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S u p p l e m e n t 3

Generating systems, Linear independence, Bases

To understand and appreciate the Supplements which are marked with the symbol † one may possibly require
more mathematical maturity than one may have! These are steps towards applications to various other
branches of mathematics, especially to analysis, number theory and Affine and Projective Geometry.
Participants may ignore these Supplements — altogether or in the first reading!!

S3.1 Let x1, . . . ,xn, x be elements of a vector space over a field K. Then
(a) The family x1, . . . ,xn , x1 + · · ·+ xn is linearly dependent over K, but every n of these vectors
are linearly independent over K.
(b) Show that x1, . . . ,xn,x are linearly independent over K if and only if x1, . . . ,xn are linearly
independent over K and x /∈ Kx1 + · · ·+Kxn.
(c) Show that x1, . . . ,xn is a generating system of V if and only if x1, . . . ,xn ,x is a generating system
of V and x ∈ Kx1 + · · ·+Kxn.

S3.2 Let V be a vector space over a field K.
(a) If V has a finite (respectively, a countable) generating system, then every generating system of
V has a finite (respectively, a countable) generating system.
(b) If V has a countable infinite basis, then every basis of V is countable infinite.
(c) If there is an uncountable linearly independent system in V , then no generating system of V is
countable.
(d) If K is countable and if V has a countable generating system, then V is countable. In particular,
every Hamel-basis of R over Q is uncountable.
(e) If vi , i ∈ I, is a generating system for V , then every maximal linearly independent subsystem of
vi , i ∈ I, is a basis of V . ( Remark : Using this assertion and the Zorn’s Lemma one can easily prove that :
Every vector space has a basis and deduce the general Supplementary Basis Theorem. )

S3.3 Let an, n ∈N∗, be a sequence of elements in K. Show that :
(a) For every m ∈N , the polynomials 1 ,X−a1, . . . ,(X−a1) · · ·(X−am−1) form a K-basis of the
K-vector space K[X ]m of polynomials of degrees < m. ( Hint : Use Exercise 3.2 (b). )
(b) The polynomials (X−a1) · · ·(X−an) , n ∈N, form a K-basis of K[X ]. ( Hint : Use part (a). )

S3.4 Let λ1, . . . ,λn be pairwise distinct elements in a field K. Then :
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(a) The vectors x1 := (1,λ1 ,λ
2
1 , . . . ,λ

n−1
1 ) , . . . ,xn := (1,λn ,λ

2
n , . . . ,λ

n−1
n ) ∈ Kn are linearly inde-

pendent over K (and hence is a basis of Kn, See Lecture-Notes Theorem 3.B.7). (Hint : Induction on
n. Assume the result for n−1 and that a1x1 + · · ·+anxn = 0. Then we have the equations: a1λnx′1 + · · ·+
anλnx′n = 0 and a1λ1x′1 + · · ·+anλnx′n = 0 , and so a1(λn−λ1)x′1 + · · ·+an−1(λn−λn−1)x′n−1 = 0 , where
x′i := (1,λi , . . . ,λ

n−2
i ) , i = 1, . . . ,n .)

(b) The vectors y1 := (1,1, . . . ,1),y2 := (λ1,λ2, . . . ,λn), . . . ,yn := (λ n−1
1 , . . . ,λ n−1

n ) ∈ Kn are lin-
early independent over K (and hence is a K-basis of Kn). (Hint : Note that a representation b1y1 +
· · ·+bnyn = 0 with b1, . . . ,bn ∈ K is equivalent with the system of equations b1 +b2λi + · · ·+bnλ

n−1
i = 0,

i = 1, . . . ,n. Therefore the vectors xi, i = 1, . . . ,n, are solutions of the homogeneous system of linear
equations b1z1 + · · ·+ bnzn. Since x1, . . . ,xn is a generating system of Kn, the solution space of this equa-
tion is Kn which is possible only in the case b1 = · · · = bn = 0. Another Argument : The equations
b1 + b2λi + · · ·+ bnλ

n−1
i = 0, i = 1, . . . ,n, mean that the polynomial b1 + b2X + · · ·+ bnXn−1 ∈ K[X ] of

degree < n has n pairwise distinct zeros λ1, . . . ,λn ∈ K and hence b1 = · · ·= bn = 0.)

S3.5 The R-valued functions fa : R→ R, t 7→ |t − a|, a ∈ R, are linearly independent in the
R-vector space RR of all real-valued functions on R. (Hint : Let n > 0 and ∑

n
i=1 ci |t−ai| = 0 with

a1 < a2 < · · · < an and coefficients c1, . . . ,cn ∈ R. Then the function c1|t − a1| = −∑
n
i=2 ci |t − ai| is a

polynomial function of degree ≤ 2 on the interval ]−∞,a2). But, this is possible of if c1 = 0 (why?). Now,
apply induction to conclude c2 = · · ·= cn = 0.)

S3.6 Let K be a field, D ⊆ K and n ∈ N. Then the power-functions tν |D, ν = 0, . . . ,n− 1, are
linearly independent over K in the K-vector space KD of all K-valued functions on D if and only if
D has at least n elements. ( Hint : Use Identity Theorem, Supplement S2.6 (d). ). Moreover, the power
functions tν |D, ν ∈N, are linearly independent over K if and only if D is infinite.

S3.7 Let xi, i ∈ I, be a Hamel basis of R over Q. Then the corresponding coordinate functions
x∗i :R→Q⊆R, i ∈ I, are functions f :R→R with f (x+ y) = f (x)+ f (y) for all x,y ∈R which
are not of the form x 7→ ax for some a ∈R. ( Remark : For the solution of the problem (formulated by
Cauchy, see Math. Ann 60, 459-462 (1905)) of the existence of such functions, Hamel proved the existence
of Q-bases of R. )

S3.8 Determine which of the following systems of functions are linearly independent over R in the
R-vector space RR of all functions : (a) 1, sin t, cos t . (b) sin t, cos t, sin(α + t) (α ∈R fixed).
(c) t, |t| , Sign t . (d) et , sin t , cos t .

S3.9 The functions t 7→ cos kt, k ∈N, and t 7→ sin `t, ` ∈N∗, altogether are linearly independent
in the R-vectors space of real-valued functions on the closed interval [0,2π]. (Hint : From a
representation ∑

m
k=0 ak cos kt +∑

n
`=1 b` sin `t = 0, ak,b` ∈R, to show that all ak and all b` are 0, use∫ 2π

0
cos kt cos jt dt =


2π k = j = 0,
π, k = j 6= 0,
0 otherwise

∫ 2π

0
sin `t cos jt = 0 and

∫ 2π

0
sin `t sin jt dt =

{
π, k = j 6= 0,
0 otherwise.

)

S3.10 The functions t 7→ eλ t , λ ∈ C, are linearly independent over C in the C-vector space C[a,b]

of all complex-valued functions on the closed interval [a,b] ⊆ R, a < b. (Hint : Suppose that
∑

n
j=1 c jeλ jt = 0, c j ∈ C, be a representation of the 0 function with pairwise distinct λ1, . . . ,λn ∈ C. Then

differentiating i-times, we get ∑
n
j=1 c jλ

i
je

λ jt = 0 and in particular, ∑
n
j=1 c jλ

i
je

λ jt0 = 0, i ∈ N and for an
arbitrary t0 ∈ [a,b]. Now, by Exercise 3.4 (b), c1eλ1t0 = · · ·= cneλnt0 = 0, and hence c1 = · · ·= cn = 0 because
eλ jt0 6= 0, j = 1, . . . ,n.)

S3.11 Let K be a field. Let fi ∈ KX , i ∈ I, and g j ∈ KY , j ∈ J, be linearly independent K-valued
functions on the sets X resp. Y . Then the functions fi⊗g j : (x,y) 7−→ fi(x)g j(y) , (i, j) ∈ I×J, are
linearly independent in KX×Y .

S3.12 Let K ⊆ L be a field extension and let bi , i ∈ I, be a K-basis of L. If V is a L-vector space
with L-basis y j , j ∈ J, then biy j , (i, j) ∈ I× J, is a K-basis of V .

S3.13 (R a t i o n a l f u n c t i o n s) Let K be a field. The quotient of two polynomials over K are
called a r a t i o n a l f u n c t i o n ( i n o n e v a r i a b l e X o v e r K ). Therefore a rational
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function is of the form F/G with F,G ∈ K[X ], G 6= 0 (We may even assume that gcd(F,G) = 1, see
Supplement S2.5). The addition, multiplication and scalar multiplication of K of polynomials can be
canonically extended to the set K(X) := {F/G | F,G ∈ K[X ] ,G 6= 0and gcd(F,G) = 1} of rational
functions over K. With these operations, the set K(X) is a commutative ring and a vector space over
K, moreover, it is a K-algebra and K[X ] is a K-subalgebra of K(X). Further, K(X) is a field (in fact,
the quotient field of the integral domain K[X ]) and is called the r a t i o n a l f u n c t i o n f i e l d
( i n o n e v a r i a b l e X o v e r K ).

(a) Every rational function F/G in one indeterminate X over K can also be represented as F/G =
Q+R/G , where Q and R are polynomials over K with degR < degG . ( Hint : Use the Division with
Remainder for polynomials. )

(b) (P a r t i a l f r a c t i o n d e c o m p o s i t i o n) Let F and G be polynomials over K with
degF < degG and G = (X −α1)

n1 · · ·(X −αr)
nr , αi 6= α j for i 6= j, ni ∈N∗. Then there exists a

unique representation
F
G

=
α11

(X−α1)
+

α12

(X−α1)2 + · · ·+
α1n1

(X−α1)n1

+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

+
αr1

(X−αr)
+

αr2

(X−αr)2 + · · ·+
αrnr

(X−αr)nr

with αik ∈K, i= 1, . . . ,r ; k= 1, . . . ,ni. (Remark : If K =C, then by Supplement S2.6 (g) Theorem (FTA),
every rational function F/G, F , G ∈ C[X ], G 6= 0, deg F < deg G has the partial fraction decomposition over
C. — Hint : By Induction on n := deg G = n1 + · · ·+nr. The case n≤ 1 is trivial. To determine α := αrnr ,
consider a representation

F
G

=
α

(X−αr)nr
+

F̃

G̃

with G̃ := (X−α1)
n1(X−α2)

n2 · · ·(X−αr)
nr−1, deg F̃ < n−1. This representation is equivalent with

F = α(x−α1)
n1 · · ·(X−αr−1)

nr−1 +(X−αr)F̃ .

Substituting X = αr , we get
α =

F(αr)

(αr−α1)n1 · · ·(αr−αr−1)nr−1
.

For this choice of α , obviously, αr is a zero of the polynomial F−α (X−α1)
n1 · · ·(X−αr−1)

nr−1 and hence
it is of the form (X −αr)F̃ with deg F̃ < n− 1. Now, applying the induction hypothesis to the rational
function F̃/G̃ , the existence of the αik ∈ K, is immediate and since α and F̃ are uniquely determined, their
uniqueness also follows. — The above proof is constructive and the coefficients αrnr , . . . ,αr1, . . . ,α1n1 , . . . ,α11
are successively determined. In particular, for a simple zero αi, i. e. , ni = 1, we get the representation

αi1 =
F(αi)

(αi−α1)n1 · · ·(αi−αi−1)ni−1(αi−αi+1)ni+1 · · ·(αi−αr)nr
=

F(αi)

G′(αi)

(where G′ is the derivative of G is used in the denominator). Therefore, in the case n1 = · · ·= nr = 1, the
partial fraction decomposition is

F
G

=
r

∑
i=1

F(αi)

G′(αi)
· 1
(X−αi)

.

In the case of non-simple zeros the coefficients αik are described by using higher derivatives of G, see???.)

(c) ( P a r t i a l f r a c t i o n d e c o m p o s i t i o n o v e r R ) Let F and G ∈ R[X ] be real
polynomials with deg F < deg G and we choose (by dividing by the leading coefficient of G) the
monic representation

G = (X−α1)
n1 · · ·(X−αs)

nsqm1
1 · · ·q

mt
t , αi 6= α j for i 6= j, ni ∈N∗ and q j = (X−β j)(X−β j)

with a non-real (complex) zero β j ∈ C (see Supplement S2.6 (h) Theorem (Real-Version of FTA)).
In the complex partial fraction decomposition of F/G (see the part (b)), the coefficients of

1
(X−β j)k and

1

(X−β j)
k
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are conjugates of each other (this follows from the uniqueness in part (b) by conjugation). Altogether,
the summands of the type

β

(X−β j)k +
β

(X−β j)
k
=

β (X−β j)
k +β (X−β j)

k

qk
j

=
p
qk

j

occur in the partial fraction decomposition of F/G with numerator p ∈R[X ] . On can write these
summands in the form

p = p0 + p1q j + · · ·+ pk−1qk−1
j

with real polynomials pi of degrees ≤ 1, see1, and hence
p
qk

j
=

pk−1

q j
+ · · ·+ p0

qk
j
.

Altogether : There exists a representation
f
g
=

α11

(x−α1)
+ · · ·+ α1n1

(x−α1)n1
+ · · ·+ αs1

(x−αs)
+ · · ·+ αsns

(x−αs)ns

+
p11

q1
+ · · ·+ p1m1

qm1
1

+ · · ·+ pt1

qt
+ · · ·+ ptmt

qmt
t

with αik ∈R and real linear polynomials p jl . Moreover, the αik and p jl are uniquely determined.

S3.14 (a) Let D⊆ C be an infinite subset. Then the rational functions

tn, n ∈N,
1

(t−a)m , a ∈ CrD , m ∈N∗ ,

together form a C-basis of the C-vector space of the complex rational functions defined on D.
The corresponding assertion also holds for every algebraically closed field K instead of C, see
Supplement S2.6 (g). ( Hint : See Supplement S2.13. )
(b) Let D⊆R be an infinite subset and Q⊆R[X ] be the set of all monic polynomials of degree 2
witout any real zeros. Then the rational functions

tn, n ∈N,
1

(t−a)m , m ∈N∗ , a ∈R\D , and tr

q`
, r ∈ {0 ,1} , ` ∈N∗ , q ∈ Q ,

together form a R-basis of the R-vector space of real rational functions defined on D. ( Hint : See
Supplement S2.13. )

†S3.15 (a) The vector space of all sequences KN has no countable generating system over K. ( Hint :
Consider the cases K countable and uncountable separately to show that KN is never countable and use
Supplements S3.2 (c), (d) and Exercise 3.4 (b). )
(b) Let I be an infinite set. Then the K-vector space KI of K-valued functions on I has no countable
generating system over K.
(c) The K-subspace of KN generated by the characteristic functions eA , A⊆N has no countable
generating system. ( Hint : If K is a totally ordered subset of P(N)\{ /0} , then the family eA , A ∈ K is
linearly independent. Now, use the fact that there are uncountable totally ordered subsets in the ordered set
(P(N),⊆ ). )

†S3.16 (a) Let I ⊆R be an interval which contain more than one point. Then none of the K-vector
space Cα

K(I) , α ∈N∪{∞ ,ω} , has a countable generating system.

1Let G ∈ K[X ] be a polynomial of degree n ≥ 1. For every polynomial F ∈ K[X ], F 6= 0, there exist uniquely
determined polynomials p0, . . . , pr ∈ K[X ] with

F = p0 + p1G+ · · ·+ prGr , pr 6= and deg pi < n .

(This expansion corresponds to the g-adic expansion of natural numbers.)
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(b) The K-vector space of all convergent power series ∑
∞
n=0 anxn with coefficients an ∈K, n ∈N,

has no countable generating system over K.

†S3.17 (a) The functions eαz, α ∈ C, are linearly independent over C in the C-vector space CD

of all C-valued functions on D for every subset D⊆ C which has a limit point in C. ( Suppose that
there exist complex numbers a1, . . . ,an ∈ C and pairwise distinct complex numbers α1, . . . ,αn ∈ C such that
∑

n
ν=1 aνeαν z = 0 for all z ∈ D. Then, by the Identity Theorem for analytic functions2

∑
n
ν=1 aνeαν z = 0 for all

z∈C and hence (by differentiating) ∑
n
ν=1 aνανeαν z = 0 for all z∈D. It follows that ∑

n
ν=2 aν(α1−αν)eαν z = 0

for all z ∈ D. Now, use induction on n.)
(b) The functions zα , α ∈ C, are linearly independent over C in the C-vector space CD of all
C-valued functions on D for every subset D⊆ C\R− which has a limit point in CrR−. ( Recall
that : The exponential function exp is injective on the strip E := {z ∈ C | −π < Im z < π} and its image
is the complex plane without the negative real axis CrR− := {z ∈ C× | −π < Arz z < π}. The inverse
ln : CrR− → E of the exponential function exp : CrR− → E is called the n a t u r a l l o g a r i t h m.
Therefore lnz = ln |z|+ iArz z, where the argument Arz z of the complex number z ∈ CrR− is chosen in
the open interval ]−π,π[. For arbitrary α ∈ C, zα := eα lnz for z ∈ CrR−, defines the power-function on
CrR−. — Hint : Use similar argument as in the part (a).)

†S3.18 (a) (Q u a s i - p o l y n o m i a l s) The functions tneα t , n ∈N, α ∈ C, are linearly indepen-
dent in the C-vector space CD of C-valued functions on a subset D⊆ C which has a limit point in
C. (Remark : The C-subspace generated by these functions is called the s p a c e o f q u a s i - p o l y -
n o m i a l s.)

(b) The quasi-polynomials are the solutions of the linear differential equations with constant
coefficients P(D)y = 0, P ∈ C[X ]\{0}. More precisely: Let P = (X−λ1)

α1 · · ·(X−λr)
αr ∈K[X ]

be a polynomial with pairwise distinct zeros λ1, . . . ,λr ∈K. Then
eλ1 t , . . . , tα1−1eλ1 t , . . . ,eλr t , . . . , tαr−1eλr t

is a K-basis of the solution space {y ∈ Cn
K(I) | P(D)y = 0} of the corresponding homogeneous

differential equation P(D)(y) = (D−λ1)
α1 · · ·(D−λr)

αr(y) = 0 consisting n := α1 + · · ·+αr =
degP elements. ( Proof : It is enough to prove that :
(b.1) Every solution of the homogeneous differential equation P(D)y = 0 is of the form

f1eλ1t + · · ·+ fr(t)eλrt

with uniquely determined polynomials fi ∈ C[t] of degree < ni, i = 1, . . . ,r.
We shall prove this by induction on n = deg P. For this we need the following simple observation :
(b.2) Let λ ,µ ∈ C and f ∈ C[t] be a polynomial of degree m. Then the differential equation

(D−λ )y = ẏ−λy = f (t)eµt

has a solution of the form h(t)eµt , where h ∈ C[t] is a polynomial of degree m if λ 6= µ and is a polynomial
of degree m+1 if if λ = µ . The polynomial h is uniquely determined if λ 6= µ and is uniquely determined up
to the constant term if λ = µ . Proof : Put y(t) := h(t)eµt with a polynomial h(t) = ∑

m+1
j=0 a jt j ∈ C[t] and let

f (t) = ∑
m
j=0 b jt j. Then

ẏ−λy =
(
ḣ+(µ−λ )h

)
eµt .

Therefore y(t) is a solution of ẏ−λy = f (t)eµt if and only if ḣ+(µ−λ )h = f , i. e ., the equality
m

∑
j=0

(
( j+1)a j+1 +(µ−λ )a j

)
t j +(µ−λ )am+1tm+1 =

m

∑
j=0

b jt j

holds. If µ = λ , then a0 is arbitrary and a j+1 =
1

j+1 b j for j = 1, . . . ,m. If µ 6= λ then this equality holds if
and only if am+1 = 0 and a j =

(
b j− ( j+1)a j+1

)
/(µ−λ ) for j = 0, . . . ,m. This proves the assertion (b.2).

Proof of (b.2) : By induction on n := degP, we shall show that the given functions are precisely all solutions
of the differential equation P(D)y = 0. For n = 1, this is trivial. Assume that n > 1. We may assume that
n1 > 0 and aplly the induction hypothesis to the equation Q(D)z = 0 with Q := P/(X−λ1).

2Theorem ( I d e n t i t y T h e o r e m f o r A n a l y t i c F u n c t i o n s ) Let D be an interval inR or a domain
(for every point a,b ∈D, a s t r e t c h i n g or t r a v e r s e - l i n e [a0,a1, . . . ,am] := ∪m−1

j=‘ [a j,a j+1]⊆D with a0 = a
and am = b ) in C. Two analytic functions on D coincide if and only if they already coincide on a subset of D which has
at least one limit point in D.
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Let y be a solution of P(D)y = 0. Since Q(D)z = Q(D)(D−λ1)y = P(D)y = 0, by induction hypothesis
z := ẏ−λ1y is of the form

z(t) = g1(t)eλ1t + · · ·+gn(t)eλnt

with polynomials gi of degree < ni−1 for i = 1 and of degree < ni for i≥ 2. By (b.2) u̇−λ1u = gρeλρ t has
a solution of the form u(t) = fi(t)eλit with deg fi < ni, and hence by substituting a solution of ẏ−λ1y = z,
we get a solution as in the assertion. Since the solutions of the equation ẏ−λ1y = z differ by a solution ceλ1t

of the corresponding homogeneous equation, it follows that y(t) is of the of the required form.

Conversely, suppose that y = f1(t)eλ1t + · · ·+ fn(t)eλnt with polynomial functions fi(t) of degree < ni.
Then, if z(t) = (D−λ1)y(t), then, since, (D−λ1)( fi(t)eλit) = gρ(t)eλρ t with polynomials g1 := ḟ1 (of degree
< n1−1) and gi = ḟi+(λi−λ1) fi (of degree < ni ), i≥ 2, by induction hypothesis, is a solution of Q(D)z = 0.
Therefore P(D)y = Q(D)z = 0.
Finally, we still needs to show that the polynomial functions fi in the above form of y are uniquely determined
by y. By induction hypothesis, g1, . . . ,gn in z are uniquely determined by z and hence uniquely determine
by y. First, the uniqueness of f2, . . . , fn follows from the uniqueness assertion in (b.1) and f1 is uniquely
determined, up to a constant, by y. But, then f1 is also unique. This completes the proof. )

(c) The functions
tmebt cosβ t , m ∈N, b ∈R, β ∈R+ ; tkect sinγ t , k ∈N, c ∈R, γ ∈R×+ ,

together form a basis of the R-vector space of the real valued quasi-polynomials R→R.
(d) Let Λ be the set of numbers λ ∈ C with Reλ > 0 or with Reλ = 0 and Imλ > 0. Then the
functions

tn , n ∈N ; tm cosβ t , m ∈N , β ∈ Λ ; tk sinγ t , k ∈N , γ ∈ Λ ,

together form a basis of the C-vector space of the quasi-polynomials R→ C.
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