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Supplement 1

Basic Algebraic Concepts

We shall use the following standard notations for some frequently occurring sets :
N ={0,1,2,3,...}
N*={1,2,3,...} set of positive natural numbers,
N,={xeN|x<n}={0,1,...,n}, N)={xe N*|x<n}={1,...,n} (neN),
zZ ={0,1,—-1,2,-2,3,-3,...}

Q :{gza/b\a,bez,b;éo}
R

set of natural numbers,

set of integers,

set of rational numbers,
set of real numbers,
R*={xeR|x#0} set of non-zero real numbers,
Ry={xeR|x>0}
Ro={xeR|x<0}
F={xeR|x>0}
C ={x+iy|x,yeR}
C*={zeC|z#0}

set of non-negative real numbers,
set of non-positive real numbers,
set of positive real numbers,

set of complex numbers,

set of non-zero complex numbers.

We assume that the reader is familiar with the standard arithmetical operations and the elementary
computational rules for these number systems.

S1.1 (The Natural numbers—Peano’s axioms) The theory of the set of natural
numbers IN from the Peano’s axioms, which were set out first by G. Peano (1858— 1939) in 1889.
The induction axio HE| is the basis of the principle of mathematical induction. Proofs by
induction are very common in mathematics and are undoubtedly familiar to the reader.

Using induction axiom one can constructthe canonical or natural or usual ordeIEI
< on N. One oftenusethe Minimum Principle (alsoknownas Well ordering
Principle for N, which states that: Every non-empty subset M of IN contains a least element,
1.e., there exists an element mg € M such that mo < m for all m € M. In particular, the canonical
order on NN is a total order.

"Induction axiom : If M is a subset of IN such that 0 € M and for all m € M, m+ 1 also belongs to M, then M = IN.

2A relation on a set A is called an order if it is reflexive, antisymmetric and transitive.
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Further, one can define the binary operations addition, multiplication and expo -
nentiation and derive the entire arithmetic on IN. The natural order < on IN is compatible
with the standard addition and multiplication :

For all a,b,c € N

(i) (Monotony of addition) a <b, implies thata+c <b+c.

(i) (Monotony of multiplication) a<b,implies that ac < bc.

However, the standard order < on the set of integers Z is not a well order, since for example, Z
itself has no smallest element.

S1.2 (Arithmetic) In this supplement, we describe the structure of the commutative and
regular monoid IN* = (IN*, ) of positive integers with the usual multiplication as binary operation.

(@ (Prime numbers) A positive integer m € IN* is called irreducible or prime
ora prime number if m# 1 andif m and 1 are the only divisors of m in IN* We denote
the subset of prime numbers in IN* by IP.

Aninteger m > 11is reducible or composite,i.e., notirreducible, if and only if there
exist integers a,b such that 1 < a,b <m and m = ab. Note that the smallest divisor > 1 of an
integer m > 1 is necessarily irreducible. The following famous theorem has a very simple proof :
(Euclid) The set P of prime numbers is infinite.

('The infinite strictly increasing sequence p,, n € IN* of prime numbers starts with p; =2, po =3, p3 =5,ps =
7,ps = 11,.... This sequence is still a big mystery. It is easy to show that the sequence p,+| — pn, n € IN%
of prime number gaps is unbounded. It is still open if there are infinitely many n € N*with p, | — p, = 2.
(The conjectured answer to this so-called twin prime problem is “yes”.) However, recently
(2013) Y. Zhang proved the following theorem: The sequence p,+1 — pn, n € IN% does not converge
1o oo, i. e., there exists an N € IN with p,; — p, < N for infinitely many n € IN* (Zhang proved this for
N =170,000,000. Meanwhile this bound is improved, for example by N = 600 (J. Maynard 2013).) In this
connectionthe prime number function m(x) plays an important role. By definition, for a positive
real number x, 7 (x) is the number of primes < x. For instance, 7 (p,) = n.)

(b) (Division with remainder) Letaand b be integers with b 7 0. Then there exist
unique integers ¢ and r such that a = gb+r, with 0 <r < |b|. The integers ¢ and r are called the
quotient and remainder of aon division by b, respectively.

(¢) (Euclidean Algorithm) Let a,b € N*with a > b. We put ry:=a and r; := b and
consider the following system of equations obtained by repeated division with remainder :

ro=qir1+ra, 0<mrm<ry;

r=qary+rs3, 0<r3<r;

ri = qit1Tiy1 +Tiv2, 0<riva<riti;
Tk—1 = qkTk +Tk+1 5 0<rgsr <rgs

Tk = Gk+1Tk+1 -
The algorithm stops when r¢p =0, i. e. when ri | r;. This happens because the sequence

ro > r1 > rp > --- of the non-negative remainders is strictly decreasing. Moreover, the successive
pairs ri_1, riand rj, riy1, i = 1,...,k, obviously have the same common divisors. Therefore

ged (a,b) = ged(ro,r1) =+ = ged (g, ri+1) = Fer1 -
The equations of the algorithm also allow to construct coefficients s, r € Z with ged (a,b) =ry 1 =
sa—+tb. For this, define s;,¢;, i =0,...,k+ 1, recursively by
so=1,t0=0;s51=0,11=1; Sit] =Si—1—q;Si; tix1 =ti—1 —qiti; 1= 1,...,k.
Then, by induction on i, one proves r; = sja+t;b, i =0,...,k+ 1. In particular,
ged(a,b) =11 = sgr1a -+t b.

( We illustrate the above algorithm by the following example : Let a := 40631 and b := 13571. The Euclidean
algorithm supplies

40631 =2-13571+ 13489, 13571 =1-13489+ 82, 13489 =164-82+41, 82 =2-41.
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So we have k = 3, and the integers s;, t;, i =0,...,4, are computed in the following table:

il o 1 2 3 4
gi 2 1 164

si| 1 0 1 —1 | 165
) 1 2 3 | —494

Therefore 41 = ged (40631, 13571) = 165-40631 — 494 - 13571.

Two integers a,b € Z are called coprime or relatively prime if ged(a,b)=1. A
prime number p € P and an integer a € Z. are coprime if and only if p does not divide a.

(d) (Bezout’s Lemma) Let a,b € Z be relatively prime integers. Then there exist integers
s,t € Z, with sa+1tb = 1.
An important property of coprime numbers is described in the following lemma:

() (Euclid’s Lemma) Leta,b,c € Z with gcd(a,b) = 1. If a|bc then a|c. In particular, if
a prime number p € P divides the product bc, then it divides at least one of the factors b or c.

(f) (Fundamental Theorem of Arithmeticﬂ Every positive integer m € IN*
is a product of (not necessarily distinct) irreducible numbers py,...,p, € P which are uniquely
determined by m up to order.

(Proposition 14 of Book IX of Euclid’s “Elements” embodies the result which later became known as
the Fundamental Theorem of Arithmetic. The existence is proved by induction and
uniqueness statement is a direct consequence of Euclid’s Lemma. The Fundamental Theorem of Arithmetic
allows to define canonical representations of integers and also of rationals. Altogether, the Fundamental
Theorem of Arithmetic allows a lucid description of the structure of the multiplicative monoids IN%, Z*and
the multiplicative group Q> The prime numbers are the atoms to build up these structures.)

S1.3 (Euler’s ¢-function) For arbitrary integers m,n,q € Z, one has ged(n,m) =
ged (n+gm, m), since the pair n,m and the pair n+ gm, m have the same set of common divisors.
In particular, n,m are coprime if and only if n+ gm, m are coprime.— Now, let m € IN* Since,
by division with remainder (cf. S1.?? (a)), there exists a (unique) g € Z with 0 < n+gm < m one
overviews all integers that are coprime to m if one only knows the integers n with 0 < n < m that
are coprime to m. The number of these integers is denoted by ¢ (m). The function ¢ : N* — IN¥,
m— @ (m),iscalled Euler’s ¢-functionorthetotient function. Itis ¢(1)=1,
02)=1,03)=2,04)=2, 0(5) =4, ¢(6) =2, etc. ¢ (m) is also the number of positive
integers n with 0 <n <m and gcd (m,n) = 1. In particular, ¢ (p) = p — 1 for a prime number p.
More generally, ¢ (p*) = p*~(p—1) = p*(1 - 11)) for p € P, a € IN% since the positive integers

a—1

< p? that are not coprime to p% are the multiples rp, r=1,...,p* ", of p.

(a) For every positive integer m one has, m = Z dim @ (d).

1
(b) (Euler’sFormula) Forevery m € IN*one has ¢ (m)=m- H (1——).

S14 (Periodic sequences) Let (x;) = (x;) ;e be an arbitrary sequence. A pair (z,s) €
INx N*iscalleda pair of periodicity for (x;)if x;+y = x; forall i > ¢. In this case, ¢ is
calleda preperiod lengthand sa period lengthof (x;). (x;)iscalled periodic
if such a pair of periodicity exists, otherwise (x;) is called aperiodic. Now, assume that (x;)
is periodic. Show that there exists a unique pair of periodicity (¢,k) € INx IN* with the following
property: (z,s) € INx IN* is a pair of periodicity for (x;) if and only if # > ¢ and s = mk for
some m € IN*. (Hint : The submonoid of periods of the sequence (x;) fulfills the assumptions for N in
Exercise 2 above. — The smallest pair of periodicity (¢,k) is called the pair of periodicity per

3 The Fundamental Theorem of Arithmetic does not seem to have been stated explicitly in Euclid’s elements,
although some of the propositions in book VII and/or IX are almost equivalent to it. Its first clear formulation with
proof seems to have been given by Gauss in Disquisitiones arithmeticae § 16 (Leipzig, Fleischer, 1801). It was, of
course, familiar to earlier mathematicians; but Gauss was the first to develop arithmetic as a systematic science.
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seorthe periodicity type of the sequence (x;). Its first component ¢ is called the (minimal)
preperiod length and the second component k the (minimal) period lengthof (x;).
The finite subsequences (xo,...,x;—1) and (x¢,...,x¢14—1) of length £ and k, respectively, are called the
(minimal) preperiodresp. the (minimal) period of (x;). If /=0, then (x;) is called
purely periodic. If k=1, the sequence (x;)iscalled stationary with limit x if x is
its period (of length 1). The constant sequences are the sequences of periodicity type (0,1). By definition,
aperiodic sequences have the periodicity type (e0,0).—If x is an element of a group then the sequence
(x');en of its powers has period length ord x and is purely periodic if ordx > 0.)

S1.5 For every subgroup H of (Z,+), there exists a unique natural number n € IN such that
H=7n:={an|a € Z}. Formy,...,m, € N*, we have Zm| + - - -+ Zm, = Z gcd(my,...m,) and
ZmiN---NZmy, = Zlem(my,...my,).

S1.6 (Congruence modul omn) Let n € IN, n # 0 be a fixed natural number. For arbitrary
a,beZ,wewrittea=,bmod n(andread a is congruent to b» modulo n)ifndivides
a— b (equivalently, a and b have the same remainders (between 0 and n — 1) on division by 7). Then
=, is an equivalence relation on Z. there are exactly n equivalence classes under =, so-called
the residue classes modulo n. The setof residue classes (quotient set under =) is
denoted by Z,,; the numbers 0,1,...,n— 1 form a complete representative system for =,. In the
case n = 2, the residue class 0 = [0] is the set of all even integers and the residue class 1 = [1] is the
set of odd integers.

On the quotient set Z,, := {[0],,[1],,...,[n— 1],} of the congruence modulo 7, the binary operations
+, addition modulo nand-, multiplication modulo n are defined by [a], +»,
b, := [a+ D], and [a],, -, [b]n := |a - ], respectively. With these two binary operations (Z,,+, )
i1s a commutative ring (with identity).

S1.7 Let M,N be two jugs of capacities m resp. n liters with coprime m,n € IN*. Then, from a tank
which contains at least m +n — 1 liters of water, one can draw precisely x liters for every x € IN
with 0 < x < m-+n. (Hint : If M contains y € IN liters and is filled up with the content of the full jug
N (where the content of M is poured back into the tank every time M is full), then the new content of M
represents the residue class of y+n in Z,, = Z/Zm. Now use Theorem ??. For example, if m =11, n =17,
one obtains this way, starting with the empty jug M, successively 0,7, 3,10,6,2,9,5,1,8,4,0,... liters.
Interchanging the roles of M and N one obtains 0,4, 1,5,2,6,3,0,... liters.)

S1.8 (Fibonacci-sequence) Therecursively defined sequence F = (F,),cn with Fy =0,
Fi=1,F,=F,_1+F,2,n>2iscalledthe Fibonacci-sequence andF, is called the
n-th Fibonacci-numb er. The first terms of the Fibonacci-sequence are 0,1,1,2,3,5,8,13,
21,34,55,89,144,233,....

(a) For every natural number m > 2, the sequence F (mod m) of least nonnegative residues of the
terms F;, modulo m, is purely periodic.

(Hint : For example, F (mod5) =(0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1;0,1,1,...) This is a natu-
ral consequence of (1) Modulo m, there are m? possible pairs of residues, and hence some pair of consecutive
terms of F (mod m) must repeat, and (2) Any pair of consecutive terms of F (mod m) determines the entire
sequence both forward and backward. )

(b) Let m € N, m > 2 and let w(m) denote the period of the sequence F (mod m ). Then w(m) =
min{k € N* | F, = 0(modm) and F.;; = 1 (modm)}. For m =2,3,4,5,6,7,8,9,10,..., the
values of 7(m) are 3,8,6,20,24,16,12,24,60,.... For m > 2, w(m) is even. (Remark : Matrix

interpretation of w(m): Let U = <(1) }) . Then U" = <F;T1 FF" > and 7(m) is the least integer k such
n n+1

that U* = ((1) ?) ,i.e. w(m) = the order of U in the group GL2(Z,,). )

(¢) Form,n e N, n(lem(m,n)) = lcm(xw(m), w(n)) and hence, if n|m, then w(n) | x(m).

“First time this relation is systematically studied by C. F. Gauss in his Disquisitiones arithmeticae (1801).
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(d) If m= p}'---p¥r is the prime factorization of m, then 7(m) = lem(x(p"),...,w(p}").

(e) For a prime number p, let ¢ be the largest integer such that n(p') = n(p), then n(p¥) =
p'~'7(p) for all v > ¢. (Remark : So far, no prime p has been found for which 7(p?) = (p). It is an
open problem whether any such primes exist. If any do exist, they are called Wall-Sun-SunPrimes.
So, for every prime that we know of, the formula 7(p") = p¥~!z(p) holds.)

S1.9 For an element a of a set M with the binary operation *, the map A, : M — M, x — ax x is
calledthe left translation of M by a. Similarly, the map p,: M — M, x — xxa, is
calledthe right translation of M by a. The following conditions are equivalent :

(i) The operation * is associative.

(i) Ao Ap = Ay forall a,b € M.

(iii) pg o Pp = Ppxa for all a,b € M.

(iv) Aq and pp commute (i. e. A,0pp = ppoA,) forall a,b e M.

Moreover, an element e € M is a neutral element for * if and only if A, = p, = idy;. Furthermore,
Aa = pg for all a € M if and only if M is commutative.

S1.10 A set M with binary operation * is called a semigroup if the binary operation * is
associative. A semigroup (M, *) whose binary operation has a neutral ement is calleda monoid.
The neutral element of a monoid M is usually denoted by ej; or — for multiplicative monoids by
15 or— for additive monoids — by 0y,.

A semigroup (M, ) is regular if and only if for every element a € M the left translation A, : x — a*x
and the right translation p, : x — x*a of M are injective. More generally, we define: an element a
of a semigroup M is called re gular if both the left translation A, and the right translation p,
of M are injective.

Regular elements can be cancelled in the following sense: If a € M is regular and if axb =ax*c or
if bxa=cxa,then b=c. The set M* :={a € M | aregular in M} of regular elements of M is
obviously a subsemigroup of M (since compositions of injective maps are injective).

A semigroup M is regular if and only if M* = M.

Note that in a regular monoid the neutral element e € M is the only idempotent element because, from an
equation a’> = a = ae, one obtains the equality a = e by canceling a. It follows that a subsemigroup N
of a regular monoid M which is a monoid has necessarily the same neutral element as M. Hence it is a
submonoid of M.

S1.11 (The unit group of a monoid) Let M be a (multiplicative) monoid. An
element x € M is called invertible if there exists X' € M such that x'x =e=xx". In this case
the inverse x isuniquely determined by x and is denoted by x~! (in the additive notation by
—Xx). Invertible elements in a monoid M are always regular

Let M* := {x € M | x is invertible } be the set of all invertible elements of M. Then M* C M *and
1) ecM*. (2) Ifx,ye€ M*, thenxy € M* and (xy)~! =y~ Ix1.

(3) M* is a submonoid of M in which every element is invertible, i. e., group under the induced
binary operation of M.

(4) M is a group if and only if M = M*.

— The group M* iscalledthe group of invertible elements of Morthe unit group of
M. For example, in a field K with respect to multiplication the unit group is K* = K \ {0}. For the monoid
(XX, 0) of the set of all maps of a set X into itself, the unit group is (XX )* = &(X) the set of all permutations
of X (proof!). For monoids M, N, determine the group of invertible elements in the product monoid M x N
(in terms of the groups M and N*).

S1.12 Let M be a (multiplicative)) monoid.

(a) Show that for an element a € M, the following statements are equivalent:
(i) aisinvertiblein M,i.e.a e M*.

(ii)) The left translation A, and the right translation p, of M are bijective.
(iii) The left translation A, of M is bijective.

(iv) The right translation map p, of M is bijective.
(v) The left translation A, and the right translation p, of M are surjective.
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(b) Give an example of a monoid M with an element xo € m such that A, is surjective, but xo is
not invertible. (Hint : In the monoid IN™, define the map ¢ by @(0) := 0, ¢(n) :=n—1 if n> 1, and the
map Y by n+ n+ 1. Then @y = idy, and the element y € INY has infinitely many left inverses in IN™,
In particular, y is not invertible. )

S1.13 Let X be any set and let B(X) := {A |Aisasubsetof X} bethe power set of X.

(@) The union Uand intersection (N are associate and commutative binary operations
on P(X). What are the neutral elements for these binary operations? In the case X # 0, neither
(B(X),U) nor (B(X),N) is a group.

(b) OnP(X)the symmetric difference A isa binary operation, in fact (B(X),A) is
a group. What is the inverse of ¥ € 3(X) in the group (B(X),A)?

(¢) (Indicator functions) ForA € P(X),leteg : X — {0,1}, ea(x) =1if x € A and
ea(x) =0if x ¢ A, denote the indicator function of A. For A,B€(X), prove that:
(i) eanp=eaep, (i) eaup=ea+ep—eaep, (iii) esqp=es(1—ep).

In particular, ex\a =1—eaand esnp = e +ep—2epep.

(d) The map e: P (X) — {0,1}X defined by A+ e, is bijective. (Remark : One can use this bijective
map and part (3) to prove (2).)

S1.14 There are natural examples of non-associative binary operations. For example, on the set
IN of natural numbers the exponentiation N x N — IN, (m,n) — m" is a non-associative binary
operation on IN. The difference Z x Z — 7, (m,n) — m —n and the division Q* x Q* — Q*,
(x,y) — x/y are also non-associative binary operations. More generally, if G is a group, then
G x G — G, (a,b) — ab~! is a non-associative binary operation if there is at least one element
beGwithb#b~ 1.

S1.15 Let G be a non-empty semigroup. The following statements are equivalent:
(1) G s agroup.
(i) For arbitrary a,b € G the equations ax = b and ya = b are uniquely solvable in G, i. e. all the

translations A, and p,, a € G, are bijective.
(iii) For arbitrary a,b € G the equations ax = b and ya = b are solvable in G, i. e. all the translations

Aq and p,, a € G, are surjective.

S1.16 Let M be a semigroup with the following two properties: (1) For all a € M, the left
translations A, of M are surjective. (2) There exists at least one b € M such that the right translation
Pp 1s surjective. Show that M is a group.

S1.17 Let A and B be two subsets of a finite group G. If #A +#B > #G, then show that G = AB :=
{ab|a € A and b € B}. (Hint : For x € G, let A, := {a 'x | a € A}. Use the Pigenhole principle (see
Footnote 1) to conclude that #A, = #A and hence A, N B # 0 for every x € G.)

S1.18 (a) Which of the following subsets are subgroups of the multiplicative group 7 :

(Remark : Note that H, is the submonoid of the powers Ek, k € IN, of 2. The sequence ik, k € IN, is periodic
with period 5, since 2’ =T. This proves that H, is a subgroup. More generally, see Exercise 1.3.)

(b) Which of the following subsets are subgroups of the multiplicative group 75 :

Hy :={1,12,17,28}, H,:={1,2,4,8,16,20,24}.
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