E0 219 Linear Algebra and Applications / August-December 2016
 (ME, MSc. Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...
Tel : +91-(0)80-2293 2239/(Maths Dept. 3212) E-mails : dppatil@csa.iisc.ernet.in / patil@math.iisc.ernet.in
Lectures : Monday and Wednesday ; 11:00-12:30 Venue: CSA, Lecture Hall (Room No. 117)

Corrections by : Nikhil Gupta (nikhil.gupta@csa.iisc.ernet.in; Lab No.: 303)/
Vineet Nair (vineetn90@gmail . com ; Lab No.: 303) /
Rahul Gupta (rahul . gupta@csa. iisc. ernet .in; Lab No.: 224) /
Sayantan Mukherjee (meghanamande@gmail . com ; Lab No.: 253) /
Palash Dey (palash@csa.iisc.ernet. in ; Lab No.: 301, 333, 335)

Midterms : 1-st Midterm : Saturday, September 17, 2016; 15:00-17:00				2-nd Midterm : Saturday, October 22, 2016; 15:00-17:00			
Final Examination : December ??, 2016, 09:00--12:00							
Evaluation Weightage : Assignments : 20\%			Midterms (Two) : 30\%			Final Examination : 50\%	
Range of Marks for Grades (Total 100 Marks)							
	Grade S	Grade A			C	Grade D	Grade F
Marks-Range	> 90	76-90				35-45	< 35
	Grade ${ }^{+}$	Grade A	Grade ${ }^{+}$	Grade B	Grade C	Grade D	Grade F
Marks-Range	> 90	81-90	71-80	61-70	51-60	40-50	< 40

8. Quotient spaces

Submit a solution of the $*$-Exercise ONLY. Due Date: Monday, 03-10-2016 (Before the Class)

In the following Exercises K denote a field and V denote a K-vector space.
8.1 Let $n \in \mathbb{N}$. A subspace U of the vector space V has the codimension n if and only if there exist n linearly independent forms f_{1}, \ldots, f_{n} on V with $U=\bigcap_{i=1}^{n} \operatorname{Ker} f_{i}$.
8.2 Let U_{1}, \ldots, U_{n} be finite-codimensional subspaces of V and $U:=\bigcap_{i=1}^{n} U_{i}$ be their intersection. Further, let $U_{i}^{\prime}:=\bigcap_{j \neq i} U_{j}, i=1, \ldots, n$.
(a) Show that U is finite-codimensional with $\operatorname{Codim}_{K}(U, V) \leq \sum_{i=1}^{n} \operatorname{Codim}_{K}\left(U_{i}, V\right)$.
(b) The following statements are equivalent:
(i) The inequality in part (a) is equality.
(ii) The canonical homomorphism $V / U \rightarrow \bigoplus_{i=1}^{n} V / U_{i}$ is an isomorphism.
(iii) $U_{i}+U_{i}^{\prime}=V$ for $i=1, \ldots, n$.
(iv) $U_{1}^{\prime}+\cdots+U_{n}^{\prime}=V$.
(v) The sum $U_{i}^{\circ}, i=1, \ldots, n$, of subspaces $U_{i}^{\circ}, i=1, \ldots, n$, in V^{*} is direct.
*8.3 Let $f: V \rightarrow W$ be a K-linear map of finite dimensional K-vector spaces. Then show that:

$$
\operatorname{Dim}_{K} \operatorname{Ker} f-\operatorname{Dim}_{K} \operatorname{Coker} f=\operatorname{Dim}_{K} V-\operatorname{Dim}_{K} W .
$$

(Remark : See also Supplement S8.2 (b) and Supplement 8.4(b).)
8.4 Let U, W be subspaces of V with $U \subseteq W$. If W^{\prime} is a complement of W in V, then $\left(U+W^{\prime}\right) / U$ is a complement of W / U in V / U which is isomorphic to W^{\prime}.
8.5 Let f be a K-linear operator on a K-vector space V. Then show that the following statements are equivalent :
(i) f induces an automorphism of $\operatorname{Im} f$.
(ii) f induces an automorphism of $V / \operatorname{Ker} f$.
(iii) $V=\operatorname{Im} f \oplus \operatorname{Ker} f$.
(iv) $\operatorname{Ker} f$ has a f-invariant complement W such that the restriction $f \mid W$ is an automorphism of W. (For the finite dimensional case, see Supplement S6.20-The K-subspace in (iv) is necessarily $\operatorname{Im} f$.)

