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S u p p l e m e n t 4

Dimension of vector spaces

To understand and appreciate the Supplements which are marked with the symbol † one may possibly require
more mathematical maturity than one may have! These are steps towards applications to various other
branches of mathematics, especially to analysis, number theory and Affine and Projective Geometry.
Participants may ignore these Supplements — altogether or in the first reading!!

S4.1 Compute the dimension of U,W,U +W and U ∩W for the following subspaces U,W of the
given vector space V .
(a) V :=R3, U :=

{
(x1,x2,x3) ∈R3 | x1 + x2 = 0, −x2 + x3 = 0

}
,

W :=
{
(x1,x2,x3) ∈R3 | x1 + x3 = 0, x1− x2− x3 = 0

}
.

(b) V :=R4, U :=
{
(x1,x2,x3,x4) ∈R4 | x1− x2 + x3 = 0, x1 + x2− x4 = 0

}
,

W :=
{
(x1,x2,x3,x4) ∈R4 | x1 + x2−3x3 = 0, x1 +2x3− x4 = 0

}
.

(c) V :=R5, U :=Rx1+Rx2+Rx3 , W :=Ry1+Ry2 mit x1 := (1,1,0,1,0) , x2 := (0,1,1,0,1) ,
x3 := (0,1,1,0,0) , y1 := (0,0,1,1,0) , y2 := (1,1,−1,0,−1) .

S4.2 Let n ∈N, n≥ 2. Determine whether or not the vectors
(a) (1,1, . . . ,1),(1,2,1, . . . ,1), . . . ,(1, . . . ,1,n) form a basis of Rn (resp. Qn).
(b) (−(n−1),1, . . . ,1),(1,−(n−1),1, . . . ,1), . . . ,(1, . . . ,1,−(n−1)) form a basis of Rn (resp. Qn).

S4.3 (a) Let W ⊆ R4 be the subspace generated by y1 := (1,2,3,4) , y2 := (4,3,2,1) , y3 :=
(−1,0,1,2) , y4 := (0,1,0,1) , y5 := (1,3,−2,0). List all bases of W which are the subsequences
of y1, . . . ,y5.
(b) Let U ⊆R4 be the subspace generated by the vectors x1 := (0,12,−3,10) , x2 := (1,7,−3,2) ,
x3 := (−1,5,0,7) , x4 := (1,3,−2,−1) and let W ⊆R4 be the subspace as in the part (a).
(1) From x1, . . . ,x4 choose a basis of U and extend it to a basis of U +W by using the vectors
y1, . . . ,y5. (2) Find a basis of U ∩W .

S4.4 Compute the co-ordinates of the vectors
(a) (i,0),(1+ i,−2+3i),(0,1) with respect to the basis v1 = (1+ i, i),v2 = (1,1+ i) of theC-vector
space C2.
(b) (1,0,−5i),(2+ i,1,0) with respect to the basis v1 = (1,0,1− i),v2 = (2+ i,−1,−i),v3 =
(0,1+ i,2− i) of the C-vector space C3.
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S4.5 Let K be a field. For which (a,b) ∈ K2, the vectors (a,b),(b,a) for a basis of K2.

S4.6 Show that the elements x1, . . . ,xn of the K-vector space V are linearly independent if and
only if the subspace U := Kx1 + · · ·+Kxn has dimension n.

S4.7 Let xi , i ∈ I, be a family of vectors in a K-vector space V and let U be a subspace of V
generated by xi , i ∈ I. Show that U is finite dimensional if and only if there exists a natural number
n ∈ N such that every n+ 1 vectors among xi , i ∈ I, are linearly dependent. Moreover, if this
condition is satisfied then the dimension DimKU is the minimum of the n ∈N with this property.

S4.8 Let K be a finite field with q elements. Show that a K-vector space of dimension n ∈N has
exactly qn elements.

S4.9 Let K be a finite field with q elements.

(a) The multiples m ·1K, m ∈ Z, form a subfield K′ of K.

(b) There exists a smallest positive natural number p such that p ·1K = 0. Moreover, it is prime
(and is called the C h a r a c t e r i s t i c of K — denoted by CharK ). The subfield K′ ⊆K contains
exactly p distinct elements 0,1K , . . . ,(p−1)1K .

(c) Show that q = pn with n := DimK′K .
(Remark : The number of elements is a finite field is a power of a prime number. Conversely, for a given
prime-power q there exists (essentially unique) field with q elements, for a proof see ???.)

S4.10 Let V be a finite dimensional K-vector space and let U be a subspace of V . Let u1, . . . ,um be
a basis of U and let u1, . . . ,um,um+1, . . . ,un be an extended basis of V . Show that

x = a1u1 + · · ·+amum +bm+1um+1 + · · ·+bnun ∈V

is an element of U if and only if the coordinates bm+1 = u∗m+1(x) , . . . ,bn = u∗n(x) of x with respect
to the basis u1, . . . ,un of V are zero. (Remark : This is the most common method of characterizing the
elements of a subspace.)

S4.11 Let V be a C-vector space of dimension n ∈N∗ and let H be a real hyperplane in V (i. e. a
real subspace of dimension 2n−1). Then show that H ∩ iH is a complex hyper-plane in V (i. e. a
complex subspace of dimension n−1), where we put iH := {ix | x ∈ H}.

S4.12 Let U1 ,U2 ,U3 be finite dimensional subspaces of a K-vector space V with Ui∩U j = 0 for
i 6= j. Show that

Dim
(
(U1 +U2)∩U3

)
= Dim

(
(U1∩ (U2 +U3)

)
= Dim U1 +Dim U2 +Dim U3−Dim (U1 +U2 +U3) .

S4.13 Let V be a K-vector space with a countably infinite basis. Show that for every subspace U
of V there exists a countable basis. ( Hint : Let xi , i ∈N, be a basis of V and let Vn := Kx0 + · · ·+Kxn .
Then U =

⋃
∞
n=0(U ∩Vn). )

S4.14 Let U be the subspace generated by the following functions in a space of a;; real-valued
functions onR. Compute the dimension of U , by choosing a basis from the given generating system
and expressing other functions in this generating system as the linear combinations of the basis
chosen.

(a) t2, (t +1)2, (t +2)2, (t +3)2. (b) sinh3t, cosh3t, e3t , e−3t .

(c) 1, sin t, sin2t, sin2t, cos t, cos2t, cos2t. (d) 1, sinh t, sinh2t, sinh2t, cosh t, cosh2t, cosh2t.

S4.15 Let n ∈N∗ and let a0, . . . ,an be real numbers with a0 < a1 < · · ·< an .
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(a) Let U be the R-vector space of continuous piecewise linear1 real valued functions os the closed
interval [a0 ,an] in R with partition points a1, . . .an−1. Show that the functions |t−a0| , . . . , |t−an|
is a R-basis of U . In particular, DimK U = n+1.
(b) Let V be the R-vector space of the continuous piecewise linear functions R→R with partition
points a0, . . . ,an. Show that the functions (a0− t)+ , |t− a0| , . . . , |t− an| , (t− an)+ is a basis of
V , where f+ := Max( f ,0) denote the positive part of a real valued function f . In particular,
DimKV = n+3.
(c) Let W be the R-vector space of the continuous piecewise linear functions [a0 ,an]→ R with
partitions points a1, . . . ,an−1, and which vanish at both the end points a0 and an. Show that there
exist functions f1, . . . , fn−1 ∈W and the functions g1, . . . ,gn−1 ∈W which form bases of W such
that the graphs of fi and gi are:

(d) Let k,m ∈N with k < m. The set of k-times continuously differentiable R-valued functions
on the closed interval [a0 ,an] , which are polynomial functions of degree ≤ m on every subinterval
[ai ,ai+1], is a R-vector space of dimension (m− k)n+ k+1 with basis
1, (t−a0) , . . . ,(t−a0)

m,
(
(t−a1)+

)k+1
, . . . ,

(
(t−a1)+

)m
, . . . ,

(
(t−an−1)+

)k+1
, . . . ,

(
(t−an−1)+

)m
.

(Remark : The elements of this vector space are called s p l i n e f u n c t i o n s of type (m,k) on [a0 ,an]
with partition points a1, . . . ,an−1.)

S4.16 Let K be a field and F = a0 +a1X + · · ·+anXn ∈ K[X ] be a polynomial of degree deg F =
n, n ∈ N. Suppose that the multiples m · 1K , m ∈ N∗, are all 6= 0 2 ( for example, K = Q, R
and K = C have this property). For pairwise distinct elements λ0, . . . ,λn ∈ K, the polynomials
F(X−λ0), . . . ,F(X−λn) ∈ K[X ]n+1 form a K-basis of the K-vector space K[X ]n+1 of polynomials
of degree ≤ n over K. In particular, the polynomials (X − λ0)

n, . . . ,(X − λn)
n form a basis of

K[X ]n+1. (Hint : Since 1,X , . . . ,Xn is a K-basis of K[X ]n+1, Dim KK[X ]n+1 = n+1 and hence it is enough
to prove the linear independence of F(X−λ0), . . . ,F(X−λn) over K. which is proved in Exercise 3.5 (b).)

†S4.17 Let n ∈N∗. Show that there exist a representation in Q[t] of the form

t =
n

∑
k=0

ak

b
(t + k)n , ak ∈ Z, b ∈N∗ .

Use this to deduce that there exists a natural number γ(n) such that every natural number is a sum
of γ(n) integers of the form ±mn, m ∈N. (Hint : For a representation use the above Supplement S4.16.
For multiples of b the last assertion directly follows from the above formula, otherwise apply division with
remainder. — Remarks: Further, one can choose γ(n)≤ |a0|+ · · ·+ |an|+[b/2]. In particular, one can even
have γ(2) = 3 and γ(3) = 5, where it is still unknown whether or not γ(3) = 4. Since 6 and 14 can not be
written in the form m2

1±m2
2, the equality γ(2) = 2 is not enough. — The Two-Square Theorem (Fermat-Euler)

describes exactly those natural numbers m ∈N which can not be expressed in the form m2
1±m2

2. Since 4
and 5 can not be expressed in the form m3

1±m3
2±m3

3, as one sees this by computing modulo 9, it follows
that the equality γ(3) = 3 is not enough. – Moreover, it is conjectured by E. Waring3 (and D. Hilbert proved
it, even sharper) that: There exists a natural number g(n) such that every natural number is sum of g(n)

1 Let n ∈ N∗ and let a0, . . . ,an be real numbers with a0 < a1 < · · · < an . A continuous real valued function
f : [a0,an]→R is called p i e c e w i s e l i n e a r w i t h p a r t i t i o n p o i n t s a0, . . . ,an if f

∣∣[ai,ai+1]→R is
linear for every i = 1, . . . ,n− 1. — A real valued function f : [a,b]→ R defined on the closed interval [a,b] ⊆ R is
called l i n e a r if there exist λ ,µ ∈R such that f (t) = λ t +µ for every t ∈ [a,b].

2In this one also says that K has the c h a r a c t e r i s t i c 0 .
3An English mathematician E. Waring stated without proof that every number is the sum of 4 squares, of 9 cubes, of

19 biquadrates, and so on in Meditationes algebraicae (1770), 204-205 and Lagrange proved that g(2) = 4 (Lagrange’s
four-square theorem) later in the same year. It is very improbable that Waring had any sufficient grounds for his assertion
and it was until more than 100 years later that Hilbert first proved (even sharper assertion) that it is true. Hilbert’s

D. P. Patil / IISc 2016CSA-E0219-laa-supp04.tex September 5, 2016 ; 4:30 p.m. 3/5

http://math.iisc.ac.in/~patil/current_courses/2016CSA-E0219/Supplements/2016CSA-E0219-laa-ex03.pdf


Page 4 E0 219 Linear Algebra and Applications / August-December 2016 Supplement 4

natural numbers of the form mn, m ∈N. In other words: To determine , for a given positive natural number
n, there is a natural number g(n) such that the equation a = xn

1 + · · ·xn
g(n) has a solution in Ng(n) for every

a ∈N. This is known as the W a r i n g ’ s P r o b l e m. Previous writers had proved its existence when
n = 3,4,5,6,7,8 and 10, but its value g(n) is determined only for n = 3. The value g(n) is now known for all
n. For example, g(2) = 4, g(3) = 9, g(4) = 19, g(5) = 37. Except for g(2) and g(3), the known proofs of
these results involve much more complicated methods and use heavily the theory of functions of complex
variable.)

S4.18 Let K be a field and let a0, . . . ,am ∈ K, am 6= 0. Show that the subset
V (a0, . . . ,am) := {(xn ∈ KN | a0xm +a1xm+1 + · · ·+am−1xn+m−1 +amxn+m = 0 for all n ∈N}

is a subspace of KN of the dimension n. (Remark: We say that a sequence (xn)n∈N ∈ KN satisfy the
( l i n e a r ) r e c u r s i o n e q u a t i o n w i t h ( r e c u r s i o n ) p o l y n o m i a l α(X) = a0 +a1X +
· · ·+amXm ∈ K[X ] if (xn)n∈N ∈V (a0, . . . ,am). If K is algebraically closed (for example, if K = C), then one
can also find a K-basis of V (a0, . . . ,am) in by using the zeros of the polynomial α(A). )

†S4.19 (a) Let U ⊆ Kn be a subspace of dimension m. Then there exists uniquely determined basis
of U of the form

v1 = (∗ , . . . ,∗ ,1,0, . . . ,0) ∈ Kn ,

v2 = (∗, . . . ,∗ ,0,∗ , . . . ,∗ ,1,0, . . . ,0) ∈ Kn ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
vm = (∗ , . . . ,∗ ,0,∗ , . . . ,∗ ,0,∗ , . . . ,∗ ,0, . . . ,1,0, . . . ,0) ∈ Kn ,

where in the vectors v j, j = 1, . . . ,m, at the positions ∗ there are elements in K which are uniquely
determined by U and 1 is at the positions d j with 1≤ d1 < d2 < · · ·< dm ≤ n, these positions are
also uniquely determined by U . (Remarks: The set

GK(m,n) := {U ⊆V |U is a K-subspace of V with Dim KU = m}
of all m-dimensional subspaces of Kn is called the G r a s s m a n n - M a n n i f o l d o f t h e t y p e
(m,n) o v e r K. The aim of this is Exercise is to give a partition of GK(m,n) into subsets σ(d1, . . . ,dm),
where (d1, . . . ,dm) runs through the subset

{{d1, . . . ,dm} ∈P({1, . . . ,n}) | 1≤ d1 < · · ·< dm ≤ n}
of P({1,2, . . . ,n}) of cardinality

(n
m

)
. The subspace corresponding to σ := σ(d1, . . . ,dm) is then parameter-

ized by the tuple in Kkσ where

kσ := (d1−1)+ · · ·+(dm−m) =
m

∑
j=1

d j−
(m+1

2

)
.

σ(d1, . . . ,dm) is called a S c h u b e r t - c e l l of the dimension

kσ =
m

∑
j=1

d j−
(m+1

2

)
in GK(m,n) . Further, σ(1, . . . ,m) respectively, σ(n−m+1, . . . ,n) are the only Schubert-cells of the minimal
dimension 0 respectively, the maximal dimension m`, ` := n−m. — The definition of the Schubert-cells
and their notation is not uniform in the literature. If we put δ j := d j− j, j = 1, . . . ,m, then a sequence
0≤ δ1 ≤ ·· · ≤ δm ≤ ` and the corresponding cell has the dimension δ1 + · · ·+δm. Therefore : For a given
k ∈N, the number of Schubert-cells of dimension k is the number p(k;m, `) of partitions of the number k
with at most m positive natural numbers ≤ `. For example, if K is a finite field with q elements, then

|GK(m,n)|=
m`

∑
k=0

p(k;m, `)qk .

Moreover, this sum is equal to the value G[n]
m (q) of the Gauss-polynomial G[n]

m at the place q. One can use
this result and the Identity-Theorem for polynomials to give a combinatorial proof of the following equality
of polynomials:

G[n]
m (T ) =

m`

∑
k=0

p(k;m, `)T k =
(T n−1) · · ·(T n−m+1−1)

(T m−1) · · ·(T −1)
, `= n−m .)

proof of the existence of g(n) for every n was published in Göttinger Nachrichten (1909), 17-36 and Math.Annalen, 67
(1909), 281-305.
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(b) Compute the bases described in part (a) for the subspaces U and for W given in the Supple-
ment S4.3.

S4.20 Let V be an n-dimensional vector space over a field K and let U and W be K-subspaces of V
of dimensions p and q, respectively. Which numbers can occur as the dimensions of U ∩W?

S4.21 Let V = Kx1 + · · ·+ Kxn + Kxn+1 be a K-vector space, W be a K-subspace of V with
W 6⊆V ′ := Kx1 + · · ·+Kxn and let y be an arbitrary vector in W \V ′. Then show that

W =W ∩V ′+Ky .

By induction on n it follows directly that every subspace of a K-vector space which a generating
system consisting of n vectors, itself has a generating system consisting of at most n vectors.

S4.22 Let v1, . . . ,vn be a basis of the n-dimensional K-vector space V , n≥ 1, and H be a hyperplane
in V . Show that there exist i0, 1≤ i0 ≤ n, and elements ai ∈ K, i 6= i0 such that vi−aivi0 , i 6= i0 is
a basis of H. In which case for every i0 ∈ {1, . . . ,n} there are such elements ai ∈ K?

S4.23 Let V be a finite dimensional vector space over a field K and Vi, i ∈ I, be a family of
K-subspaces of V . Then there exists a finite subset J ⊆ I such that⋂

i∈I
Vi =

⋂
j∈J

Vj and ∑i∈I Vi = ∑ j∈J Vj .

S4.24 Let K be a field„ V be a n-dimensional K-vector space and
V0 ⊆V1 ⊆ ·· · ⊆Vn ⊆V

be a sequence of K-subspaces with Dim KVi ≤ i for i = 0, . . . ,n. Then show that there is a flag
0 =W0 ⊂W1 ⊂ ·· · ⊂Wn =V

in V with Vi ⊆Wi for all i = 1, . . . ,n. ( A maximal strictly ascending chain
0 =W0 (W1 ⊂ ·· ·(Wn =V

of K-subspaces (for which necessarily Dim KWi = 1, i = 0, . . . ,n) is called a f l a g o f V . For such a flag
of V , if wi ∈WirWi−1, i = 1, . . . ,n, then Wi = ∑

i
j=1 Kw j and w1, . . . ,wn is a K-basis of V .)

S4.25 Let V be a vector space over a field K which is not finite dimensional over K. Construct
an infinite strictly ascending U0 (U1 ( · · ·(Un (Un+1 ( · · · and an infinite strictly descending
W0 )W1 ) · · ·)Wn )Wn+1 ( · · · of K-subspaces of V .

S4.26 Let V be a finite dimensional K-vector space. If Vi, i∈ I, are subspaces of V with

CodimK
⋂

i∈I
Vi = m ∈N ,

then show that there exists a finite subset J ⊆ I with |J| ≤ m and
⋂

i∈I Vi =
⋂

i∈J Vi . (Remark : See
also Exercise 4.2. — This statement also hold even if V is not finite dimensional, if we put CodimKU :=
Dim KV/U , where V/U denote the quotient space of V by U .)

S4.27 Let L |K be an extension of fields. Further, let VL is an L-vector space with L-basis x1, . . . ,xn
and V := Kx1 + . . .+Kxn ⊆VL. (For example : VL := Ln ; x1, . . . ,xn is the standard basis ; V = Kn.)

(a) Show that y1, . . . ,ym ∈V are K-linearly independent (resp. form a K-generating system of V ,
resp. form a K-basis of V ) if and only if they are L-linearly independent (resp. form a L-generating
system of VL, resp. form a L-basis of VL).
(b) Let U be a K-subspace of V and let UL denote the L-subspace of VL generated by U . Then show
that Dim KU = Dim LUL and U =V ∩UL. Further, if W ⊆V is an another K-subspace of V , then
U ⊆W (resp. U =W ) if and only if UL ⊆WL (resp. UL =WL).
(c) Prove the analogous assertions in the case when VL is not finite dimensional.

S4.28 Let K be a field and let M be a maximal K-linear independent subset consisting of the
0-1-sequences in KN. Show that the cardinality of M is the cardinality of the continuums. (One may
assume that K is a prime field, i. e., either K =Z/Z p for some prime number p, or K =Q. Use countability
of K and cardinality argument to show that the dimension of the K-subspace generated by 0-1-sequences KN
is the cardinality of the continuums.)
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