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S u p p l e m e n t 1

Basic Algebraic Concepts

We shall use the following standard notations for some frequently occurring sets :

N = {0,1,2,3, . . .} set of natural numbers,
N∗ = {1,2,3, . . .} set of positive natural numbers,
Nn = {x ∈N | x≤ n}={0 ,1, . . . ,n} , N∗n={x ∈N∗ | x≤ n}={1, . . . ,n} (n∈N),
Z = {0,1,−1,2,−2,3,−3, . . .} set of integers,

Q =
{a

b
= a/b

∣∣ a,b ∈ Z , b 6= 0
}

set of rational numbers,
R set of real numbers,
R× = {x ∈R | x 6= 0} set of non-zero real numbers,
R+ = {x ∈R | x≥ 0} set of non-negative real numbers,
R− = {x ∈R | x≤ 0} set of non-positive real numbers,
R×+ = {x ∈R | x > 0} set of positive real numbers,
C = {x+ iy | x ,y ∈R} set of complex numbers,
C× = {z ∈ C | z 6= 0} set of non-zero complex numbers.

We assume that the reader is familiar with the standard arithmetical operations and the elementary
computational rules for these number systems.

S1.1 ( T h e N a t u r a l n u m b e r s — P e a n o ’ s a x i o m s ) The theory of the set of natural
numbers N from the Peano’s axioms, which were set out first by G. Peano (1858– 1939) in 1889.
The i n d u c t i o n a x i o m1 is the basis of the principle of mathematical induction. Proofs by
induction are very common in mathematics and are undoubtedly familiar to the reader.
Using induction axiom one can construct the c a n o n i c a l or n a t u r a l or u s u a l o r d e r2

≤ on N. One often use the M i n i m u m P r i n c i p l e (also known as W e l l o r d e r i n g
P r i n c i p l e for N, which states that : Every non-empty subset M of N contains a least element,
i. e. , there exists an element m0 ∈M such that m0 ≤ m for all m ∈M . In particular, the canonical
order on N is a total order.

1Induction axiom : If M is a subset ofN such that 0 ∈M and for all m ∈M, m+1 also belongs to M, then M =N.
2A relation on a set A is called an o r d e r if it is reflexive, antisymmetric and transitive.
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Further, one can define the binary operations a d d i t i o n, m u l t i p l i c a t i o n and e x p o -
n e n t i a t i o n and derive the entire arithmetic on N. The natural order ≤ on N is compatible
with the standard addition and multiplication :
For all a,b,c ∈N
(i) ( M o n o t o n y o f a d d i t i o n ) a≤ b, implies that a+ c≤ b+ c.
(ii) ( M o n o t o n y o f m u l t i p l i c a t i o n ) a≤ b, implies that ac≤ bc.
However, the standard order ≤ on the set of integers Z is not a well order, since for example, Z
itself has no smallest element.

S1.2 ( A r i t h m e t i c ) In this supplement, we describe the structure of the commutative and
regular monoid N∗ = (N∗, ·) of positive integers with the usual multiplication as binary operation.
(a) ( P r i m e n u m b e r s ) A positive integer m ∈N∗ is called i r r e d u c i b l e or p r i m e
or a p r i m e n u m b e r if m 6= 1 and if m and 1 are the only divisors of m in N∗. We denote
the subset of prime numbers in N∗ by P.
An integer m > 1 is r e d u c i b l e or c o m p o s i t e, i. e. , not irreducible, if and only if there
exist integers a ,b such that 1< a ,b < m and m = ab . Note that the smallest divisor > 1 of an
integer m >1 is necessarily irreducible. The following famous theorem has a very simple proof :
( E u c l i d ) The set P of prime numbers is infinite.
( The infinite strictly increasing sequence pn, n∈N∗, of prime numbers starts with p1 = 2, p2 = 3, p3 = 5, p4 =
7, p5 = 11, . . . . This sequence is still a big mystery. It is easy to show that the sequence pn+1− pn, n ∈N∗,
of prime number gaps is unbounded. It is still open if there are infinitely many n ∈N∗with pn+1− pn = 2.
(The conjectured answer to this so-called t w i n p r i m e p r o b l e m is “yes”. ) However, recently
(2013) Y. Z h a n g proved the following theorem: The sequence pn+1− pn, n ∈N∗, does not converge
to ∞, i. e. , there exists an N ∈N with pn+1− pn ≤ N for infinitely many n ∈N∗. (Zhang proved this for
N = 70,000,000. Meanwhile this bound is improved, for example by N = 600 (J. Maynard 2013). ) In this
connection the p r i m e n u m b e r f u n c t i o n π (x) plays an important role. By definition, for a positive
real number x, π (x) is the number of primes ≤ x. For instance, π (pn) = n. )

(b) ( D i v i s i o n w i t h r e m a i n d e r ) Let a and b be integers with b 6= 0. Then there exist
unique integers q and r such that a = qb+ r , with 0≤ r < |b| . The integers q and r are called the
q u o t i e n t and r e m a i n d e r of a on division by b, respectively.
(c) ( E u c l i d e a n A l g o r i t h m ) Let a,b ∈N∗with a > b. We put r0 := a and r1 := b and
consider the following system of equations obtained by repeated division with remainder :

r0 = q1r1 + r2 , 0 < r2 < r1 ;
r1 = q2r2 + r3 , 0 < r3 < r2 ;
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ri = qi+1ri+1 + ri+2 , 0 < ri+2 < ri+1 ;
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

rk−1 = qkrk + rk+1 , 0 < rk+1 < rk ;
rk = qk+1rk+1 .

The algorithm stops when rk+2 = 0, i. e. when rk+1 | rk. This happens because the sequence
r0 > r1 > r2 > · · · of the non-negative remainders is strictly decreasing. Moreover, the successive
pairs ri−1, ri and ri, ri+1, i = 1, . . . ,k , obviously have the same common divisors. Therefore

gcd(a,b) = gcd(r0,r1) = · · ·= gcd(rk,rk+1) = rk+1 .

The equations of the algorithm also allow to construct coefficients s , t ∈Z with gcd(a,b) = rk+1 =
sa+ t b. For this, define si, ti , i = 0, . . . ,k+1, recursively by

s0 = 1, t0 = 0 ; s1 = 0, t1 = 1 ; si+1 = si−1−qisi ; ti+1 = ti−1−qiti ; i = 1, . . . ,k.

Then, by induction on i , one proves ri = sia+ tib , i = 0, . . . ,k+1. In particular,
gcd(a,b) = rk+1 = sk+1a+ tk+1b .

( We illustrate the above algorithm by the following example : Let a := 40631 and b := 13571. The Euclidean
algorithm supplies

40631 = 2 ·13571+13489 , 13571 = 1 ·13489+82 , 13489 = 164 ·82+41 , 82 = 2 ·41 .
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So we have k = 3, and the integers si, ti, i = 0, . . . ,4, are computed in the following table:

i 0 1 2 3 4
qi 2 1 164
si 1 0 1 −1 165
ti 0 1 −2 3 −494 .

Therefore 41 = gcd(40631,13571) = 165 ·40631−494 ·13571.

Two integers a,b ∈ Z are called c o p r i m e or r e l a t i v e l y p r i m e if gcd(a,b) = 1. A
prime number p ∈ P and an integer a ∈ Z are coprime if and only if p does not divide a.
(d) ( B e z o u t ’ s L e m m a ) Let a,b ∈Z be relatively prime integers. Then there exist integers
s, t ∈ Z with sa+ tb = 1.
An important property of coprime numbers is described in the following lemma:
(e) ( E u c l i d ’ s L e m m a) Let a,b,c ∈Z with gcd(a,b) = 1. If a |bc then a |c. In particular, if
a prime number p ∈ P divides the product bc, then it divides at least one of the factors b or c.
(f) ( F u n d a m e n t a l T h e o r e m o f A r i t h m e t i c )3 Every positive integer m ∈ N∗
is a product of (not necessarily distinct) irreducible numbers p1, . . . , pr ∈ P which are uniquely
determined by m up to order.
( Proposition 14 of Book IX of Euclid’s “Elements” embodies the result which later became known as
the F u n d a m e n t a l T h e o r e m o f A r i t h m e t i c. The existence is proved by induction and
uniqueness statement is a direct consequence of Euclid’s Lemma. The Fundamental Theorem of Arithmetic
allows to define canonical representations of integers and also of rationals. Altogether, the Fundamental
Theorem of Arithmetic allows a lucid description of the structure of the multiplicative monoids N∗, Z∗and
the multiplicative group Q×. The prime numbers are the atoms to build up these structures.)

S1.3 ( E u l e r ’ s ϕ - f u n c t i o n ) For arbitrary integers m,n,q ∈ Z, one has gcd(n,m) =
gcd(n+qm , m), since the pair n,m and the pair n+qm , m have the same set of common divisors.
In particular, n,m are coprime if and only if n+qm , m are coprime.— Now, let m ∈N∗. Since,
by division with remainder (cf. S1.?? (a)), there exists a (unique) q ∈ Z with 0≤ n+qm < m one
overviews all integers that are coprime to m if one only knows the integers n with 0≤ n < m that
are coprime to m. The number of these integers is denoted by ϕ (m) . The function ϕ :N∗→N∗,
m 7→ϕ (m) , is called E u l e r ’ s ϕ - f u n c t i o n or the t o t i e n t f u n c t i o n . It is ϕ (1)= 1,
ϕ (2) = 1, ϕ (3) = 2, ϕ (4) = 2, ϕ (5) = 4, ϕ (6) = 2, etc. ϕ (m) is also the number of positive
integers n with 0 < n≤ m and gcd(m,n) = 1. In particular, ϕ (p) = p−1 for a prime number p.
More generally, ϕ (pα) = pα−1(p−1) = pα(1− 1

p) for p ∈P , α ∈N∗, since the positive integers
≤ pα that are not coprime to pα are the multiples rp , r = 1, . . . , pα−1, of p.

(a) For every positive integer m one has, m = ∑ d|m ϕ (d) .

(b) ( E u l e r ’ s F o r m u l a ) For every m ∈N∗ one has ϕ (m) = m · ∏
p∈P, p |m

(
1− 1

p

)
.

S1.4 ( P e r i o d i c s e q u e n c e s ) Let (x i) = (x i) i∈N be an arbitrary sequence. A pair (t,s) ∈
N×N∗ is called a p a i r o f p e r i o d i c i t y for (x i) if x i+s = x i for all i≥ t. In this case, t is
called a p r e p e r i o d l e n g t h and s a p e r i o d l e n g t h of (x i). (x i) is called p e r i o d i c
if such a pair of periodicity exists, otherwise (x i) is called a p e r i o d i c. Now, assume that (x i)
is periodic. Show that there exists a unique pair of periodicity (`,k) ∈N×N∗with the following
property: (t,s) ∈ N×N∗ is a pair of periodicity for (x i) if and only if t ≥ ` and s = mk for
some m ∈N∗. ( Hint : The submonoid of periods of the sequence (x i) fulfills the assumptions for N in
Exercise 2 above. — The smallest pair of periodicity (`,k) is called t h e p a i r o f p e r i o d i c i t y per

3 The Fundamental Theorem of Arithmetic does not seem to have been stated explicitly in Euclid’s elements,
although some of the propositions in book VII and/or IX are almost equivalent to it. Its first clear formulation with
proof seems to have been given by Gauss in Disquisitiones arithmeticae § 16 (Leipzig, Fleischer, 1801). It was, of
course, familiar to earlier mathematicians; but Gauss was the first to develop arithmetic as a systematic science.
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se or the p e r i o d i c i t y t y p e of the sequence (x i) . Its first component ` is called t h e ( m i n i m a l )
p r e p e r i o d l e n g t h and the second component k t h e ( m i n i m a l ) p e r i o d l e n g t h of (x i).
The finite subsequences (x0, . . . ,x`−1) and (x`, . . . ,x`+k−1) of length ` and k, respectively, are called t h e
( m i n i m a l ) p r e p e r i o d resp. t h e ( m i n i m a l ) p e r i o d of (xi). If `= 0, then (xi) is called
p u r e l y p e r i o d i c . If k =1, the sequence (x i) is called s t a t i o n a r y w i t h l i m i t x if x is
its period (of length 1). The constant sequences are the sequences of periodicity type (0 ,1). By definition,
aperiodic sequences have the periodicity type (∞ ,0). — If x is an element of a group then the sequence
(xi)i∈N of its powers has period length ordx and is purely periodic if ordx > 0. )

S1.5 For every subgroup H of (Z,+), there exists a unique natural number n ∈ N such that
H =Zn := {an | a ∈Z}. For m1, . . . ,mn ∈N∗, we have Zm1 + · · ·+Zmn =Z gcd(m1, . . .mn) and
Zm1∩·· ·∩Zmn = Z lcm(m1, . . .mn).

S1.6 (C o n g r u e n c e m o d u l o 4 n ) Let n ∈N, n 6= 0 be a fixed natural number. For arbitrary
a,b∈Z, we write a≡n b mod n (and read a i s c o n g r u e n t t o b m o d u l o n) if n divides
a−b (equivalently, a and b have the same remainders (between 0 and n−1) on division by n). Then
≡n is an equivalence relation on Z. there are exactly n equivalence classes under ≡n, so-called
the r e s i d u e c l a s s e s m o d u l o n. The set of residue classes (quotient set under ≡n) is
denoted by Zn; the numbers 0,1, . . . ,n−1 form a complete representative system for ≡n. In the
case n = 2, the residue class 0 = [0] is the set of all even integers and the residue class 1 = [1] is the
set of odd integers.
On the quotient setZn := {[0]n, [1]n, . . . , [n−1]n} of the congruence modulo n, the binary operations
+n a d d i t i o n m o d u l o n and ·n m u l t i p l i c a t i o n m o d u l o n are defined by [a]n +n
[b]n := [a+b]n and [a]n ·n [b]n := [a ·b]n, respectively. With these two binary operations (Zn,+n, ·n)
is a commutative ring (with identity).

S1.7 Let M,N be two jugs of capacities m resp. n liters with coprime m,n ∈N∗. Then, from a tank
which contains at least m+n−1 liters of water, one can draw precisely x liters for every x ∈N
with 0 ≤ x < m+ n. ( Hint : If M contains y ∈N liters and is filled up with the content of the full jug
N (where the content of M is poured back into the tank every time M is full), then the new content of M
represents the residue class of y+n in Zm =Z/Zm. Now use Theorem ??. For example, if m = 11, n = 7,
one obtains this way, starting with the empty jug M, successively 0, 7, 3, 10, 6, 2, 9, 5, 1, 8, 4, 0, . . . liters.
Interchanging the roles of M and N one obtains 0, 4, 1, 5, 2, 6, 3, 0, . . . liters. )

S1.8 ( F i b o n a c c i - s e q u e n c e ) The recursively defined sequence F = (Fn)n∈N with F0 = 0,
F1 = 1, Fn = Fn−1 +Fn−2, n≥ 2, is called the F i b o n a c c i - s e q u e n c e and Fn is called the
n-th F i b o n a c c i - n u m b e r. The first terms of the Fibonacci-sequence are 0,1,1,2,3,5,8,13,
21,34,55,89,144,233, . . . .
(a) For every natural number m≥ 2, the sequence F (mod m) of least nonnegative residues of the
terms Fn modulo m, is purely periodic.
( Hint : For example, F (mod 5) = (0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1;0,1,1, . . .) This is a natu-
ral consequence of (1) Modulo m, there are m2 possible pairs of residues, and hence some pair of consecutive
terms of F (mod m) must repeat, and (2) Any pair of consecutive terms of F (mod m) determines the entire
sequence both forward and backward. )
(b) Let m ∈N, m≥ 2 and let π(m) denote the period of the sequence F (mod m) . Then π(m) =
min{k ∈ N+ | Fk ≡ 0(mod m) and Fk+1 ≡ 1(mod m)}. For m = 2,3,4,5,6,7,8,9,10, . . . , the
values of π(m) are 3,8,6,20,24,16,12,24,60, . . . . For m > 2, π(m) is even. ( Remark : Matrix

interpretation of π(m) : Let U =

(
0 1
1 1

)
. Then Un =

(
Fn−1 Fn
Fn Fn+1

)
and π(m) is the least integer k such

that Uk =

(
1 0
0 1

)
, i. e. π(m) = the order of U in the group GL2(Zm). )

(c) For m,n ∈N+, π(lcm(m,n)) = lcm(π(m),π(n)) and hence, if n |m, then π(n) |π(m).

4First time this relation is systematically studied by C. F. Gauss in his Disquisitiones arithmeticae (1801).
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(d) If m = pν1
1 · · · pνr

r is the prime factorization of m, then π(m) = lcm(π(pν1
1 ), . . . ,π(pνr

r ).
(e) For a prime number p, let t be the largest integer such that π(pt) = π(p), then π(pν) =
pν−1π(p) for all ν ≥ t. ( Remark : So far, no prime p has been found for which π(p2) = π(p). It is an
open problem whether any such primes exist. If any do exist, they are called W a l l - S u n - S u n P r i m e s.
So, for every prime that we know of, the formula π(pν) = pν−1π(p) holds. )

S1.9 For an element a of a set M with the binary operation ∗, the map λa : M→M, x 7→ a∗ x is
called the l e f t t r a n s l a t i o n o f M b y a. Similarly, the map ρa : M→M, x 7→ x∗a, is
called the r i g h t t r a n s l a t i o n o f M b y a. The following conditions are equivalent :
(i) The operation ∗ is associative.
(ii) λa ◦λb = λa∗b for all a,b ∈M.
(iii) ρa ◦ρb = ρb∗a for all a,b ∈M.
(iv) λa and ρb commute (i. e. λa ◦ρb = ρb ◦λa ) for all a,b ∈M.
Moreover, an element e ∈M is a neutral element for ∗ if and only if λe = ρe = idM. Furthermore,
λa = ρa for all a ∈M if and only if M is commutative.

S1.10 A set M with binary operation ∗ is called a s e m i g r o u p if the binary operation ∗ is
associative. A semigroup (M,∗) whose binary operation has a neutral ement is called a m o n o i d.
The neutral element of a monoid M is usually denoted by eM or — for multiplicative monoids by
1M or — for additive monoids — by 0M.
A semigroup (M,∗) is regular if and only if for every element a∈M the left translation λa : x 7→ a∗x
and the right translation ρa : x 7→ x∗a of M are injective. More generally, we define: an element a
of a semigroup M is called r e g u l a r if both the left translation λa and the right translation ρa
of M are injective.
Regular elements can be cancelled in the following sense : If a ∈M is regular and if a∗b = a∗c or
if b∗a = c∗a , then b = c. The set M ∗ := {a ∈M | a regular in M} of regular elements of M is
obviously a subsemigroup of M (since compositions of injective maps are injective).
A semigroup M is regular if and only if M ∗ = M.
Note that in a regular monoid the neutral element e ∈M is the only idempotent element because, from an
equation a2 = a = ae, one obtains the equality a = e by canceling a. It follows that a subsemigroup N
of a regular monoid M which is a monoid has necessarily the same neutral element as M. Hence it is a
submonoid of M.

S1.11 ( T h e u n i t g r o u p o f a m o n o i d ) Let M be a (multiplicative) monoid. An
element x ∈M is called i n v e r t i b l e if there exists x′ ∈M such that x′x=e=xx′. In this case
the i n v e r s e x′ is uniquely determined by x and is denoted by x−1 (in the additive notation by
−x ). Invertible elements in a monoid M are always regular
Let M× := {x ∈M | x is invertible } be the set of all invertible elements of M. Then M× ⊆M ∗and
(1) e ∈M×. (2) If x,y ∈M×, then xy ∈M× and (xy)−1 = y−1x−1.

(3) M× is a submonoid of M in which every element is invertible, i. e. , group under the induced
binary operation of M.
(4) M is a group if and only if M = M×.
— The group M× is called the g r o u p o f i n v e r t i b l e e l e m e n t s of M or the u n i t g r o u p of
M. For example, in a field K with respect to multiplication the unit group is K× = K \{0}. For the monoid
(XX ,◦) of the set of all maps of a set X into itself, the unit group is (XX)× =S(X) the set of all permutations
of X (proof!). For monoids M,N, determine the group of invertible elements in the product monoid M×N
(in terms of the groups M× and N×).

S1.12 Let M be a (multiplicative)) monoid.
(a) Show that for an element a ∈M, the following statements are equivalent:
(i) a is invertible in M, i. e. a ∈M×.
(ii) The left translation λa and the right translation ρa of M are bijective.
(iii) The left translation λa of M is bijective.
(iv) The right translation map ρa of M is bijective.
(v) The left translation λa and the right translation ρa of M are surjective.
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(b) Give an example of a monoid M with an element x0 ∈ m such that λx0 is surjective, but x0 is
not invertible. ( Hint : In the monoid NN, define the map ϕ by ϕ(0) := 0, ϕ(n) := n−1 if n≥ 1, and the
map ψ by n 7→ n+1. Then ϕψ = idN, and the element ψ ∈NN has infinitely many left inverses in NN.
In particular, ψ is not invertible. )

S1.13 Let X be any set and let P(X) := {A | A is a subset of X} be the p o w e r s e t o f X .
(a) The u n i o n ∪ and i n t e r s e c t i o n ∩ are associate and commutative binary operations
on P(X). What are the neutral elements for these binary operations? In the case X 6= /0, neither
(P(X),∪) nor (P(X),∩) is a group.
(b) On P(X) the s y m m e t r i c d i f f e r e n c e 4 is a binary operation, in fact (P(X),4) is
a group. What is the inverse of Y ∈P(X) in the group (P(X),4)?
(c) ( I n d i c a t o r f u n c t i o n s ) For A ∈P(X), let eA : X → {0,1}, eA(x) = 1 if x ∈ A and
eA(x) = 0 if x 6∈ A, denote the i n d i c a t o r f u n c t i o n o f A. For A,B∈P(X), prove that :
(i) eA∩B=eAeB , (ii) eA∪B=eA+eB−eAeB , (iii) eArB=eA(1−eB).
In particular, eX\A = 1− eA and eA4B = eA + eB−2eAeB .

(d) The map e : P(X)→{0,1}X defined by A 7→ eA is bijective. ( Remark : One can use this bijective
map and part (3) to prove (2). )

S1.14 There are natural examples of non-associative binary operations. For example, on the set
N of natural numbers the exponentiation N×N→ N, (m,n) 7→ mn is a non-associative binary
operation on N. The difference Z×Z → Z, (m,n)→ m− n and the division Q××Q× → Q×,
(x,y) 7→ x/y are also non-associative binary operations. More generally, if G is a group, then
G×G→ G, (a,b) 7→ ab−1 is a non-associative binary operation if there is at least one element
b ∈ G with b 6= b−1.

S1.15 Let G be a non-empty semigroup. The following statements are equivalent:
(i) G is a group.
(ii) For arbitrary a,b ∈ G the equations ax = b and ya = b are uniquely solvable in G, i. e. all the
translations λa and ρa, a ∈ G, are bijective.
(iii) For arbitrary a,b∈G the equations ax = b and ya= b are solvable in G, i. e. all the translations
λa and ρa, a ∈ G, are surjective.

S1.16 Let M be a semigroup with the following two properties: (1) For all a ∈ M, the left
translations λa of M are surjective. (2) There exists at least one b∈M such that the right translation
ρb is surjective. Show that M is a group.

S1.17 Let A and B be two subsets of a finite group G. If #A+#B > #G, then show that G = AB :=
{ab | a ∈ A and b ∈ B}. ( Hint : For x ∈ G, let Ax := {a−1x | a ∈ A}. Use the Pigenhole principle (see
Footnote 1) to conclude that #Ax = #A and hence Ax∩B 6= /0 for every x ∈ G. )

S1.18 (a) Which of the following subsets are subgroups of the multiplicative group Z×31 :

H1 := {1,3,6,9,18,21} , H2 := {1,2,4,8,16} .

(Remark : Note that H2 is the submonoid of the powers 2k, k ∈N, of 2. The sequence 2k, k ∈N, is periodic
with period 5, since 25

= 1. This proves that H2 is a subgroup. More generally, see Exercise 1.3.)

(b) Which of the following subsets are subgroups of the multiplicative group Z×29 :

H1 := {1,12,17,28} , H2 := {1,2,4,8,16,20,24} .
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