}+w_{1}, \ldots, u_{n}+w_{n}$ is a basis of a complement of U as well as a complement of W in V.
7.4 Let V be a K-vector space and let $f_{1}, \ldots, f_{n} \in V^{}$ be linear forms on V. Let $f: V \rightarrow K^{n}$ be the homomorphism defined by $f(x):=\left(f_{1}(x), \ldots, f_{n}(x)\right)$. Then show that $\operatorname{Dim}_{K}\left(K f_{1}+\cdots+K f_{n}\right)=$ $\operatorname{Dim}_{K}(\operatorname{Im} f)$. In particular, f_{1}, \ldots, f_{n} are linearly independent if and only if the homomorphism f is surjective. (Hint : Note that $\operatorname{Im} f$ is finite dimensional and hence $\operatorname{Rank}_{K} f=\operatorname{Rank}_{K} f^{*}=$ $\operatorname{Dim}_{K}\left(K f_{1}+\cdots+K f_{n}\right)$, see also Supplement S7.33.)
7.5 A K-linear map $f: V \rightarrow W$ be a homomorphism of K-vector spaces is injective (resp. surjective, bijective) if and only if the dual map $f^{*}: W^{*} \rightarrow V^{*}$ is surjective (resp. injective, bijective) (Remark: It is not really necessary to assume that V and W are finite dimensional.)
7.6 Let x_{1}, \ldots, x_{n} be all non-zero vectors in a K-vector space V over a field K with $|K| \geq n$. Then Show that there exists a hyperplane H in V such that the vectors $x_{i} \notin H$ for all $i=1, \ldots, n$. (Hint : There exist a linear form $f_{i}: V \rightarrow K$ such that $f_{i}\left(x_{i}\right)=1 \neq 0$ for each $i=1, \ldots, n$. Therefore the subspaces $\left(K x_{i}\right)^{\circ}, i=1, \ldots, n$ are proper subspaces of the K-vector space V^{*} and hence $\left(K x_{1}\right)^{\circ} \cup \cdots \cup\left(K x_{n}\right)^{\circ} \subsetneq V^{*}$ by Exercise 2.2. Now, choose $f \in V^{*} \backslash\left(K x_{1}\right)^{\circ} \cup \cdots \cup\left(K x_{n}\right)^{\circ}$ and take $H:=\operatorname{Ker} f$.)

