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S u p p l e m e n t 2

Vector Spaces

To understand and appreciate the Supplements which are marked with the symbol † one may possibly require
more mathematical maturity than one may have! These are steps towards applications to various other
branches of mathematics, especially to analysis, number theory and Affine and Projective Geometry.
Participants may ignore these Supplements — altogether or in the first reading!!

S2.1 Let V be a vector space over a field K.
(a) ( G e n e r a l D i s t r i b u t i v e l a w ) For arbitrary finite families ai , i ∈ I, in K and x j ,
j ∈ J, in V , show that (

∑
i∈I

ai

)(
∑
j∈J

x j

)
= ∑

(i, j)∈I×J
aix j .

(b) (S i g n R u l e s) For arbitrary elements a,b ∈ K and arbitrary vectors x,y ∈V . Prove that :
(1) 0 · x = a ·0 = 0 . (2) a(−x) = (−a)x =−(ax) . (3) (−a)(−x) = ax .
(4) a(x− y) = ax−ay and (a−b)x = ax−bx .
(c) (C a n c e l a t i o n R u l e) Let a ∈ K and let x ∈V . If ax = 0 then a = 0 or x = 0.

S2.2 Let V be a vector space over a field and let X be any set with a bijection f : X → V . Then
X has a K-vector space structure with f−1(0) as a zero element and for a ∈ K, x,y ∈ X , x+ y :=
f−1( f (x)+ f (y)

)
and ax := f−1(a f (x)

)
.

S2.3 Let X be any set. Then the set-ring (P(X),∆,∩) of X has a natural structure of a vector space
over the field Z2. ( Hint : The map P(X)→ ZX

2 defined by A 7→ eA is a bijective, where eA denote the
indicator function of A. See Supplement S1.9 (d). )

S2.4 Recall the concepts convergent sequence, null- sequence, Cauchy sequence, bounded sequence
and limit point of a sequence.1

1A sequence (xn) = (xn)n∈N of elements ofK is called c o n v e r g e n t (in K) if there exists an element x ∈K
which satisfy the following property : For every positive (however small) real number ε ∈ R there exists a natural
number n0 ∈N such that |xn− x| ≤ ε for all natural numbers n ≥ n0. This element x is uniquely determined by the
sequence (xn) and is called the l i m i t of the sequence (xn) ; usually denoted by limxn = lim

n→∞
xn . If x is the limit

of (xn), then this is also shortly written as xn→ x or xn →n→ ∞ x and say that (xn) c o n v e r g e s t o x . The
sequence (xn) converges to x if and only if the sequence (xn− x) converges to 0. A convergent sequence with limit 0 is
called a n u l l - s e q u e n c e . A sequence that is not convergent is called d i v e r g e n t .

A sequence (xn) = (xn)n∈N of elements ofK is called b o u n d e d s e q u e n c e if there exists an element S in R
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(a) Let (RN)conv (respectively, (RN)null , (RN)Cauchy , (RN)bdd , (RN)lpt , (RN)const ) denote
the set of all convergent (respectively, null-sequences, Cauchy sequences, bounded sequences,
sequences with exactly one limit point, constant sequences). Which of these are subspaces of the
R-vector space RN of all sequences of real numbers?
(b) Verify the inclusions and equalities in the following diagram :

RN ⊇ (RN)bdd⋃
|

⋃
|

(RN)lpt ⊇ (RN)lpt ∩ (RN)bdd = (RN)Cauchy = (RN)conv ⊇ (RN)const

S2.5 ( P o l y n o m i a l s — P o l y n o m i a l r i n g ) A p o l y n o m i a l (in one variable or
indeterminate X) w i t h c o e f f i c i e n t s i n a c o m m u t a t i v e r i n g A or o v e r A
is a formal expression of the form :

F = F(X) = a0 +a1X + · · ·+anXn = ∑
i∈N

aiX i,

where n ∈N and the c o e f f i c i e n t s a0, . . . ,an ∈ A. The polynomial F over A is, by definition,
uniquely determined by the c o e f f i c i e n t t u p l e (ai)i∈N ∈ A(N) (where we put ai = 0 for
i≥ n). Therefore, we identify polynomial with its coefficient tuple.
Two polynomials

F = ∑
i∈N

aiX i , (ai) ∈ A(N) and G = ∑
i∈N

biX i , (bi) ∈ A(N)

can be added coefficient-wise, as the tuples are added in A(N) :
F +G := ∑

i∈N
(ai +bi)X i ,

and multiplied by a scalar a ∈ A also coefficient-wise :
aF := ∑

i∈N
aaiX i .

The multiplication of two polynomials is performed by using the formal distributive laws and
expanding :

FG := ∑
i∈N

ciX i , where ci :=
i

∑
j=0

a jbi− j = a0bi + · · ·+aib0 , i ∈N .

An easy verification shows that : The set of polynomials A[X ] with this A-module structure and the
above multiplication is a commutative A - a l g e b r a.2 This A-algebra is called the p o l y n o -
m i a l a l g e b r a (in one variable) over A.
By definition Xm, m ∈N, is a A-basis of A[X ], this corresponds to the standard basis em, m ∈N,
of A(N). Further, Xm is the m-th power of X in the A-algebra A[X ]. The unit element in A[X ] is
the constant polynomial 1 and we shall identify this with the unit element in K. Similarly, we
identify the multiples a ·1 = a, a ∈ K, with the elements A ∈ K. These elements a in K are called
the c o n s t a n t p o l y n o m i a l s.
If F = ∑i∈N aiX i, (ai) ∈ A(N), is a non-zero polynomial in A[X ] and if an 6= 0, but am = 0 for all
m > n, then F = a0 +a1X + · · ·+anXn, an 6= 0, and hence n is called the d e g r e e of F abd an
is called the l e a d i n g c o e f f i c i e n t of F . If the leading coefficent of a polynomial F is 1,

such that |xn| ≤ S for all n ∈N.
A sequence (xn) = (xn)n∈N of elements ofK is called a C a u c h y s e q u e n c e if for every ε ∈R, ε > 0, there

exists a natural number n0 ∈N |xm− xn| ≤ ε for all natural numbers m,n≥ n0.
An element x ∈K is called a l i m i t p o i n t of the sequence (xn) = (xn)n∈N of elements ofK if it is a limit point

of the set {xn | n ∈N}, i.e. every (however small) neighbourbood of x contain infinitely many terms of the sequence.
2Let A be a commutative ring. An A-module B on which multiplication B×B→ B is defined is called an A -

a l g e b r a if the following compatibility conditions are satisfied : (1) With the A-module-addition and the given
multiplication B is a ring. (2) For all A,b ∈ A and all x,y ∈ B, (ax)(by) = (ab)(xy).
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then f is called m o n i c. The degree of the zero polynomial is by definition −∞. The polynomials
of degree 0 are precisely non-zero constant polynomials. The degree of a polynomial is denoted by
degF .
Let A = K be a field.
(a) For polynomials F,G ∈ A[X ], we have :

deg(F +G)≤max{degF,degG} and deg(FG)≤ degF +degG .

Moreover, the second inequality is an equality if either the leading coefficient of F or of G is a
non-zero divisor in A. (Recall that an element a∈ A in a (commutative) ring A is called a z e r o d i v i s o r
if there exists b ∈ A, b 6= 0 with ab = 0; An element which is not a zero divisor is called a n o n - z e r o
d i v i s o r in A. For example, in the ring Zn residue classes of divisors of n are precisely zero divisors. In
the ring of integers Z every non-zero element is a non-zero divisor. In a field every non-zero element is a unit
and hence a non-zero divisor. More generally, every unit in any commutative ring is a non-zero divisor. A
commutative ring which does not have any non-zero zero divisors is called an i n t e g r a l d o m a i n. For
example, the ring of integers Z is an integral domain and every field K is an integral domain.)
If A is an integral domain, then the unit group A[X ]× of the polynomial ring A[X ] is the unit group
of the ring A, i. e. A[X ]× = A×. In particular, a non-zero polynomial F ∈ K[X ] over a field K is a
unit in K[X ] if and only if it is a non-zero constant polynomial. In particular, X is never a unit in
K[X ] and hence K[X ] is never a field.
The n-dimensional K-subspace of the polynomials in K[X ] of degrees < n is denoted by K[X ]n ;
1,X , . . . ,Xn−1 is a K-basis of K[X ]n.
(b) ( D i v i s i o n w i t h r e m a i n d e r ) Let K be a field. As in the case of integers, we have
division with remainder in K[X ]. Let F and G 6= 0 be polynomials over a field K. Then there exist
unique polynomials Q and R over K such that

F = QG+R and degR < degG .

The polynomial Q is called the q u o t i e n t and the polynomial R is called the r e m a i n d e r of
the division of F by G. In particular, if a ∈ K, then F = F(a)+Q(X−a), where Q is a polynomial
over K. ( Remark : More generally, one can perform division with remainder over arbitrary commutative
ring by the polynomial G if the leading coefficient of G is a unit in A. )
(c) ( E u c l i d e a n a l g o r i t h m ) As in the case of integers, we have the E u c l i d e a n
a l g o r i t h m : Let F and G be polynomials in K[X ], G 6= 0. We put R0 := F and R1 := G and
define polynomials R2, . . . ,Rk+1 ∈ K[X ] by recursion :

R0 = Q1R1 +R2, 0 < degR2 < degR1;
R1 = Q2R2 +R3, 0 < degR3 < degR2;
· · · · · · · · · · · · · · · · · ·

Rk−1 = QkRk +Rk+1, 0 < degRk+1 < degRk;
Rk = Qk+1Rk+1.

The polynomial Rk+1 is the last non-zero remainder and as in the case of integers, we also have :
Rk+1 = gcd(F,G) .

( Remark : Note that gcd(F,G) denote a g r e a t e s t c o m m o n d i v i s o r of F and G ; this is a
common divisor of F and G which is divisible by every other common divisor. Two greatest common divisors
of F and G divide each other and hence on the degree argument (see ) they differ by a non-zero constant. The
greatest common divisor of the polynomials F and G (at least one of which is 6= 0 ; otherwise gcd(F,G) = 0)
is therefore only up to a non-zero constant, uniquely determined. Choose a greatest common divisor which is
a monic polynomial, so that it is uniquely determined.)
Two polynomials F and G in K[X ] are called r e l a t i v e l y p r i m e if gcd(F,G) = 1. Euclidean
algorithm implies much more, with its help, we get :
(d) ( B e z o u t ’ s L e m m a ) For two polynomials F and G in K[X ], there exist polynomials
S,T ∈ K[X ] such that

gcd(F,G) = SF +T G ,

In particular, if F and G are relatively polynomials in K[X ], then there exist polynomials S,T ∈K[X ]
such that 1 = SF +T G. (Hint : Similar to that of the case of integers.)
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(e) ( P r i m e p o l y n o m i a l s ) A polynomial P ∈ K[X ] is called a p r i m e p o l y n o m i a l
or just p r i m e if degP ≥ 1 and every divisor of P is constant or a multiple aP, a ∈ K× of P.
(Clearly a polynomial P ∈ K[X ] of degree ≥ 1 is prime if and only if there is no decomposition P = FG of P
as a product of polynomials F,G ∈ K[X ] of degrees < degP. Prime polynomials are therefore also i n d e -
c o m p o s a b l e of i r r e d u c i b l e. If P is a prime polynomial which does not divide the polynomial
F ∈ K[X ], then gcd(F,P) = 1.)
(f) ( L e m m a o f E u c l i d ) If a prime polynomial P ∈ K[X ] divide a product F1 · · ·Fr of
polynomials F1, . . . ,Fr ∈ K[X ], then P divides at least one of the factor F1, . . . ,Fr. ( Hint : Follows
from the Bezout’s Lemma. )
(g) ( T h e o r e m o n t h e u n i q u e n e s s o f p r i m e f a c t o r i z a t i o n i n K[X ] )
Every polynomial F ∈ K[X ] with degF ≥ 1 can be written as a product of prime polynomials.
Moreover, the prime factors are uniquely determined, up to permutation and up to multiplication by
constants, by F .
Collecting together same prime factors, we obtain prime polynomial poweres to get the c a n o n i -
c a l p r i m e f a c t o r i s a t i o n : Let P= P(K[X ]) be the set of monic prime polynomials in
K[X ]. For every polynomial F ∈ K[X ], F 6= 0, there exist natural numbers νP, P ∈ P, (almost all of
which are 0) such that

F = a ∏
P∈P

PνP .

The element a ∈ K is necessarily the leading coefficient of F . The exponent νP is called the m u l -
t i p l i c i t y o f P in F . In the monic polynomials P ∈ P, there are, in particular, the l i n e a r
f a c t o r s X− c, c ∈ K.

S2.6 ( Z e r o s o f p o l y n o m i a l s ) Let K be a field. An element a ∈ K is called a z e r o of
the polynomial F ∈ K[X ] if F(a) = 0.
(a) Let a ∈ K and let F ∈ K[X ]. Then a is a zero of F if and only if X−a is a factor of F (in K[X ]).
(b) Let F ∈ K[X ], F 6= 0, and

F = a ∏
c∈K

(X− c)νc ∏
P∈P ,degP≥2

PνP .

be the canonical prime factorization of F , then by (a) for an element c ∈ K the multiplicity νc
of the linear factor X − c is > 0 if and only if c is a zero of F . For c ∈ K, νc is also called the
m u l t i p l i c i t y o f t h e z e r o c (νc = 0 mean c is not a zero of F). Obviously,

∑
c∈K

νc ≤ degF .

Moreover, the above inequality is equality if and only if F has no prime factors of degrees ≥ 2.
(c) A polynomial F ∈K[X ] of degree n≥ 0 has at most n zeros in K, even if these zeros are counted
with their multiplicities.
For example, all non-zero elements in Kp are zeros of the polynomial X p−1− 1 (by Fermat’s
Little Theorem). Therefore : X p−1− 1 = ∏

p−1
k=1 (X − k). In particular, we get the well-known

W i l s o n ’ s f o r m u l a : −1≡ (p−1)!(mod p).
More generally, if K is a finite field with n elements, then xn−1=1 for every x∈K× and the equation
Xn−1−1=∏x∈K×(X−x). In particular, −1=∏x∈K× x ) and ∏x∈K(X−x)=X(Xn−1−1)=Xn−X .
How many zeros the polynomial X2 +X has in the ring Z4? The polynomial X3 +X2 +X +1 in
Z4[X ] is a multiple of X +1 and X +3, but not of (X +1)(X +3). Give an example of a polynomial
F ∈ A[X ] over a commutative ring A such that F has infinitely many zeros in A.
(d) ( I d e n t i t y T h e o r e m f o r P o l y n o m i a l s ) Let F,G ∈ K[X ] be two polynomials
of degrees ≤ n. Suppose that there exist distinct t1, . . . , tn+1 ∈ K such that F(ti) = G(ti) for all
i = 1, . . . ,n+1. Then F = G. ( Hint : Since t1, . . . , tn+1 ∈ K are zeros of the polynomial F−G of degree
deg(F−G)≤ n, it follows that F−G = 0 by (c). )
From Identity Theorem it follows that : If K is an infinite field, then distinct polynomials de-
fine distinct polynomial functions. Therefore in this case, we may identify polynomials with the
corresponding polynomial functions.
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(e) From the N u l l s t e l l e n s a t z o f B o l z a n o3 we have :
Theorem A real polynomial F ∈R[X ] of odd degree has at least one zero in R.
(f) If there is no prime polynomial in K[X ] of degree ≥ 2, then every polynomial F ∈ K[X ], F 6= 0,
has the prime factorization F = a ∏c∈K(X− c)νc into only linear factors. This is exactly the case
if every polynomial of degree ≥ 1 in K[X ] has at least one zero in K (since prime polynomial of
degree ≥ 2 cannot have zero in K).
(g) A field K is called a l g e b r a i c a l l y c l o s e d if every non-constant polynomial F ∈ K[X ]
has a zero in K. With this definition, the F u n d a m e n t a l T h e o r e m o f A l g e b r a can
be formulated as follows :
Theorem ( F T A — d ’ A l e m b e r t ( 1 7 4 8 ) - G a u s s ( 1 8 9 9 ) ) The field C of complex
numbers is algebraically closed. In particular, every polynomial F 6= 0 in C[X ] with leading
coefficient a ∈ C, (up to an order) there exists uniquely determined pairwise distinct complex
numbers α1, . . . ,αr ∈ C with multiplicities n1, . . . ,nr ∈N∗ such that :

F = a(X−α1)
n1 · · ·(X−αr)

nr .

(h) The field R of real numbers is not algebraically closed, since the polynomial X2 +1 has no
zero in R and hence it is a prime polynomial. From the assertion in the above theorem one can also
get a finier decomposition for non-zero real polynomials, namely, if F ∈R[X ]⊆ C[X ] is a non-zero
real polynomial which has the decomposition over C :

F = a(X−α1)
n1 · · ·(X−αr)

nr

with a ∈R, α1,αr ∈ C, then by conjugating, we also get the decomposition
F = a(X−α1)

n1 · · ·(X−αr)
nr .

The uniqueness in the above theorem shows that : for every zero α ∈ CrR of F , its conjugate α is
also a zero of F with the same multiplicity as that of α . Further, since

(X−α)(X−α) = X2−2(Reα)+ |α|2 ∈R[X ]

is a monic quadratic polynomial without real zeros, we have the following real-version of the
Fundamental Theorem of Algebra :
Theorem ( R e a l - V e r s i o n o f F T A ) Every real polynomial F 6= 0 in R[X ] with leading
coefficient a ∈R, (up to an order) there exists uniquely determined pairwise distinct real numbers
α1, . . . ,αs ∈R with multiplicities n1, . . . ,ns ∈N∗ and pairwise distinct monic quadratic polynomials
q1, . . . ,qt without any zeros in R with multiplicities m1, . . . ,mt ∈N∗ such that :

F = a(X−α1)
n1 · · ·(X−αs)

nsqm1
1 · · ·q

mt
t .

In particular, the monic prime polynomials in R[X ] are precisely the polynomials :
X− c , c ∈R , and X2 + pX +q , p , q ∈R with p2−4q < 0 .

S2.7 (H o r n e r ’ s S c h e m e) Let K be a field and let F = a0 +a1X + · · ·+anXn ∈ K[X ] . To
compute the value of F at a point a one can apply the well-known H o r n e r ’ s s c h e m e. For
this define a sequence of polynomials recursively as follows :

F0 := an

F1 := an−1 +XF0 = an−1 +anX
· · · · · · · · · · · · · · · · · ·

Fk+1 := an−k−1 +FkX = an−k−1 + · · ·+an−1Xk +anXk+1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Fn := a0 +Fn−1X = F .

3Theorem ( N u l l s t e l l e n s a t z — B o l z a n o , ( 1 8 1 7 ) ) Let f : [a,b]→R be a continuous real-valued
function on the closed interval [a,b]⊆R. If f (a) and f (b) have different signs, then f has a zero x0 in the interval
[a,b], i. e. , there exists x0 ∈ [a,b] with f (x0) = 0.
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These polynomials are called the R u f f i n i ’ s p o l y n o m i a l s corresponding to F . The value
F(a) = Fn(a) is then obtained by the recursion-scheme:

F0(a) = an , Fk+1(a) = an−k−1 +Fk(a)a , k = 0, . . . ,n−1

The values F0(a), . . . ,Fn(a) can be easily computed one after the another and the division algorithm
by X−a is given by
F = Q · (X−a)+F(a) where Q = F0(a)Xn−1 +F1(a)Xn−2 + · · ·+Fn−1(a) , F(a) = Fn(a) .

With this process also one can easily compute all coefficients bν in the Taylor’s expansion :
F = b0 +b1(X−a)+ · · ·+bn(X−a)n , bk = F(k)(a)/k! ,

for this one has to repeat the above process for the polynomial Q instead of F and hence b1 = Q(a),
and so on. For example, the polynomial F = 2X3+2X2−X +1 and a =−2 we have the following
scheme : 2 2 −1 1

−2 2 −2 3 −5(= b0)
−2 2 −6 15(= b1)
−2 2 −10(= b2)
−2 2(= b3) .

Therefore F = 2(X +2)3−10(X +2)2 +15(X +2)−5.

S2.8 (P o l y n o m i a l I n t e r p o l a t i o n) Let K be a field and let m ∈N. The existence of a
polynomial f ∈ K[X ] of degree ≤ m which has given m+1 values (in K) at distinct m+1 places is
called an i n t e r p o l a t i o n p r o b l e m.
(a) (L a g r a n g e ’ s i n t e r p o l a t i o n f o r m u l a) Let a0, . . . ,am ∈ K be distinct and let
b0, . . . ,bm ∈ K be given. Then

f :=
m

∑
i=0

bi

ci
∏

j∈{0,...,m}\{i}
(X−a j) , ci := ∏

j∈{0,...,m}\{i}
(ai−a j)

is the unique polynomial (by the Identity Theorem Supplement S2.6 (d)) of degree ≤ m such that
f (ai) = bi for all i = 0, . . . ,m.
(b) (N e w t o n ’ s i n t e r p o l a t i o n) Let f0 := 1 , f1 := X−a0 , f2 := (X−a0)(X−a1) , . . . ,
fm := (X − a0) · · ·(X − am−1). Then, since f j(a j) 6= 0, we can recursively find the coefficients
α0, . . . ,αm ∈ K such that (

r

∑
j=0

α j f j

)
(ar) = br , 0≤ r ≤ m .

The polynomials ∑
r
j=0 α j f j have degree ≤ r and values bi at the points ai for all i = 0, . . . ,m.

S2.9 (P o l y n o m i a l F u n c t i o n s) Let K be a field and let D ⊆ K be a subset of K. A
function f : D→ K is called a p o l y n o m i a l f u n c t i o n if it is of the form t 7→ f (t) :=
a0 +a1t + · · ·+antn, t ∈ D, with fixed c o e f f i c i e n t s a0,a1, . . . ,an ∈ K.
(a) The set of all polynomial functions PolK(D) form a K-subspace of the K-vector space KD.
Moreover, if K =K and if D= I ⊆R is an interval with more than one point, then PolK(I)⊆Cω

K(I).
(b) If D is a finite subset of K, then every K-valued function on D is a polynomials function, i. e.
KD = PolK(D). ( Hint : Use Lagrange-Interpolation Supplement S2.8 (a). )
(c) If D is an infinite set, then the coefficients a0,a1, . . . ,an ∈ K of the polynomial function f : D→
K, t 7→ a0 +a1t + · · ·+antn are uniquely determined by the function f .
(d) The functions R→ R, x 7→ |x|; x 7→ sinx; x 7→ cosx are not polynomial functions. Is the
exponential function x 7→ ex a polynomial function?

†S2.10 ( F u n c t i o n S p a c e s ) LetK be either R or C and let D⊆K be an arbitrary subset.
(a) The set C0

K(D) := { f : D→K | f is continuous}
of allK-valued continuous functions on D is aK-subspace of allK-valued functionsKD on D.
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(b) Let I ⊆R be an interval in R with more than one point and let n ∈N. The set
Cn
K(I) := { f : I→K | f is n− timescontinuously differnetiable}

of allK-valued n-times continuously differentiable functions on I is aK-subspace theK-vector space C0
K(D).

The K-subspaces Cn
K(I), n ∈N form a descending chain

C0
K(I)) C1

K(I)) C2
K(I)) · · ·) Cn

K(I)) Cn+1
K (I)) · · ·

where all inclusions are proper. The intersection of these K-subspaces is the K-subspace
C∞
K(I) =

⋂
n∈N

Cn
K(I)

of all infinitely many times differentiableK-valued functions on I. Further, the set
Cω
K(I) := { f : I→K | f is analytic}

of all K-valued analytic functions on I is a K-subspace the K-vector space C∞
K(I). Moreover, the inclusion

Cω
K(I)( C∞

K(I) is proper. (This follows from the existence of a “flat functions”)
(c) Let I ⊆R be an interval with more than one point and let a0, . . . ,an−1 be complex valued continuous
functions on I. The set of all functions y ∈ Cn

C(I) satisfying the (homogeneous linear) differential equation
y(n)+an−1y(n−1)+ · · ·+a1ẏ+a0y = 0

is a C-subspace of Cn
C(I).
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