E0 219 Linear Algebra and Applications / August-December 2016
 (ME, MSc. Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...
Tel : +91-(0)80-2293 2239/(Maths Dept. 3212) E-mails: dppatil@csa.iisc.ernet.in / patil@math.iisc.ernet.in
Lectures : Monday and Wednesday ; 11:00-12:30
Venue: CSA, Lecture Hall (Room No. 117)
Corrections by : Nikhil Gupta (nikhil.gupta@csa.iisc.ernet.in;LabNo.: 303)/
Vineet Nair (vineetn90@gmail.com; Lab No.: 303) /
Rahul Gupta (rahul.gupta@csa.iisc.ernet.in;Lab No.: 224)/
Sayantan Mukherjee (meghanamande@gmail.com;Lab No.: 253) /
Palash Dey (palash@csa.iisc.ernet.in; Lab No.: 301, 333, 335)
Midterms : 1-st Midterm : Saturday, September 17, 2016; 15:00-17:00 2-nd Midterm : Saturday, October 22, 2016; 15:00-17:00
Final Examination : December ??, 2016, 09:00--12:00
Evaluation Weightage : Assignments : 20\% Midterms (Two) : 30\% Final Examination : 50\%

Range of Marks for Grades (Total 100 Marks)							
	Grade S	$\begin{aligned} & \hline \text { Grade A } \\ & \hline 76-90 \end{aligned}$	Grade B$61-75$		Grade C	Grade D	Grade F
Marks-Range	> 90					-45	< 35
	Grade \mathbf{A}^{+}	Grade A	Grade \mathbf{B}^{+}	Grade B	Grade C	Grade D	Grade \mathbf{F}
Marks-Range	>90	81-90	71-80	$61-70$	51-60	$40-50$	< 40

Supplement 8

Quotient spaces and Exact sequences

To understand and appreciate the Supplements which are marked with the symbol \dagger one may possibly require more mathematical maturity than one may have! These are steps towards applications to various other branches of mathematics, especially to analysis, number theory and Affine and Projective Geometry.
Participants may ignore these Supplements - altogether or in the first reading!!
In the following Supplements K denote a field and V denote a K-vector space.
S8.1 (Exact Sequences and Complexes) Let $G^{\prime}, G, G^{\prime \prime}$ be (additive) abelian groups and $g^{\prime}: G^{\prime} \rightarrow G, g: G \rightarrow G^{\prime \prime}$ be homomorphisms. Then the sequence

$$
G^{\prime} \xrightarrow{g^{\prime}} G \xrightarrow{g} G^{\prime \prime}
$$

is called a complex (or a zero-sequence), if $\operatorname{Im} g^{\prime} \subseteq \operatorname{Ker} g$, i.e., $g g^{\prime}=0$. In this case the residue class group

$$
H:=\mathrm{H}\left(G^{\prime} \xrightarrow{g^{\prime}} G \xrightarrow{g} G^{\prime \prime}\right):=\operatorname{Ker} g / \operatorname{Im} g^{\prime}
$$

is called the homology (group) of the complex. If this group is 0 , i. .e., if $\operatorname{Im} g^{\prime}=\operatorname{Ker} g$, then the complex is or also the sequence is called exact. In the case of a complex $\operatorname{Ker} g$ is called the group of the cycles and $\operatorname{Im} g^{\prime}$ is called the group of the boundaries $\|^{2}$ These groups are usually denoted by Z and B, respectively 3 . Therefore $H=Z / B$.
A sequence

$$
G_{\bullet}: \cdots \longrightarrow G_{i+1} \xrightarrow{g_{i+}} G_{i} \xrightarrow{g_{i}} G_{i-1} \longrightarrow \cdots
$$

of abelian groups and homomorphisms is called a complex (or a zero-sequence), if for every $i \in \mathbb{Z}$, for which g_{i+1} and g_{i} are defined, the sequence $G_{i+1} \xrightarrow{g_{i+}} G_{i} \xrightarrow{g_{i}} G_{i-1}$ is a complex. If $Z_{i}=Z_{i}\left(G_{\bullet}\right)$ and $B_{i}=\mathrm{B}_{i}\left(G_{\bullet}\right)$ are the groups of the cycles and boundaries at the position i, respectively, then the quotient group

$$
H_{i}=\mathrm{H}_{i}\left(G_{\bullet}\right):=\mathrm{Z}_{i}\left(G_{\bullet}\right) / \mathrm{B}_{i}\left(G_{\bullet}\right)=Z_{i} / B_{i}=\operatorname{Ker} g_{i} / \operatorname{Im} g_{i+1}
$$

[^0]is called the i-th homomology (group) of the complex G_{\bullet}. If $H_{i}=0$, then the complex G_{\bullet} is called exact at the position i. The complex G_{\bullet} is called exact if all of its homology group vanish, i.e., it is exact at every position.
Remark: These concepts and results can be carried over to the sequences of vector spaces and vector space homomorphisms (and generally to modules and module homomorphisms).
(a) Let $f: G \rightarrow F$ be a homomorphism of abelian groups. Then the homology of the complex $0 \rightarrow G \xrightarrow{f} F$ (where $0 \rightarrow G$ is the zero-homomorphism) is Ker f. This complex is exact if and only iff injective. The homology of the complex $G \xrightarrow{f} F \rightarrow 0$ is the Cokernel Coker $f:=F / \operatorname{Im} f$ of f. This complex is exact if and only if f is surjective.
Altogether, the complex $0 \rightarrow G \xrightarrow{f} F \rightarrow 0$ is exact if and only if f is an isomorphism.
More generally, $f: G \rightarrow F$ defined so-called exact four-sequence
$$
0 \longrightarrow \operatorname{Ker} f \xrightarrow{i} G \xrightarrow{f} F \xrightarrow{\pi} \operatorname{Coker} f \longrightarrow 0,
$$
where l is the canonical injection of $\operatorname{Ker} f \subseteq G$ in G and π is the canonical projection of F onto Coker $f=F / \operatorname{Im} f$.
(b) (Short exact (three-term) sequence) A sequence
$$
0 \longrightarrow G^{\prime} \xrightarrow{g^{\prime}} G \xrightarrow{g} G^{\prime \prime} \longrightarrow 0
$$
is, obviously, exact if and only if g^{\prime} is injective and g is surjective and $U:=\operatorname{Ker} g=\operatorname{Im} g^{\prime}$. In this case g^{\prime} induces an isomorphism $G^{\prime} \rightarrow U$ and g induces an isomorphism $G / U \rightarrow G^{\prime \prime}$. Such an exact sequence is called ashortexact (three-term)-sequence.
Every subgroup U of an abelian group G, is in the following short exact sequence with the cannonical homomorhisms t and π :
$$
0 \longrightarrow U \xrightarrow{l} G \xrightarrow{\pi} G / U \longrightarrow 0
$$

Moreover, one can also consider the short exact sequences of not necessarily abelian (multiplicative) groups

$$
1 \longrightarrow G^{\prime} \xrightarrow{g^{\prime}} G \xrightarrow{g} G^{\prime \prime} \longrightarrow 1,
$$

if the above conditions are fulfilled $\sqrt[4]{4}$ Then $\operatorname{Ker} g=\operatorname{Im} g^{\prime} \cong G^{\prime}$ is necessarily a normal subgroup of G.

S8.2 (Homomorphisms of complexes) Let

$$
\begin{array}{ll}
G_{\bullet}: & \cdots \longrightarrow G_{i+1} \xrightarrow{g_{i+1}} G_{i} \xrightarrow{g_{i}} G_{i-1} \longrightarrow \cdots \\
F_{\bullet}: & \cdots \longrightarrow F_{i+1} \xrightarrow{f_{i+1}} F_{i} \xrightarrow{f_{i}} F_{i-1} \longrightarrow \cdots
\end{array}
$$

be two complexes which are defined for the same indices $i \in \mathbb{Z}$. A family h_{\bullet} of homomorphisms $h_{i}: G_{i} \rightarrow F_{i}, i \in \mathbb{Z}$, is called a homomorphismof complexes if all the diagrams

are commutative, that is, $h_{i-1} g_{i}=f_{i} h_{i}$ for all $i \in \mathbb{Z}$. In this case, obviously, h_{i} maps the cyclegroups $Z_{i}\left(G_{\bullet}\right)=\operatorname{Ker} g_{i}$ into the cycle-groups $Z_{i}\left(F_{\bullet}\right)=\operatorname{Ker} f_{i}$ and (if h_{i+1} is still defined) also the boundary-groups $\mathrm{B}_{i}\left(G_{\bullet}\right)=\operatorname{Im} g_{i+1}$ into the boundary-groups $\mathrm{B}_{i}\left(F_{\bullet}\right)=\operatorname{Im} f_{i+1}$, abd hence induce a homomorphism

$$
\mathrm{H}_{i}\left(h_{\bullet}\right): \mathrm{H}_{i}\left(G_{\bullet}\right) \longrightarrow \mathrm{H}_{i}\left(F_{\bullet}\right) .
$$

[^1](a) (Snake-Lemma) Let

be a commutative diagram with exact rows. Then the complexes
$$
\operatorname{Ker} h^{\prime} \xrightarrow{g^{\prime}} \operatorname{Ker} h \xrightarrow{g} \operatorname{Ker} h^{\prime \prime}, \quad \text { Coker } h^{\prime} \xrightarrow{\overline{f^{\prime}}} \text { Coker } h \xrightarrow{\bar{f}} \operatorname{Coker} h^{\prime \prime},
$$
are exact. More importantly, there is a canonical homomorphism $\delta: \operatorname{Ker} h^{\prime \prime} \longrightarrow \operatorname{Coker} h^{\prime}$, which connects both these exact sequences into so-called exact Ker-Coker-sequence ${ }^{5}$ Ker $h^{\prime} \xrightarrow{g^{\prime}} \operatorname{Ker} h \xrightarrow{g} \operatorname{Ker} h^{\prime \prime}, \stackrel{\delta}{-}------\operatorname{Coker} h^{\prime} \xrightarrow{\overline{f^{\prime}}}$ Coker $h \xrightarrow{\bar{f}}$ Coker $h^{\prime \prime}$,
The homomorphism δ is also known as the connecteing-homomorphism.
(Proof: The connecting-homomorphism is defined as follows : Let $x^{\prime \prime} \in \operatorname{Ker} h^{\prime \prime}$. Since g is surjective, there exists a $x \in G$ with $g(x)=x^{\prime \prime}$. Then $f h(x)=h^{\prime \prime} g(x)=h^{\prime \prime}\left(x^{\prime \prime}\right)=0$, i. e., $h(x) \in \operatorname{Ker} f=\operatorname{Im} f^{\prime}$ and hence $h(x)=f^{\prime}\left(y^{\prime}\right)$ with (uniquely determined) $y^{\prime} \in F^{\prime}$. One can then define $\delta\left(x^{\prime \prime}\right):=\overline{y^{\prime}} \in \operatorname{Coker} h^{\prime}=F^{\prime} / \operatorname{Im} h^{\prime}$. The image $\delta\left(x^{\prime \prime}\right)$ does not depend on the choice of the pre-image x of $x^{\prime \prime}:$ Namely, if $g(\tilde{x})=x^{\prime \prime}$ also, then $x-\widetilde{x} \in \operatorname{Ker} g=\operatorname{Im} g^{\prime}$, i.e., $x-\widetilde{x}=g^{\prime}\left(x^{\prime}\right)$ and for $\widetilde{y^{\prime}} \in F^{\prime}$ with $h(\widetilde{x})=f^{\prime}\left(\tilde{y^{\prime}}\right)$ it follows that $y^{\prime}-\widetilde{y^{\prime}}=h^{\prime}\left(x^{\prime}\right)$, and hence $\overline{y^{\prime}}=\overline{y^{\prime}}$ in $F^{\prime} / \operatorname{Im} h^{\prime}$.
It is easy to check that δ is a homomorphism and that the given sequence is exact at the positions $\operatorname{Ker} h^{\prime \prime}$ and Coker h^{\prime}. Similar to the "diagram chasing" as done in the above prof of independence in the definition o δ, one can check the exactness at the other positions. If g^{\prime} is injective (resp. if f surjective), then naturally, $\operatorname{Ker} h^{\prime} \longrightarrow \operatorname{Ker} h$ is also injective (resp. Coker $h \longrightarrow \operatorname{Coker} h^{\prime \prime}$ is surjective).)
(b) The following assertion is used very often. Let
$$
0 \longrightarrow V_{n} \xrightarrow{f_{n}} V_{n-1} \longrightarrow \cdots \longrightarrow V_{1} \xrightarrow{f_{1}} V_{0} \longrightarrow 0
$$
is an exact sequence of finite dimensional K-vector spaces. Then the alternating sum of dimensions vanishes, i. e.,
$$
\sum_{i=0}^{n}(-1)^{i} \operatorname{Dim}_{K} V_{i}=0
$$
(Proof: By induction on n. The cases $n=0$ and $n=1$ are trivial, in the case $n=2$, since $V_{0}=\operatorname{Im} f_{1}$ and $V_{2} \cong \operatorname{Im} f_{2}=\operatorname{Ker} f_{1}$, follows by applying the Rank Theorem to f_{1}. For $n \geq 3$, we apply induction hypothesis to the exact seqeunces :
$0 \longrightarrow V_{n} \xrightarrow{f_{n}} V_{n-1} \longrightarrow \cdots \longrightarrow V_{2} \xrightarrow{f_{2}}$ Bild $f_{2} \longrightarrow 0, \quad$ and $\quad 0 \longrightarrow \operatorname{Bild} f_{2} \longrightarrow V_{1} \xrightarrow{f_{1}} V_{0} \longrightarrow 0$ and note that by induction hypothesis, we have
$$
\left.\sum_{i=2}^{n}(-1)^{i-1} \operatorname{Dim}_{K} V_{i}+\operatorname{Dim}_{K} \operatorname{Im} f_{2}=0, \quad \text { and } \quad \operatorname{Dim}_{K} \operatorname{Im} f_{2}-\operatorname{Dim}_{K} V_{1}+\operatorname{Dim}_{K} V_{0}=0 .\right)
$$

S8.3 (Functors $\operatorname{Hom}_{K}(-X)$ and $\left.\operatorname{Hom}_{K}(X,-)\right)$ An important aspect in the theory of vector spaces is that exact sequences remain exact after passing them to the homomorphism spaces. More precisely :
Let $f: V \rightarrow W$ be a homomorphism of K-vector spaces and X be another K-vector space. For every homomorphism $h: W \rightarrow X$, the composition $h f$ is a homomorphism $V \rightarrow X$. This defines a K-vector space homomorphism

$$
\operatorname{Hom}_{K}(W, X) \longrightarrow \operatorname{Hom}_{K}(V, X)
$$

which is denoted by $\operatorname{Hom}_{K}(f, X)$. Analogously, the map $g \mapsto f g$ defines a homomorphism

$$
\operatorname{Hom}_{K}(X, V) \longrightarrow \operatorname{Hom}_{K}(X, W)
$$

which is denoted by $\operatorname{Hom}_{K}(X, f)$. In the case $X=K$, the map $\operatorname{Hom}_{K}(f, K)$ is nothing but the map which associates f to its dual homomorphism $f^{*}: W^{*} \rightarrow V^{*}$ (and using the canonical identification

[^2]of $\operatorname{Hom}_{K}(K, V)$ with V and of $\operatorname{Hom}_{K}(K, W)$ with W, the map $\operatorname{Hom}(K, f)$ is the map f it self, see Supplement S5.8. With this we have:

Let $V^{\prime} \xrightarrow{f^{\prime}} V \xrightarrow{f} V^{\prime \prime}$ be an exact sequence of K-vector spaces and X be another K-vector space. Then the following corresponding sequences are also exact:

$$
\begin{aligned}
& \operatorname{Hom}_{K}\left(V^{\prime \prime}, X\right) \longrightarrow \operatorname{Hom}_{K}(V, X) \longrightarrow \operatorname{Hom}_{K}\left(V^{\prime}, X\right), \\
& \operatorname{Hom}_{K}\left(X, V^{\prime}\right) \longrightarrow \operatorname{Hom}_{K}(X, V) \longrightarrow \operatorname{Hom}_{K}\left(X, V^{\prime \prime}\right) .
\end{aligned}
$$

(Proof :

S8.4 Let $f: V \rightarrow W$ be a homomorphism of K-vector spaces.
(a) Dualising the canonical short exact sequences

$$
0 \longrightarrow \operatorname{Ker} f \longrightarrow V \rightarrow \operatorname{Im} f \longrightarrow 0 \quad \text { and } \quad 0 \longrightarrow \operatorname{Im} f \longrightarrow W \rightarrow \operatorname{Coker} f \longrightarrow 0
$$

we get the short exact sequences

$$
0 \longrightarrow(\operatorname{Im} f)^{*} \longrightarrow V^{*} \longrightarrow(\operatorname{Ker} f)^{*} \longrightarrow 0 \quad \text { and } \quad 0 \rightarrow(\operatorname{Coker} f)^{*} \longrightarrow W^{*} \longrightarrow(\operatorname{Im} f)^{*} \longrightarrow 0
$$

and in particular, a canonical isomorphism $(\operatorname{Im} f)^{*} \cong \operatorname{Im} f^{*}$. (Since the composition of the surjective $W^{*} \rightarrow(\operatorname{Im} f)^{*}$ map and the injective map $\left(\operatorname{Im} f^{*}\right) \rightarrow V^{*}$ is the dual map f^{*}.)
(b) The $\operatorname{Rank} f$ is finite if and only if $\operatorname{Rank} f^{*}$ is finite. In this case, the equality $\operatorname{Rank} f=\operatorname{Rank} f^{*}$. See Theorem 5.G. 19 and the remark after that. From the 4-term exact sequence

$$
0 \rightarrow \operatorname{Ker} f \longrightarrow V \xrightarrow{f} W \longrightarrow \operatorname{Coker} f \longrightarrow 0
$$

the exactness of the following 4-term sequence follows directly

$$
0 \longrightarrow(\operatorname{Coker} f)^{*} \longrightarrow W^{*} \xrightarrow{f^{*}} V^{*} \longrightarrow(\operatorname{Ker} f)^{*} \longrightarrow 0
$$

and hence canonical isomorphisms

$$
(\operatorname{Ker} f)^{*} \cong \operatorname{Coker} f^{*}, \quad(\operatorname{Coker} f)^{*} \cong \operatorname{Ker} f^{*},
$$

further, the characterisations of $\operatorname{Im} f^{*}$ as the space of linear forms on V, which vanish on the $\operatorname{Ker} f$ (whereas $\operatorname{Ker} f^{*}$ is the space of linear forms on W, which vanish on $\operatorname{Im} f$).

S8.5 (Cohomology) Occasionally, the groups or vector spaces of a complexes are denoted by upper indices, then the numbering is increasing, and hence

$$
G^{\bullet}: \cdots \longrightarrow G^{i-1} \xrightarrow{g^{i-1}} G^{i} \xrightarrow{g^{i}} G^{i+1} \longrightarrow \cdots .
$$

Instead of cycles and boundaries, one use the terms cocycles and coboundaries, and

$$
H^{i}=\mathrm{H}^{i}\left(G^{\bullet}\right):=\mathrm{Z}^{i}\left(G^{\bullet}\right) / \mathrm{B}^{i}\left(G^{\bullet}\right)=\operatorname{Ker} g^{i} / \operatorname{Im} g^{i-1}
$$

is called the $i-\mathrm{th}$ cohomology(group) of the complex G^{\bullet}.
S8.6 (Meyer-Vietoris-sequences) Let H and F be subgroups of the abelian group G. Then the so-called Meyer-Vietoris-sequences

$$
0 \longrightarrow H \cap F \xrightarrow{f} H \oplus F \xrightarrow{g} H+F \longrightarrow 0
$$

with $f(x)=(x,-x)$ and $g(y, z)=y+z$ and

$$
0 \longrightarrow G /(H \cap F) \xrightarrow{h}(G / H) \oplus(G / F) \xrightarrow{k} G /(H+F) \longrightarrow 0
$$

with $h(\bar{x})=(\bar{x},-\bar{x})$ and $k(\bar{y}, \bar{z})=\overline{y+z}$ are exact.
S8.7 (Five-Le m m a) Suppose that in the following commutative diagram

of abelian groups rows are exact. Then :
(a) if h_{2} and h_{4} are injective, then h_{3} is also injective.
(b) if h_{2} and h_{4} are surjective and h_{1} injective, then h_{3} is surjective.
(c) if $h_{1}, h_{2}, h_{4}, h_{5}$ are bijective, then h_{3} is also bijective.
(Proof : One can prove these assertions by the standard technique of "diagram- chasing", but we give a proof using Snake-Lemma (see Supplement S8.2.
(a) Since $h_{3} g_{4}=f_{4} h_{4}, h_{3}\left(\operatorname{Im} g_{4}\right) \subseteq \operatorname{Im} f_{4}$ and hence h_{3} induces a homomorphism $h_{3}^{\prime}: \operatorname{Im} g_{4} \rightarrow \operatorname{Im} f_{4}$. Since h_{5} is surjective, $h_{5}^{\prime}:=f_{5} \circ h_{5}: G_{5} \rightarrow \operatorname{Im} f_{5}$ is also surjective and since h_{2} is injective, the restriction $h_{2}^{\prime}=$ $\left.h_{2}\right|_{\operatorname{Im} g_{3}}: \operatorname{Im} g_{3} \rightarrow F_{2}$ is also injective. Let t denote the canonical embedding, then from the given commutative diagram, we get the following two commutative diagrams with exact rows:

Now, we use Snake-Lemma (see SupplementS8.2) and consider the exact Ker-Coker sequences (with connecting homomorphism δ):

$$
\begin{aligned}
& \text { morphism } \delta): \\
& \operatorname{Ker} h_{4} \longrightarrow \operatorname{Ker} h_{3}^{\prime} \xrightarrow{\delta} \text { Coker } h_{5}^{\prime} ; \quad \operatorname{Ker} h_{3}^{\prime} \longrightarrow \operatorname{Ker} h_{3} \longrightarrow \operatorname{Ker} h_{2}^{\prime} .
\end{aligned}
$$

Therefore, Ker $h_{4}=0$, since h_{4} is injective and Coker $h_{5}^{\prime}=0$, since h_{5}^{\prime} is surjective. Further, since the sequence is exact, one must have $\operatorname{Ker} h_{3}^{\prime}=0$. Since h_{2}^{\prime} is injective, it follows $\operatorname{Ker} h_{2}^{\prime}=0$ and the second exact sequence shows that $\operatorname{Ker} h_{3}=0$, i. e., h_{3} is injective.
(b) Since $h_{2} g_{3}=f_{3} h_{3}, h_{3}\left(\operatorname{Ker} g_{3}\right) \subseteq \operatorname{Ker} f_{3}$ and hence h_{3} induces a homomorphism $\bar{h}_{3}: G_{3} / \operatorname{Ker} g_{3} \rightarrow$ $F_{3} / \operatorname{Ker} f_{3}$. Let p denote the canonical projection on the residue class groups. Then $\bar{h}_{4}:=p \circ h: G_{4} \rightarrow$ $F_{4} / \operatorname{Ker} f_{4}$ is surjective, since h_{4} is surjective. Moreover, let $h_{1}^{\prime}=\left.h_{1}\right|_{\operatorname{Im} g_{2}}$ which is a restriction of h_{1} is injective, since h_{1} is injective. Further, \bar{f}_{4} resp. \bar{g}_{3} denote the maps induced by f_{4} resp. g_{3}. Now, from the given commutative diagram, we get the following two commutative diagrams with exact rows :

Now, we use Snake-Lemma (see Supplement S8.2) and consider the exact Ker-Coker sequences (with connecting homomorphism δ):

$$
\begin{gathered}
\text { omomorphism } \\
\text { Coker } h_{4} \longrightarrow \\
\text { Coker } h_{3} \xrightarrow{\delta} \\
\text { Coker } \bar{h}_{3} ; \quad \operatorname{Ker} h_{1}^{\prime} \longrightarrow \operatorname{Coker} \bar{h}_{3} \longrightarrow \operatorname{Coker} h_{2} .
\end{gathered}
$$

In the second exact sequence $\operatorname{Ker} h_{1}^{\prime}=0$, since h_{1}^{\prime} is injective and Coker $h_{2}=0$, since h_{2} is surjective. Further, since the sequence is exact, one must have Coker $\bar{h}_{3}=0$. In the first exact sequence Coker $\bar{h}_{4}=0$, since \bar{h}_{4} is surjective and hence Coker $h_{3}=0$, by the exactness of the seqeunce i. e., h_{3} is surjective.
S8.8 (Euler-Poincaré-Characteristic) Let

$$
V_{\bullet}: \quad 0 \longrightarrow V_{n} \xrightarrow{f_{n}} V_{n-1} \longrightarrow \cdots \longrightarrow V_{1} \xrightarrow{f_{1}} V_{0} \longrightarrow 0
$$

be a complex of finite dimensional K-vector spaces. If $H_{0}, H_{1}, \ldots, H_{n-1}, H_{n}$, are homology spaces of $V_{\mathbf{0}}$, then (generalisation of Example ???) we have

$$
\sum_{i=0}^{n}(-1)^{i} \operatorname{Dim}_{K} H_{i}=\sum_{i=0}^{n}(-1)^{i} \operatorname{Dim}_{K} V_{i}
$$

(Remark: This alternating sum is known as the Euler-Poincaré-Characteristic of the complex V_{\bullet} and is denoted by $\chi\left(V_{\bullet}\right)$. One can already define it if the homology spaces $H_{i}, i=0, \ldots, n$, are finite dimensional.

Analogously, for a complex of finite abelian groups $G \bullet: 0 \longrightarrow G_{n} \longrightarrow \cdots \longrightarrow G_{0} \longrightarrow 0$ with homology groups H_{0}, \ldots, H_{n}, one has

$$
\left.\prod_{i=0}^{n}\left|H_{i}\right|^{(-1)^{i}}=\prod_{i=0}^{n}\left|G_{i}\right|^{(-1)^{i}} .\right)
$$

S8.9 (Index of a linear map) If the kernel Ker f and the cokernel Coker f of a K-linear map $f: V \rightarrow W$ are finite dimensional, then we say that f have an index , and define

$$
\operatorname{Ind} f:=\operatorname{Dim}_{K} \operatorname{Ker} f-\operatorname{Dim}_{K} \operatorname{Coker} f
$$

(Therefore - $\operatorname{Ind} f$ is the Euler-Poincaré-Characteristic of the complex $0 \longrightarrow V \xrightarrow{f} W \longrightarrow 0$.)
(a) If V and W are finite dimensional, then $\operatorname{Ind} f=\operatorname{Dim}_{K} V-\operatorname{Dim}_{K} W$.
(b) Let

be a commutative diagram of K-vector spaces and K-linear maps with exact rows. If all the linear maps $h_{0}, h_{1}, \ldots, h_{n}$ except one of them are of finite index, then all these linear maps are of finite index and $\sum_{i=0}^{n}(-1)^{i}$ Ind $h_{i}=0$. (Hint : By induction on n. In the case $n=2$, use the Snake-Lemma Supplement S8.2.)
(c) If $f: V \rightarrow W$ and $g: W \rightarrow X$ have index, then the composition $g f: V \rightarrow X$ also have index and Ind $g f=$ Ind $g+$ Ind f. (Hint : One may consider the following commutative diagram with exact rows :

(d) If $f: V \rightarrow W$ have an index and if $g: V \rightarrow W$ have finite rank, then $f+g$ has index and Ind $(f+g)=\operatorname{Ind} f$. (Hint : Define $U:=\operatorname{Im} g$ and $(f, g)(x):=(f(x), g(x))$ and consider the following commutative diagrams

(e) The K-linear map $f: V \rightarrow W$ has an index if and only if its dual map $f^{*}: W^{*} \rightarrow V^{*}$ has an index. In this case, $\operatorname{Ind} f^{*}=-\operatorname{Ind} f$. (Hint : see Supplement $\operatorname{S8.4}$ (b).)

S8.10 If kernel and cokernel of a homomorphism $h: G \rightarrow F$ of abelian groups are finite, then we say that h has a Herbrand-quotien ${ }^{6}$ and it is defined by

$$
\mathrm{q}(h):=|\operatorname{Ker} h| / \mid \text { Coker } h \mid .
$$

(Remark : Note that analogy with the concept of the index in Supplement S8.9.)
(a) If G and F are finite, then $\mathrm{q}(h)=|G| /|F|$.

[^3](b) Let

be a commutative diagram of abelian groups and group homomorphisms. If all the homomorphisms $h_{0}, h_{1}, \ldots, h_{n}$ except one of them are of finite index, then all these homomorphisms have a HerbrandQuotient and
$$
\prod_{i=0}^{n} \mathrm{q}\left(h_{i}\right)^{(-1)^{i}}=1
$$
(Hint : For the analogous concept see the concept of index in Supplement S8.9.)
(c) If $h: G \rightarrow F$ and $j: F \rightarrow E$ have Herbrand-Quotients, then the homomorphism $j h: G \rightarrow E$ also has Herbrand-Quotient and $q(j h)=\mathrm{q}(j) \mathrm{q}(h)$.
(d) If $h: G \rightarrow F$ has a Herbrand-Quotient and if $j: G \rightarrow F$ is a homomorphism with a finite image, then $h+j$ also a Herbrand-Quotient and $q(h+j)=\mathrm{q}(h)$.

S8.11 Let $V^{\prime} \rightarrow V \rightarrow V^{\prime \prime}$ be a complex of K-vector space with the homology spaces H and X be another K-vector space. Then the homology spaces of the complexes

$$
\begin{aligned}
& \operatorname{Hom}_{K}\left(V^{\prime \prime}, X\right) \longrightarrow \operatorname{Hom}_{K}(V, X) \longrightarrow \operatorname{Hom}_{K}\left(V^{\prime}, X\right) \quad \text { and } \\
& \operatorname{Hom}_{K}\left(X, V^{\prime}\right) \longrightarrow \operatorname{Hom}_{K}(X, V) \longrightarrow \operatorname{Hom}_{K}\left(X, V^{\prime \prime}\right)
\end{aligned}
$$

are canonically isomorphic to $\operatorname{Hom}_{K}(H, X)$ and $\operatorname{Hom}_{K}(X, H)$, respectively, see Supplement S8.3. In particular, if $X \neq 0$, then it follows from the exactness of one of the both Hom-sequences, the exactness of the original sequence.

[^0]: ${ }^{1}$ Exact sequences and - more generally, Complexes are useful tools for well-arranged convenient description of recurring deductions in connection with homomorphisms of groups and in particular of vector spaces.
 ${ }^{2}$ These notation and terminology have originated in the algebraic topology.
 ${ }^{3} B$ for Boundary.

[^1]: ${ }^{4}$ We denote the trivial (multiplicative) group by 1 .

[^2]: ${ }^{5}$ This exact sequence explains the name "Snake-Lemma".

[^3]: ${ }^{6}$ The Herbrand quotient was invented by a French mathematician Jacques Herbrand (1908-1931). It has an important application in class field theory. Although he died at only 23 years of age, he was already considered one of "the greatest mathematicians of the younger generation" by his professors Helmut Hasse, and Richard Courant.

