E0 219 Linear Algebra and Applications / August-December 2016 (ME, MSc. Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel: +91-(0)80-2293 2239/(M	aths Dept. 3212)	E-ma	uils: dppatil	@csa.iisc.	ernet.in	/ patil@math	.iisc.ernet.in
Lectures : Monday and We	dnesday ; 11:00–12	:30	Venue: CSA, Lecture Hall (Room No. 117)				
Corrections by : Nikhil Vineet Rahul Sayanta Palash	Gupta (nikhil.g Nair (vineetn90 Gupta (rahul.gu an Mukherjee (meg Dey (palash@csa	upta@csa.i @gmail.com pta@csa.ii ghanamande a.iisc.ern	isc.ernet.i ; Lab No.: 303) .sc.ernet.in @gmail.com; et.in; Lab No	n ; Lab No.: 3 / ; Lab No.: 224 Lab No.: 253) .: 301 , 333 , 33)3)/)/ / 5)		
Midterms : 1-st Midterm	Saturday, Septemi	ber 17, 2016; 1	5:00-17:00	2-nd Mi	dterm : Sat	urday, October 22,	2016; 15:00-17:00
Evaluation Weightage : Assignments : 20% Midterms (Two) : 30% Final Examin						mination: 50%	
	R	ange of Mark	s for Grades (T	otal 100 Mark	s)		
	Grade S	Grade A	A Grad	e B G	rade C	Grade D	Grade F
Marks-Range	> 90	76-90	61-	75 40	6—60	35-45	< 35
Marks-Range	Grade A ⁺ > 90	Grade A 81—90	Grade B ⁺ 71—80	Grade B 61 — 70	Grade 51-6	C Grade D 0 40-50	Grade F < 40
		0		1			

Supplement 1

Basic Algebraic Concepts

We shall use the following standard notations for some frequently occurring sets :

set of natural numbers,
set of positive natural numbers,
$N_n^* = \{x \in \mathbb{N}^* \mid x \le n\} = \{1, \dots, n\} \ (n \in \mathbb{N}),$
set of integers,
set of rational numbers,
set of real numbers,
set of non-zero real numbers,
set of non-negative real numbers,
set of non-positive real numbers,
set of positive real numbers,
set of complex numbers,
set of non-zero complex numbers.

We assume that the reader is familiar with the standard arithmetical operations and the elementary computational rules for these number systems.

S1.1 (The Natural numbers — Peano's axioms) The theory of the set of natural numbers \mathbb{N} from the *Peano's axioms*, which were set out first by G. Peano (1858–1939) in 1889. The induction axiom¹ is the basis of the *principle of mathematical induction*. Proofs by induction are very common in mathematics and are undoubtedly familiar to the reader.

Using induction axiom one can construct the c a n o n i c a l or n a t u r a l or u s u a l o r d e r² \leq on \mathbb{N} . One often use the M i n i m u m P r i n c i p l e (also known as Well o r d e r i n g P r i n c i p l e for \mathbb{N} , which states that: Every non-empty subset M of \mathbb{N} contains a least element, i.e., there exists an element $m_0 \in M$ such that $m_0 \leq m$ for all $m \in M$. In particular, the canonical order on \mathbb{N} is a total order.

¹Induction axiom : If *M* is a subset of \mathbb{N} such that $0 \in M$ and for all $m \in M$, m+1 also belongs to *M*, then $M = \mathbb{N}$. ²A relation on a set *A* is called an order if it is reflexive, antisymmetric and transitive.

Further, one can define the binary operations a d dition, multiplication and exponentiation and derive the entire arithmetic on \mathbb{N} . The natural order \leq on \mathbb{N} is compatible with the standard addition and multiplication:

For all $a, b, c \in \mathbb{N}$

(i) (Monotony of addition) $a \le b$, implies that $a + c \le b + c$.

(ii) (Monotony of multiplication) $a \le b$, implies that $ac \le bc$.

However, the standard order \leq on the set of integers \mathbb{Z} is not a well order, since for example, \mathbb{Z} itself has no smallest element.

S1.2 (A r i t h m e t i c) In this supplement, we describe the structure of the commutative and regular monoid $\mathbb{N}^* = (\mathbb{N}^*, \cdot)$ of positive integers with the usual multiplication as binary operation.

(a) (Prime numbers) A positive integer $m \in \mathbb{N}^*$ is called irreducible or prime or a prime number if $m \neq 1$ and if m and 1 are the only divisors of m in \mathbb{N}^* . We denote the subset of prime numbers in \mathbb{N}^* by \mathbb{P} .

An integer m > 1 is r e d u c i b l e or c o m p o s i t e, i. e., not irreducible, if and only if there exist integers a, b such that 1 < a, b < m and m = ab. Note that the smallest divisor > 1 of an integer m > 1 is necessarily irreducible. The following famous theorem has a very simple proof: (E u c l i d) The set \mathbb{P} of prime numbers is infinite.

(The infinite strictly increasing sequence p_n , $n \in \mathbb{N}^*$, of prime numbers starts with $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$, $p_5 = 11, \ldots$ This sequence is still a big mystery. It is easy to show that the sequence $p_{n+1} - p_n$, $n \in \mathbb{N}^*$, of prime number gaps is unbounded. It is still open if there are infinitely many $n \in \mathbb{N}^*$ with $p_{n+1} - p_n = 2$. (The conjectured answer to this so-called twin prime problem is "yes".) However, recently (2013) Y. Z h ang proved the following theorem: *The sequence* $p_{n+1} - p_n$, $n \in \mathbb{N}^*$, *does not converge* $to \infty$, i. e., there exists an $N \in \mathbb{N}$ with $p_{n+1} - p_n \leq N$ for infinitely many $n \in \mathbb{N}^*$. (Zhang proved this for N = 70,000,000. Meanwhile this bound is improved, for example by N = 600 (J. Maynard 2013).) In this connection the prime n umber f unction $\pi(x)$ plays an important role. By definition, for a positive real number $x, \pi(x)$ is the number of primes $\leq x$. For instance, $\pi(p_n) = n$.)

(b) (Division with remainder) Let a and b be integers with $b \neq 0$. Then there exist unique integers q and r such that a = qb+r, with $0 \le r < |b|$. The integers q and r are called the quotient and remainder of a on division by b, respectively.

(c) (Euclidean Algorithm) Let $a, b \in \mathbb{N}^*$ with a > b. We put $r_0 := a$ and $r_1 := b$ and consider the following system of equations obtained by repeated division with remainder:

 $\begin{array}{ll} r_0 = q_1 r_1 + r_2 \,, & 0 < r_2 < r_1 \,; \\ r_1 = q_2 r_2 + r_3 \,, & 0 < r_3 < r_2 \,; \\ & & \\ r_i = q_{i+1} r_{i+1} + r_{i+2} \,, & 0 < r_{i+2} < r_{i+1} \,; \\ & & \\ r_{k-1} = q_k r_k + r_{k+1} \,, & 0 < r_{k+1} < r_k \,; \\ & r_k = q_{k+1} r_{k+1} \,. \end{array}$

The algorithm stops when $r_{k+2} = 0$, i. e. when $r_{k+1} | r_k$. This happens because the sequence $r_0 > r_1 > r_2 > \cdots$ of the non-negative remainders is strictly decreasing. Moreover, the successive pairs r_{i-1} , r_i and r_i , r_{i+1} , $i = 1, \dots, k$, obviously have the same common divisors. Therefore

$$gcd(a,b) = gcd(r_0,r_1) = \cdots = gcd(r_k,r_{k+1}) = r_{k+1}.$$

The equations of the algorithm also allow to construct coefficients $s, t \in \mathbb{Z}$ with $gcd(a,b) = r_{k+1} = sa + tb$. For this, define $s_i, t_i, i = 0, ..., k+1$, recursively by

$$s_0 = 1, t_0 = 0; s_1 = 0, t_1 = 1; s_{i+1} = s_{i-1} - q_i s_i; t_{i+1} = t_{i-1} - q_i t_i; i = 1, \dots, k.$$

Then, by induction on *i*, one proves $r_i = s_i a + t_i b$, i = 0, ..., k + 1. In particular,

$$gcd(a,b) = r_{k+1} = s_{k+1}a + t_{k+1}b$$
.

(We illustrate the above algorithm by the following example : Let a := 40631 and b := 13571. The Euclidean algorithm supplies

 $40631 = 2 \cdot 13571 + 13489, \ 13571 = 1 \cdot 13489 + 82, \ 13489 = 164 \cdot 82 + 41, \ 82 = 2 \cdot 41.$

So we have k = 3, and the integers s_i , t_i , i = 0, ..., 4, are computed in the following table:

i	0	1	2	3	4
q_i		2	1	164	
si	1	0	1	-1	165
t_i	0	1	-2	3	-494

Therefore $41 = \gcd(40631, 13571) = 165 \cdot 40631 - 494 \cdot 13571$.

Two integers $a, b \in \mathbb{Z}$ are called coprime or relatively prime if gcd(a,b) = 1. A prime number $p \in \mathbb{P}$ and an integer $a \in \mathbb{Z}$ are coprime if and only if p does not divide a.

(d) (Be z o u t's L e m m a) Let $a, b \in \mathbb{Z}$ be relatively prime integers. Then there exist integers $s, t \in \mathbb{Z}$ with sa + tb = 1.

An important property of coprime numbers is described in the following lemma:

(e) (Euclid's Lemma) Let $a, b, c \in \mathbb{Z}$ with gcd(a, b) = 1. If a | bc then a | c. In particular, if a prime number $p \in \mathbb{P}$ divides the product bc, then it divides at least one of the factors b or c.

(f) (Fundamental Theorem of Arithmetic)³ Every positive integer $m \in \mathbb{N}^*$ is a product of (not necessarily distinct) irreducible numbers $p_1, \ldots, p_r \in \mathbb{P}$ which are uniquely determined by m up to order.

(Proposition 14 of Book IX of Euclid's "Elements" embodies the result which later became known as the F u n d a m e n t a 1 T h e o r e m of A r i t h m e t i c. The existence is proved by induction and uniqueness statement is a direct consequence of Euclid's Lemma. The Fundamental Theorem of Arithmetic allows to define canonical representations of integers and also of rationals. Altogether, the Fundamental Theorem of Arithmetic allows a lucid description of the structure of the multiplicative monoids \mathbb{N}^* , \mathbb{Z}^* and the multiplicative group \mathbb{Q}^{\times} . The prime numbers are the atoms to build up these structures.)

S1.3 (Euler's φ -function) For arbitrary integers $m, n, q \in \mathbb{Z}$, one has gcd(n,m) = gcd(n+qm,m), since the pair n,m and the pair n+qm,m have the same set of common divisors. In particular, n,m are coprime if and only if n+qm,m are coprime.— Now, let $m \in \mathbb{N}^*$. Since, by division with remainder (cf. S1.?? (a)), there exists a (unique) $q \in \mathbb{Z}$ with $0 \le n+qm < m$ one overviews all integers that are coprime to m if one only knows the integers n with $0 \le n < m$ that are coprime to m. The number of these integers is denoted by $\varphi(m)$. The function $\varphi : \mathbb{N}^* \to \mathbb{N}^*$, $m \mapsto \varphi(m)$, is called E uler's φ -function or the totient function φ is also the number of positive integers n with 0 < n < m and gcd(m,n) = 1. In particular, $\varphi(p) = p - 1$ for a prime number p. More generally, $\varphi(p^{\alpha}) = p^{\alpha-1}(p-1) = p^{\alpha}(1-\frac{1}{p})$ for $p \in \mathbb{P}$, $\alpha \in \mathbb{N}^*$, since the positive integers $\le p^{\alpha}$ that are *not* coprime to p^{α} are the multiples $rp, r = 1, \dots, p^{\alpha-1}$, of p.

(a) For every positive integer *m* one has, $m = \sum_{d|m} \varphi(d)$.

(**b**) (Euler's Formula) For every $m \in \mathbb{N}^*$ one has $\varphi(m) = m \cdot \prod_{p \in \mathbb{P}, p \mid m} \left(1 - \frac{1}{p}\right)$.

S1.4 (Periodic sequences) Let $(x_i) = (x_i)_{i \in \mathbb{N}}$ be an arbitrary sequence. A pair $(t,s) \in \mathbb{N} \times \mathbb{N}^*$ is called a pair of periodicity for (x_i) if $x_{i+s} = x_i$ for all $i \ge t$. In this case, t is called a preperiod length and s a period length of (x_i) . (x_i) is called periodic it ends to dic it periodicity exists, otherwise (x_i) is called a periodic. Now, assume that (x_i) is periodic. Show that there exists a unique pair of periodicity $(\ell, k) \in \mathbb{N} \times \mathbb{N}^*$ with the following property: $(t,s) \in \mathbb{N} \times \mathbb{N}^*$ is a pair of periodicity for (x_i) if and only if $t \ge \ell$ and s = mk for some $m \in \mathbb{N}^*$. (**Hint :** The submonoid of periods of the sequence (x_i) fulfills the assumptions for N in Exercise 2 above. — The smallest pair of periodicity (ℓ, k) is called the pair of periodicity periodicity

³ The Fundamental Theorem of Arithmetic does not seem to have been stated explicitly in Euclid's elements, although some of the propositions in book VII and/or IX are almost equivalent to it. Its first clear formulation with proof seems to have been given by Gauss in *Disquisitiones arithmeticae* § 16 (Leipzig, Fleischer, 1801). It was, of course, familiar to earlier mathematicians; but Gauss was the first to develop arithmetic as a systematic science.

se or the periodicity type of the sequence (x_i) . Its first component ℓ is called the (minimal) preperiod length and the second component k the (minimal) period length of (x_i) . The finite subsequences $(x_0, \ldots, x_{\ell-1})$ and $(x_\ell, \ldots, x_{\ell+k-1})$ of length ℓ and k, respectively, are called the (minimal) preperiod resp. the (minimal) period of (x_i) . If $\ell = 0$, then (x_i) is called purely periodic. If k = 1, the sequence (x_i) is called stationary with limit x if x is its period (of length 1). The constant sequences are the sequences of periodicity type (0, 1). By definition, aperiodic sequences have the periodicity type $(\infty, 0)$. —If x is an element of a group then the sequence $(x^i)_{i \in \mathbb{N}}$ of its powers has period length ord x and is purely periodic if ord x > 0.)

S1.5 For every subgroup *H* of $(\mathbb{Z}, +)$, there exists a unique natural number $n \in \mathbb{N}$ such that $H = \mathbb{Z}n := \{an \mid a \in \mathbb{Z}\}$. For $m_1, \ldots, m_n \in \mathbb{N}^*$, we have $\mathbb{Z}m_1 + \cdots + \mathbb{Z}m_n = \mathbb{Z} \operatorname{gcd}(m_1, \ldots, m_n)$ and $\mathbb{Z}m_1 \cap \cdots \cap \mathbb{Z}m_n = \mathbb{Z}\operatorname{lcm}(m_1, \ldots, m_n)$.

S1.6 (C on g r u e n c e m o d u l o ${}^{4}n$) Let $n \in \mathbb{N}$, $n \neq 0$ be a fixed natural number. For arbitrary $a, b \in \mathbb{Z}$, we write $a \equiv_{n} b \mod n$ (and read a is c on g r u e n t t o b m o d u l o n) if n divides a - b (equivalently, a and b have the same remainders (between 0 and n - 1) on division by n). Then \equiv_{n} is an equivalence relation on \mathbb{Z} . there are exactly n equivalence classes under \equiv_{n} , so-called the r e s i d u e c l a s s e s m o d u l o n. The set of residue classes (quotient set under \equiv_{n}) is denoted by \mathbb{Z}_{n} ; the numbers $0, 1, \ldots, n - 1$ form a complete representative system for \equiv_{n} . In the case n = 2, the residue class $\overline{0} = [0]$ is the set of all even integers and the residue class $\overline{1} = [1]$ is the set of odd integers.

On the quotient set $\mathbb{Z}_n := \{[0]_n, [1]_n, \dots, [n-1]_n\}$ of the congruence modulo *n*, the binary operations $+_n$ addition modulo *n* and \cdot_n multiplication modulo *n* are defined by $[a]_n +_n$ $[b]_n := [a+b]_n$ and $[a]_n \cdot_n [b]_n := [a \cdot b]_n$, respectively. With these two binary operations $(\mathbb{Z}_n, +_n, \cdot_n)$ is a commutative ring (with identity).

S1.7 Let M, N be two jugs of capacities m resp. n liters with coprime $m, n \in \mathbb{N}^*$. Then, from a tank which contains at least m + n - 1 liters of water, one can draw precisely x liters for every $x \in \mathbb{N}$ with $0 \le x < m + n$. (**Hint :** If M contains $y \in \mathbb{N}$ liters and is filled up with the content of the full jug N (where the content of M is poured back into the tank every time M is full), then the new content of M represents the residue class of y + n in $\mathbb{Z}_m = \mathbb{Z}/\mathbb{Z}m$. Now use Theorem **??**. For example, if m = 11, n = 7, one obtains this way, starting with the empty jug M, successively $0, 7, 3, 10, 6, 2, 9, 5, 1, 8, 4, 0, \ldots$ liters. Interchanging the roles of M and N one obtains $0, 4, 1, 5, 2, 6, 3, 0, \ldots$ liters.)

S1.8 (F i b o n a c c i - s e q u e n c e) The recursively defined sequence $F = (F_n)_{n \in \mathbb{N}}$ with $F_0 = 0$, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$, $n \ge 2$, is called the F i b o n a c c i - s e q u e n c e and F_n is called the *n*-th F i b o n a c c i - n u m b e r. The first terms of the Fibonacci-sequence are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,

(a) For every natural number $m \ge 2$, the sequence $F \pmod{m}$ of least nonnegative residues of the terms F_n modulo m, is purely periodic.

(**Hint :** For example, $F \pmod{5} = (\overline{0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1}; 0, 1, 1, ...)$ This is a natural consequence of (1) Modulo *m*, there are m^2 possible pairs of residues, and hence some pair of consecutive terms of $F \pmod{m}$ must repeat, and (2) Any pair of consecutive terms of $F \pmod{m}$ determines the entire sequence both forward and backward.)

(b) Let $m \in \mathbb{N}$, $m \ge 2$ and let $\pi(m)$ denote the period of the sequence $F \pmod{m}$. Then $\pi(m) = \min\{k \in \mathbb{N}^+ \mid F_k \equiv 0 \pmod{m} \text{ and } F_{k+1} \equiv 1 \pmod{m}\}$. For $m = 2, 3, 4, 5, 6, 7, 8, 9, 10, \ldots$, the values of $\pi(m)$ are $3, 8, 6, 20, 24, 16, 12, 24, 60, \ldots$. For $m > 2, \pi(m)$ is even. (**Remark :** Matrix interpretation of $\pi(m)$: Let $U = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Then $U^n = \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix}$ and $\pi(m)$ is the least integer k such that $U^k = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, i. e. $\pi(m)$ = the order of U in the group $\operatorname{GL}_2(\mathbb{Z}_m)$.)

(c) For
$$m, n \in \mathbb{N}^+$$
, $\pi(\operatorname{lcm}(m, n)) = \operatorname{lcm}(\pi(m), \pi(n))$ and hence, if $n \mid m$, then $\pi(n) \mid \pi(m)$.

⁴First time this relation is systematically studied by C. F. Gauss in his *Disquisitiones arithmeticae* (1801).

(d) If $m = p_1^{v_1} \cdots p_r^{v_r}$ is the prime factorization of *m*, then $\pi(m) = \operatorname{lcm}(\pi(p_1^{v_1}), \dots, \pi(p_r^{v_r}))$.

(e) For a prime number p, let t be the largest integer such that $\pi(p^t) = \pi(p)$, then $\pi(p^v) = p^{v-1}\pi(p)$ for all $v \ge t$. (Remark : So far, no prime p has been found for which $\pi(p^2) = \pi(p)$. It is an open problem whether any such primes exist. If any do exist, they are called Wall-Sun-Sun Primes. So, for every prime that we know of, the formula $\pi(p^v) = p^{v-1}\pi(p)$ holds.)

S1.9 For an element *a* of a set *M* with the binary operation *, the map $\lambda_a : M \to M, x \mapsto a * x$ is called the left translation of *M* by *a*. Similarly, the map $\rho_a : M \to M, x \mapsto x * a$, is called the right translation of *M* by *a*. The following conditions are equivalent: (i) The operation * is associative.

(ii) $\lambda_a \circ \lambda_b = \lambda_{a*b}$ for all $a, b \in M$.

(iii) $\rho_a \circ \rho_b = \rho_{b*a}$ for all $a, b \in M$.

(iv) λ_a and ρ_b commute (i. e. $\lambda_a \circ \rho_b = \rho_b \circ \lambda_a$) for all $a, b \in M$.

Moreover, an element $e \in M$ is a neutral element for * if and only if $\lambda_e = \rho_e = id_M$. Furthermore, $\lambda_a = \rho_a$ for all $a \in M$ if and only if M is commutative.

S1.10 A set *M* with binary operation * is called a semigroup if the binary operation * is associative. A semigroup (M,*) whose binary operation has a neutral ement is called a m o n o i d. The neutral element of a monoid *M* is usually denoted by e_M or — for multiplicative monoids by 1_M or — for additive monoids — by 0_M .

A semigroup (M, *) is regular if and only if for every element $a \in M$ the left translation $\lambda_a : x \mapsto a * x$ and the right translation $\rho_a : x \mapsto x * a$ of M are injective. More generally, we define: an element aof a semigroup M is called r e g u l a r if both the left translation λ_a and the right translation ρ_a of M are injective.

Regular elements can be cancelled in the following sense: If $a \in M$ is regular and if a * b = a * c or if b * a = c * a, then b = c. The set $M^* := \{a \in M \mid a \text{ regular in } M\}$ of regular elements of M is obviously a subsemigroup of M (since compositions of injective maps are injective).

A semigroup *M* is regular if and only if $M^* = M$.

Note that in a regular monoid the neutral element $e \in M$ is the only idempotent element because, from an equation $a^2 = a = ae$, one obtains the equality a = e by canceling a. It follows that a subsemigroup N of a regular monoid M which is a monoid has necessarily the same neutral element as M. Hence it is a submonoid of M.

S1.11 (The unit group of a monoid) Let *M* be a (multiplicative) monoid. An element $x \in M$ is called invertible if there exists $x' \in M$ such that x'x = e = xx'. In this case the inverse x' is uniquely determined by x and is denoted by x^{-1} (in the additive notation by -x). *Invertible elements in a monoid M are always regular*

Let $M^{\times} := \{x \in M \mid x \text{ is invertible }\}$ be the set of all invertible elements of M. Then $M^{\times} \subseteq M^*$ and (1) $e \in M^{\times}$. (2) If $x, y \in M^{\times}$, then $xy \in M^{\times}$ and $(xy)^{-1} = y^{-1}x^{-1}$.

(3) M^{\times} is a submonoid of *M* in which every element is invertible, i. e., group under the induced binary operation of *M*.

(4) *M* is a group if and only if $M = M^{\times}$.

— The group M^{\times} is called the group of invertible elements of M or the unit group of M. For example, in a field K with respect to multiplication the unit group is $K^{\times} = K \setminus \{0\}$. For the monoid (X^X, \circ) of the set of all maps of a set X into itself, the unit group is $(X^X)^{\times} = \mathfrak{S}(X)$ the set of all permutations of X (proof!). For monoids M, N, determine the group of invertible elements in the product monoid $M \times N$ (in terms of the groups M^{\times} and N^{\times}).

S1.12 Let *M* be a (multiplicative)) monoid.

(a) Show that for an element $a \in M$, the following statements are equivalent:

- (i) *a* is invertible in *M*, i. e. $a \in M^{\times}$.
- (ii) The left translation λ_a and the right translation ρ_a of M are bijective.
- (iii) The left translation λ_a of M is bijective.
- (iv) The right translation map ρ_a of \tilde{M} is bijective.
- (v) The left translation λ_a and the right translation ρ_a of M are surjective.

(b) Give an example of a monoid M with an element $x_0 \in m$ such that λ_{x_0} is surjective, but x_0 is not invertible. (**Hint**: In the monoid $\mathbb{N}^{\mathbb{N}}$, define the map φ by $\varphi(0) := 0$, $\varphi(n) := n-1$ if $n \ge 1$, and the map ψ by $n \mapsto n+1$. Then $\varphi \psi = \mathrm{id}_{\mathbb{N}}$, and the element $\psi \in \mathbb{N}^{\mathbb{N}}$ has infinitely many left inverses in $\mathbb{N}^{\mathbb{N}}$. In particular, ψ is not invertible.)

S1.13 Let X be any set and let $\mathfrak{P}(X) := \{A \mid A \text{ is a subset of } X\}$ be the power set of X.

(a) The union \cup and intersection \cap are associate and commutative binary operations on $\mathfrak{P}(X)$. What are the neutral elements for these binary operations? In the case $X \neq \emptyset$, neither $(\mathfrak{P}(X), \cup)$ nor $(\mathfrak{P}(X), \cap)$ is a group.

(b) On $\mathfrak{P}(X)$ the symmetric difference \triangle is a binary operation, in fact $(\mathfrak{P}(X), \triangle)$ is a group. What is the inverse of $Y \in \mathfrak{P}(X)$ in the group $(\mathfrak{P}(X), \triangle)$?

(c) (Indicator functions) For $A \in \mathfrak{P}(X)$, let $e_A : X \to \{0,1\}$, $e_A(x) = 1$ if $x \in A$ and $e_A(x) = 0$ if $x \notin A$, denote the indicator function of A. For $A, B \in \mathfrak{P}(X)$, prove that: (i) $e_{A \cap B} = e_A e_B$, (ii) $e_{A \cup B} = e_A + e_B - e_A e_B$, (iii) $e_{A \setminus B} = e_A(1 - e_B)$. In particular, $e_{X \setminus A} = 1 - e_A$ and $e_{A \triangle B} = e_A + e_B - 2e_A e_B$.

(d) The map $e: \mathfrak{P}(X) \to \{0,1\}^X$ defined by $A \mapsto e_A$ is bijective. (**Remark :** One can use this bijective map and part (3) to prove (2).)

S1.14 There are natural examples of non-associative binary operations. For example, on the set \mathbb{N} of natural numbers the exponentiation $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $(m,n) \mapsto m^n$ is a non-associative binary operation on \mathbb{N} . The difference $\mathbb{Z} \times Z \to \mathbb{Z}$, $(m,n) \to m-n$ and the division $\mathbb{Q}^{\times} \times \mathbb{Q}^{\times} \to \mathbb{Q}^{\times}$, $(x,y) \mapsto x/y$ are also non-associative binary operations. More generally, if *G* is a group, then $G \times G \to G$, $(a,b) \mapsto ab^{-1}$ is a non-associative binary operation if there is at least one element $b \in G$ with $b \neq b^{-1}$.

S1.15 Let G be a non-empty semigroup. The following statements are equivalent:

(i) G is a group.

(ii) For arbitrary $a, b \in G$ the equations ax = b and ya = b are uniquely solvable in G, i. e. all the translations λ_a and ρ_a , $a \in G$, are bijective.

(iii) For arbitrary $a, b \in G$ the equations ax = b and ya = b are solvable in G, i. e. all the translations λ_a and $\rho_a, a \in G$, are surjective.

S1.16 Let *M* be a semigroup with the following two properties: (1) For all $a \in M$, the left translations λ_a of *M* are surjective. (2) There exists at least one $b \in M$ such that the right translation ρ_b is surjective. Show that *M* is a group.

S1.17 Let *A* and *B* be two subsets of a finite group *G*. If #A + #B > #G, then show that $G = AB := \{ab \mid a \in A \text{ and } b \in B\}$. (**Hint :** For $x \in G$, let $A_x := \{a^{-1}x \mid a \in A\}$. Use the Pigenhole principle (see Footnote 1) to conclude that $#A_x = #A$ and hence $A_x \cap B \neq \emptyset$ for every $x \in G$.)

S1.18 (a) Which of the following subsets are subgroups of the multiplicative group \mathbb{Z}_{31}^{\times} :

$$H_1 := \{\overline{1}, \overline{3}, \overline{6}, \overline{9}, \overline{18}, \overline{21}\}, \quad H_2 := \{\overline{1}, \overline{2}, \overline{4}, \overline{8}, \overline{16}\}.$$

(**Remark :** Note that H_2 is the submonoid of the powers $\overline{2}^k$, $k \in \mathbb{N}$, of $\overline{2}$. The sequence $\overline{2}^k$, $k \in \mathbb{N}$, is periodic with period 5, since $\overline{2}^5 = \overline{1}$. This proves that H_2 is a subgroup. More generally, see Exercise 1.3.) (b) Which of the following subsets are subgroups of the multiplicative group \mathbb{Z}_{29}^{\times} :

$$H_1 := \{\overline{1}, \overline{12}, \overline{17}, \overline{28}\}, \quad H_2 := \{\overline{1}, \overline{2}, \overline{4}, \overline{8}, \overline{16}, \overline{20}, \overline{24}\}.$$