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9. Matrices — The Matrix of a linear map — Rank of matrices — Elementary matrices

Submit a solution of the ∗-Exercise ONLY. Due Date : Monday, 10-10-2016 (Before the Class)

Complete Correct solution of the Exercise 9.5 carry 20 BONUS POINTS!!!

Let K be arbitrary field and let K denote either the field R or the field C.

9.1 Let V be a vector space of dimension n over a field K and let f ∈ EndKV . Then there exists a
basis w of V such that the matrix Mw

w( f ) of f with respect to w is of the form

a11 a12 a13 · · · a1,n−1 a1n
a21 a22 a23 · · · a2,n−1 a2n
0 a32 a33 · · · a3,n−1 a3n
...

...
... . . . ...

...
0 0 0 · · · an−1,n−1 an−1,n
0 0 0 · · · an,n−1 ann

 ,

where the elements a21, a32, . . . , an,n−1 below the main-diagonal are either 1 or 0.
(Remark : A matrix of this form, where the elements a21,a32, . . . ,an,n−1 are arbitrary is called a H e s s e n -
b e r g1– m a t r i x. The existence of such a matrix representation is much simpler than what the applied
mathematicians will make you think, when they are using Householder type reflections2 for the construction
(which works over C only), see also3. However, it is much simpler to construct a basis w = (w1, . . . ,wn)
of V (over arbitrary field K), see — Proof : To construct a basis w1, . . . ,wn of V (over arbitrary field K),
choose any w1 6= 0 in V . If f (w1) ∈ Kw1, say f (w1) = a1w1, then choose w2 ∈ V , w2 /∈ Kw1, and take
a11 := a1,ai,1 := 0 for i = 2, . . . ,n. If f (w1) 6∈ Kw1, put w2 := f (w1) and a11 := 0,a21 := 1, ai,1 = 0 for
i = 3, . . . ,n. Then w1,w2 are linearly independent, and the first column of the matrix will have the required
form. Now, assume that we have chosen linearly independent vectors w1, . . . ,w j, j < n, such that the first
j− 1 columns of the matrix have the right form. Then proceed as follows: If f (w j) ∈ Kw1 + · · ·Kw j,
say f (w j) = a1w1 + · · ·+ a jw j, choose a vector w j+1 ∈ V , w j+1 /∈ Kw1 + · · ·+Kw j, and put ai j := ai for
i = 1, . . . , j and ai j := 0 for i = j+1, . . . ,n. If f (w j) 6∈ Kw1 + · · ·Kw j, put w j+1 := f (w j) and ai j := 0 for
i = 1, . . . j, a j+1, j := 1 and ai j = 0 for i = j+2, . . . ,n.. Then w1, . . . ,w j+1 are linearly independent, and the

1Hessenberg matrices were first investigated by K a r l H e s s e n b e r g (1904-1959), a German engineer whose
dissertation investigated the computation of eigenvalues and eigenvectors of linear operators, see [Hessenberg, K.
Thesis. Darmstadt, Germany: Technische Hochschule, 1942.].

2Householder transformation was introduced in 1958 by A l s t o n S c o t t H o u s e h o l d e r (1904-1993) an
American mathematician who specialized in mathematical biology and numerical analysis.

3[Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Reduction of a General Matrix to Hessenberg
Form." § 11.5 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England:
Cambridge University Press, pp. 476-480, 1992.]
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first j columns of the matrix will have the required form. This method stops after having chosen wn, because
there are no requirements on the last column of that matrix. •)

9.2 Compute the inverse of the matrix (called the H e i s e n b e r g - m a t r i x4) of the form

B=



1 a1 a2 · · · an c
0 1 0 · · · 0 b1
0 0 1 · · · 0 b2
...

...
... . . . ...

...
0 0 0 · · · 1 bn
0 0 0 · · · 0 1

 ∈Mn+2 (K) .

(Hint: Let w0, . . . ,wn+1 be a basis of the n+2-dimensional vector space V over K. Then v0 := w0, v j :=
w j +aiw0 , j = 1, . . . ,n and vn+1 := wn+1 +bnwn + · · ·+b1w1 + cw0 is also a basis (see Exercise 3.2 (b)) of
V over K. Further, the Heisenberg-matrix B =Mw

v is the transition matrix of the basis v0, . . . ,vn+1 onto
the basis w0, . . . ,wn+1. Therefore the inverse B−1 is the transition matrix of the basis w0, . . . ,wn+1 onto the
basis v0, . . . ,vn+1. Then the inverse B−1 =Mv

w is the transition matrix of the basis v0, . . . ,vn+1 onto the
basis w0, . . . ,wn+1. Since w0 = v0, w j = v j− aiv0 , j = 1, . . . ,n and wn+1 = vn+1− (bnvn− anv0)−·· ·−
b1(v1−a1v0)− cv0 = vn+1−bnvn−·· ·−b1v1 +(bnan + · · ·+b1a1− c)v0 , it follows that

B−1 =Mv
w =



1 −a1 −a2 · · · −an bnan + · · ·+b1a1− c
0 1 0 · · · 0 −b1
0 0 1 · · · 0 −b2
...

...
...

. . .
...

...
0 0 0 · · · 1 −bn
0 0 0 · · · 0 1

 ∈Mn+2 (K) .)

9.3 (a) Let I, J be finite sets. Two matrices A,A′ ∈MI,J(K) have the same rank if and only if
there exist invertible matrices B ∈ GLI(K) and C ∈ GLJ(K) such that A′ =BAC .
(Hint: Let f ,g : KJ→KI be linear maps defined by f (x) := Ax and f ′(x) := A′ x, x is column-vector in KJ ,
and let A respectively A′ be the matrices with respect to the standard bases. Let RankA= RankA′ = r, and
so Rank f = Rank f ′ = r. By the proof of the Rank-Theorem, there exist a basis v1, . . . ,vn of KJ and a basis
v′1, . . . ,v

′
n of KJ such that w1 := f (v1) , . . . ,wr := f (vr) is a basis of Im f and w′1 := f (v′1) , . . . ,w

′
r := f (v′r) is

a basis of Im f ′ and that vr+1 , . . . ,vn and v′r+1 , . . . ,v
′
n are bases of Ker f respectively Ker f ′. We also extend

w1, . . . ,wr and w′1, . . . ,w
′
r to bases w1, . . . ,wm respectively w′1, . . . ,w

′
m of KI . Now, we define isomorphisms

h : KJ→KJ and g : KI→KI by h(vi) := v′i, i = 1, . . . ,n, and g(wi) := w′i, i = 1, . . . ,m. By construction, we
have g( f (vi)) = g(wi) = w′i = f ′(v′i) = f ′(h(vi)) for i = 1, . . . ,r and g( f (vi)) = g(0) = 0 = f ′(v′i) = f ′(h(vi))
for i = r+1, . . . ,n. Therefore, altogether g◦ f = f ′◦h, where the matrices C′ :=Me

e(h) and B :=Me
e(g) are

invertible. It follows that BA=Me
e(g)M

e
e( f ) =Me

e(g◦ f ) =Me
e( f ′◦h) =Me

e( f ′)Me
e(h) =A′C′ and hence

A′ =BAC mit C := (C′)−1.
For the converse the isomorphisms g and h defined above by B respectively C−1, naturally Rank A =
Dim Im f = Dim Img◦ f = Dim Im f ′ ◦h = Dim Im f ′ = Rank A′. — Remark : In this case we say that A
and A′ are ( r a n k ) - e q u i v a l e n t . The corresponding equivalence classes are precisely the set of
all matrices of same rank. Therefore the rank is the only invariant of such equivalence classes. See also
Supplement S9.6.)

(b) Let m, n ∈N∗, s := Min{m,n} . For every r with 0≤ r ≤ s , let Ur := ∑
r
i=1 Eii ∈Mm,n(K) . If

A ∈Mm,n(K) , then A (rank)-equivalent to Ur, where r := RankA . The matrices U0, . . . ,Us form
a full representative system in Mm,n(K) with respect to the relation of equivalence of matrices given
in the part (a) above. (Remark : Multiplying by elementary matrices Bi j(a), i < j from right and Bi j(a),
i > j from left, we can even find an invertible upper triangular matrix A2 and an invertible lower triangular
matrix A1 such that from the matrix A1AA2 one can obtain Ur by multiplying columns and rows by suitable
scalars and permuting them.)

4These matrices were first investigated by W e r n e r H e i s e n b e r g (1901-1976) a German theoretical physicist
who made foundational contributions to quantum mechanics and is best known for asserting the uncertainty principle of
quantum theory. Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born,
and Pascual Jordan in 1925. Matrix mechanics was the first complete and correct definition of quantum mechanics.
It extended the Bohr Model by interpreting the physical properties of particles as matrices that evolve in time. It is
equivalent to the Schrödinger wave formulation of quantum mechanics, and is the basis of Dirac’s bracket notation for
the wave function.
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9.4 (a) Suppose that the solution spaces of the system of linear equations Ax = b and A′ x = b′

with A ∈Mm,n(K) , A′ ∈Mm′,n(K) and column-vectors b ∈ Km , b′ ∈ Km′ , m,m′,n ∈N, are non-
empty affine subspaces of Kn. Show that these subspaces are parallel if and only if the block-matrix(A
A′
)
∈Mm+m′,n (K) is of rank Max (RankA,RankA′). (By definition, two affine spaces x+U and

x′+U ′ in a K-vector space V are p a r a l l e l if either U ⊆U ′ or U ′ ⊆U . With this definition, the solution
spaces L(E) = x+L0(E) and L(E′) = x′+L0(E

′) of two systems E : Ax = b and E′ : A′ x = b′ of liner
equations which are affine spaces in Kn are parallel if either L0(E)⊆ L0(E

′) or L0(E
′)⊆ L0(E), where L0(E)

and L0(E
′) are the solution spaces of the homogeneous systems Ax = 0 and A′ x = 0 corresponding to E

and E′, respectively.)

(b) Let r ∈N∗, s ∈N and B ∈Ms(K) . Show that for every matrix A ∈Ms,r(K) and every column-
vector x ∈ Kr there exists a column-vector y ∈ Ks with Ax+By = 0, if and only if B is invertible.
Moreover, in this case, one can choose y =−B−1Ax.

∗∗9.5 Let K be an arbitrary field and let a := (a1, . . . ,an) ∈ Kn, n ∈ N+. Let U ⊆ Kn be a K-
subspace of the K-vector space Kn generated by the n! vectors aσ := (aσ(1), . . . ,aσ(n)) , σ ∈Sn,
obtained by permuting the coordinates of (a1, . . . ,an). Compute the dimension Dim KU of U .
(Hint : Let A :=

(
aσ(i)

)
σ∈Sn ,
1≤i≤n

∈Mn!×n(K) and let t f : Kn→ Kn! be the K-linear map defined by t f (ei) :=

ci = ∑σ∈Sn aσ(i)eσ , i = 1, . . . ,m, where e1, . . . ,en ∈Kn and eσ ∈Kn! = KSn , σ ∈Sn are the standard bases of
Kn and Kn!, respectively and ci denote the i-th column of A. Then Dim KU = RankA= Rank tA= Rank t f .
Now, compute the kernel Ker t f and use the Rank-Theorem to compute Rank t f .)

Ans: Dim KU =


0, if a1 = · · ·= an = 0 ,
1, if a1 = · · ·= an 6= 0 ,
n−1, if a1 6= a2 and ∑

n
i=1 ai = 0 ,

n, if a1 6= a2 and ∑
n
i=1 ai 6= 0 ,

9.6 (a) For r,s∈{1, . . . ,m} with m∈N, r 6= s and a,b∈K, show that Brs(a+b)=Brs(a)Brs(b)
in Mm(K) , i. e., the map (K,+)−→ GLm(K), a 7−→Brs(a) is an injective homomorphism from
the group (K,+) into the (multiplicative) group GLm(K) of the invertible matrices. ( Hint : Since
ErsErs=δrsErs= 0, (En +aErs)(En +bErs)=En +bErs +aErs +abErsErs=En +(a+b)Ers. )
(b) Show that the elementary matrices B j+1, j(a j+1) , . . . ,Bm, j(am) ∈Mm(K) , j ∈ {1, . . . ,m} and
a j+1, . . . ,am ∈ K , are pairwise commutative and their product B j+1, j(a j+1) · · ·Bm, j(am) is the
normalized (all diagonal entries are 1) upper triangular matrix B j(a j+1, . . . ,am) which is obtained
from the identity matrix by replacing j-th column by adding the elements a j+1, . . . ,am under
the main-diagonal, i. e., B j(a j+1, . . . ,am) = En +∑

m− j
k=1 a j+kE j+k , j . Further, show that the map

(Km− j,+)−→ GLm(K), (a j+1, . . . ,am) 7−→B j(a j+1, . . . ,am) is a homomorphism from the group
(Km− j,+) into the group GLm(K) . In particular, B j(a j+1, . . . ,am)

−1 = B j(−a j+1, . . . ,−am) .
(Remark : In the concrete situation it is practical for the row-operations to pre-multiply by the matrices of
the type B j(a j+1, . . . ,am) . Similarly for column-operations.)
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