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S u p p l e m e n t 8

Quotient spaces and Exact sequences1

To understand and appreciate the Supplements which are marked with the symbol † one may possibly require
more mathematical maturity than one may have! These are steps towards applications to various other
branches of mathematics, especially to analysis, number theory and Affine and Projective Geometry.
Participants may ignore these Supplements — altogether or in the first reading!!

In the following Supplements K denote a field and V denote a K-vector space.

S8.1 ( E x a c t S e q u e n c e s and C o m p l e x e s ) Let G′, G, G′′ be (additive) abelian groups
and g′ :G′→ G , g :G→ G′′ be homomorphisms. Then the sequence

G′
g′−→G

g−→G′′

is called a c o m p l e x (or a z e r o - s e q u e n c e), if Img′ ⊆ Kerg, i. e., gg′ = 0. In this case
the residue class group

H := H(G′
g′−→G

g−→G′′) := Kerg/Img′

is called the h o m o l o g y (g r o u p) of the complex. If this group is 0, i. .e., if Im g′ = Kerg,
then the complex is or also the sequence is called e x a c t . In the case of a complex Kerg is called
the group of the c y c l e s and Img′ is called the group of the b o u n d a r i e s .2 These groups
are usually denoted by Z and B, respectively.3. Therefore H = Z/B.

A sequence

G• : · · · −→ Gi+1
gi+1−→ Gi

gi−→ Gi−1 −→ ·· ·
of abelian groups and homomorphisms is called a c o m p l e x (or a z e r o - s e q u e n c e) ,
if for every i ∈ Z , for which gi+1 and gi are defined, the sequence Gi+1

gi+1−→ Gi
gi−→ Gi−1 is a

complex. If Zi = Zi(G•) and Bi = Bi(G•) are the groups of the cycles and boundaries at the position
i, respectively, then the quotient group

Hi = Hi(G•) := Zi(G•)/Bi(G•) = Zi/Bi = Kergi/Imgi+1

1Exact sequences and – more generally, Complexes are useful tools for well-arranged convenient description of
recurring deductions in connection with homomorphisms of groups and in particular of vector spaces.

2These notation and terminology have originated in the algebraic topology.
3B for Boundary.
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is called the i-t h h o m o m o l o g y ( g r o u p ) of the complex G• . If Hi = 0, then the complex
G• is called e x a c t a t t h e p o s i t i o n i . The complex G• is called e x a c t if all of its
homology group vanish, i. e., it is exact at every position.

Remark : These concepts and results can be carried over to the sequences of vector spaces and
vector space homomorphisms (and generally to modules and module homomorphisms).

(a) Let f : G→ F be a homomorphism of abelian groups. Then the homology of the complex

0→G
f−→ F (where 0→G is the zero-homomorphism) is Ker f . This complex is exact if and only

if f injective. The homology of the complex G
f−→ F→ 0 is the C o k e r n e l Coker f := F/Im f

of f . This complex is exact if and only if f is surjective.

Altogether, the complex 0→ G
f−→ F → 0 is exact if and only if f is an isomorphism.

More generally, f :G→ F defined so-called e x a c t f o u r - s e q u e n c e

0−→ Ker f ι−→ G
f−→ F π−→ Coker f −→ 0 ,

where ι is the canonical injection of Ker f ⊆ G in G and π is the canonical projection of F onto
Coker f = F/Im f .

(b) ( S h o r t e x a c t ( t h r e e - t e r m ) s e q u e n c e ) A sequence

0−→ G′
g′−→ G

g−→ G′′ −→ 0

is, obviously, exact if and only if g′ is injective and g is surjective and U := Kerg = Img′. In this
case g′ induces an isomorphism G′→U and g induces an isomorphism G/U → G′′. Such an exact
sequence is called a s h o r t e x a c t ( t h r e e - t e r m ) - s e q u e n c e .

Every subgroup U of an abelian group G, is in the following short exact sequence with the cannonical
homomorhisms ι and π :

0−→U ι−→ G π−→ G/U −→ 0 .

Moreover, one can also consider the short exact sequences of not necessarily abelian (multiplicative)
groups

1−→ G′
g′−→ G

g−→ G′′ −→ 1 ,

if the above conditions are fulfilled.4 Then Kerg = Img′ ∼= G′ is necessarily a normal subgroup of
G.

S8.2 ( H o m o m o r p h i s m s o f c o m p l e x e s ) Let

G• : · · · −→ Gi+1
gi+1−→ Gi

gi−→ Gi−1 −→ ·· ·

F• : · · · −→ Fi+1
fi+1−→ Fi

fi−→ Fi−1 −→ ·· ·
be two complexes which are defined for the same indices i ∈ Z. A family h• of homomorphisms
hi :Gi→ Fi, i ∈ Z, is called a h o m o m o r p h i s m o f c o m p l e x e s if all the diagrams

Gi
gi //

hi
��

Gi−1

hi−1
��

Fi
fi // Fi−1

are commutative, that is, hi−1gi = fihi for all i ∈ Z. In this case, obviously, hi maps the cycle-
groups Zi(G•) = Kergi into the cycle-groups Zi(F•) = Ker fi and (if hi+1 is still defined) also the
boundary-groups Bi(G•) = Imgi+1 into the boundary-groups Bi(F•) = Im fi+1 , abd hence induce a
homomorphism

Hi(h•) :Hi(G•)−→ Hi(F•) .

4We denote the trivial (multiplicative) group by 1.
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(a) ( S n a k e - L e m m a ) Let

G′
g′ //

h′
��

G

h
��

g // G′′

h′′
��

// 0

0 // F ′
f ′ // F

f // F ′′

be a commutative diagram with exact rows. Then the complexes

Ker h′
g′−→ Ker h

g−→ Ker h′′ , Coker h′
f ′−→ Coker h

f−→ Coker h′′ ,

are exact. More importantly, there is a canonical homomorphism δ :Kerh′′ −→ Cokerh′, which
connects both these exact sequences into so-called e x a c t K e r - C o k e r - s e q u e n c e 5

Ker h′
g′−→ Ker h

g−→ Ker h′′ ,
δ

−−−−−−99KCoker h′
f ′−→ Coker h

f−→ Coker h′′ ,

The homomorphism δ is also known as the c o n n e c t e i n g - h o m o m o r p h i s m .
(Proof : The connecting-homomorphism is defined as follows : Let x′′ ∈ Kerh′′. Since g is surjective, there
exists a x ∈ G with g(x) = x′′. Then f h(x) = h′′g(x) = h′′(x′′) = 0, i. e., h(x) ∈ Ker f = Im f ′ and hence
h(x) = f ′(y′) with (uniquely determined) y′ ∈ F ′. One can then define δ (x′′) := y′ ∈ Cokerh′ = F ′/Imh′.
The image δ (x′′) does not depend on the choice of the pre-image x of x′′ : Namely, if g(x̃) = x′′ also, then
x− x̃ ∈ Kerg = Img′, i. e., x− x̃ = g′(x′) and for ỹ′ ∈ F ′ with h(x̃) = f ′(ỹ′) it follows that y′− ỹ′ = h′(x′) ,

and hence y′ = ỹ′ in F ′/Imh′.
It is easy to check that δ is a homomorphism and that the given sequence is exact at the positions Kerh′′
and Cokerh′. Similar to the “d i a g r a m c h a s i n g” as done in the above prof of independence in the
definition o δ , one can check the exactness at the other positions. If g′ is injective (resp. if f surjective), then
naturally, Kerh′ −→ Kerh is also injective (resp. Cokerh−→ Cokerh′′ is surjective).)

(b) The following assertion is used very often. Let

0−→Vn
fn−→ Vn−1 −→ ·· · −→ V1

f1−→ V0 −→ 0

is an exact sequence of finite dimensional K-vector spaces. Then the alternating sum of dimensions
vanishes, i. e.,

n

∑
i=0

(−1)i DimKVi = 0 .

(Proof : By induction on n. The cases n = 0 and n = 1 are trivial, in the case n = 2, since V0 = Im f1 and
V2 ∼= Im f2 = Ker f1, follows by applying the Rank Theorem to f1 . For n≥ 3, we apply induction hypothesis
to the exact seqeunces :
0−→Vn

fn−→ Vn−1 −→ ·· · −→V2
f2−→ Bild f2 −→ 0 , and 0−→ Bild f2 −→ V1

f1−→ V0 −→ 0
and note that by induction hypothesis, we have

n

∑
i=2

(−1)i−1 Dim K Vi +Dim K Im f2 = 0 , and Dim K Im f2−Dim K V1 +Dim K V0 = 0 .)

S8.3 ( F u n c t o r s HomK(−X) a n d HomK(X ,−) ) An important aspect in the theory of
vector spaces is that exact sequences remain exact after passing them to the homomorphism spaces.
More precisely :
Let f :V →W be a homomorphism of K-vector spaces and X be another K-vector space. For every
homomorphism h :W → X , the composition h f is a homomorphism V → X . This defines a K-vector
space homomorphism

HomK(W,X)−→ HomK(V,X)

which is denoted by HomK( f ,X). Analogously, the map g 7→ f g defines a homomorphism

HomK(X ,V )−→ HomK(X ,W )

which is denoted by HomK(X , f ). In the case X = K, the map HomK( f ,K) is nothing but the map
which associates f to its dual homomorphism f ∗ :W ∗→V ∗ (and using the canonical identification

5This exact sequence explains the name “Snake-Lemma”.
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of HomK(K,V ) with V and of HomK(K,W ) with W , the map Hom(K, f ) is the map f it self, see
Supplement S5.8. With this we have :

Let V ′
f ′−→V

f−→V ′′ be an exact sequence of K-vector spaces and X be another K-vector space.
Then the following corresponding sequences are also exact :

HomK(V ′′,X)−→ HomK(V,X)−→ HomK(V ′,X) ,

HomK(X ,V ′)−→ HomK(X ,V )−→ HomK(X ,V ′′) .
(Proof :

•)

S8.4 Let f :V →W be a homomorphism of K-vector spaces.
(a) Dualising the canonical short exact sequences

0−→ Ker f −→V → Im f −→ 0 and 0−→ Im f −→W → Coker f −→ 0

we get the short exact sequences
0−→ (Im f )∗ −→V ∗ −→ (Ker f )∗ −→ 0 and 0→ (Coker f )∗ −→W ∗ −→ (Im f )∗ −→ 0

and in particular, a canonical isomorphism (Im f )∗ ∼= Im f ∗ . ( Since the composition of the surjective
W ∗→ (Im f )∗ map and the injective map (Im f ∗)→V ∗ is the dual map f ∗.)

(b) The Rank f is finite if and only if Rank f ∗ is finite. In this case, the equality Rank f = Rank f ∗.
See Theorem 5.G.19 and the remark after that. From the 4-term exact sequence

0→ Ker f −→V
f−→W −→ Coker f −→ 0

the exactness of the following 4-term sequence follows directly

0−→ (Coker f )∗ −→W ∗
f ∗−→ V ∗ −→ (Ker f )∗ −→ 0

and hence canonical isomorphisms
(Ker f )∗ ∼= Coker f ∗ , (Coker f )∗ ∼= Ker f ∗ ,

further, the characterisations of Im f ∗ as the space of linear forms on V , which vanish on the Ker f
(whereas Ker f ∗ is the space of linear forms on W , which vanish on Im f ).

S8.5 ( C o h o m o l o g y ) Occasionally, the groups or vector spaces of a complexes are denoted
by upper indices, then the numbering is increasing, and hence

G• : · · · −→ G i−1 g i−1

−→G i g i

−→G i+1 −→ ·· · .
Instead of cycles and boundaries, one use the terms c o c y c l e s and c o b o u n d a r i e s , and

H i = Hi(G•) := Zi(G•)/Bi(G•) = Kergi/Imgi−1

is called the i-t h c o h o m o l o g y(g r o u p) of the complex G•.

S8.6 ( M e y e r - V i e t o r i s - s e q u e n c e s ) Let H and F be subgroups of the abelian group
G. Then the so-called M e y e r - V i e t o r i s - s e q u e n c e s

0−→ H ∩F
f−→ H⊕F

g−→ H +F −→ 0

with f (x) = (x,−x) and g(y,z) = y+ z and

0−→ G/(H ∩F)
h−→ (G/H)⊕ (G/F)

k−→ G/(H +F)−→ 0

with h(x) = (x ,−x) and k(y ,z) = y+ z are exact.

S8.7 (F i v e - L e m m a) Suppose that in the following commutative diagram

G5

h5
��

g5 // G4
g4 //

h4
��

G3

h3
��

g3 // G2

h2
��

g2 // G1

h1
��

F5
f5 // F4

f4 // F3
f3 // F2

f2 // F1
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of abelian groups rows are exact. Then :
(a) if h2 and h4 are injective, then h3 is also injective.
(b) if h2 and h4 are surjective and h1 injective, then h3 is surjective.
(c) if h1,h2,h4,h5 are bijective, then h3 is also bijective.
(Proof : One can prove these assertions by the standard technique of “diagram- chasing”, but we give a proof
using Snake-Lemma (see Supplement S8.2.
(a) Since h3g4 = f4h4, h3(Img4)⊆ Im f4 and hence h3 induces a homomorphism h′3 : Img4→ Im f4. Since
h5 is surjective, h′5 := f5 ◦ h5 : G5→ Im f5 is also surjective and since h2 is injective, the restriction h′2 =
h2 |Img3 : Img3→ F2 is also injective. Let ι denote the canonical embedding, then from the given commutative
diagram, we get the following two commutative diagrams with exact rows :

G5
g5 //

h′5
��

G4

h4

��

h4 // Img4

h′3
��

// 0

0 // Im f5
ι // F4

f4 // Im f4

Img4
ι //

h′3
��

G3

h3

��

g3 // Img3

h′2
��

// 0

0 // Im f4
ι // F3

f3 // F2

Now, we use Snake-Lemma (see Supplement S8.2) and consider the exact Ker-Coker sequences (with
connecting homomorphism δ ) :

Ker h4 −→ Ker h′3
δ−→ Coker h′5 ; Ker h′3 −→ Ker h3 −→ Ker h′2 .

Therefore, Ker h4 = 0, since h4 is injective and Coker h′5 = 0, since h′5 is surjective. Further, since the
sequence is exact, one must have Ker h′3 = 0. Since h′2 is injective, it follows Ker h′2= 0 and the second exact
sequence shows that Ker h3= 0, i. e., h3 is injective.
(b) Since h2g3 = f3h3, h3(Ker g3) ⊆ Ker f3 and hence h3 induces a homomorphism h3 : G3/Ker g3 →
F3/Ker f3. Let p denote the canonical projection on the residue class groups. Then h4 := p ◦ h : G4 →
F4/Ker f4 is surjective, since h4 is surjective. Moreover, let h′1 = h1 |Im g2 which is a restriction of h1 is
injective, since h1 is injective. Further, f 4 resp. g3 denote the maps induced by f4 resp. g3. Now, from the
given commutative diagram, we get the following two commutative diagrams with exact rows :

G4
g4 //

h4
��

G3

h3

��

p // G3/Ker g3

h3
��

// 0

0 // F4/Ker f4
f 4 // F3

p // F3/Ker f3

G3/Ker g3
g3 //

h3
��

G2

h2

��

g2 // Img2

h′1
��

// 0

0 // F3/Ker f3
f 3 // F2

f2 // F1

Now, we use Snake-Lemma (see Supplement S8.2) and consider the exact Ker-Coker sequences (with
connecting homomorphism δ ) :

Cokerh4 −→ Cokerh3
δ−→ Coker h3 ; Ker h′1 −→ Cokerh3 −→ Cokerh2 .

In the second exact sequence Ker h′1= 0, since h′1 is injective and Coker h2 = 0, since h2 is surjective. Further,
since the sequence is exact, one must have Cokerh3 = 0. In the first exact sequence Cokerh4 = 0, since h4 is
surjective and hence Cokerh3= 0, by the exactness of the seqeunce i. e., h3 is surjective. • )

S8.8 ( E u l e r - P o i n c a r é - C h a r a c t e r i s t i c ) Let

V• : 0−→Vn
fn−→ Vn−1 −→ ·· · −→ V1

f1−→ V0 −→ 0

be a complex of finite dimensional K-vector spaces. If H0,H1, . . . ,Hn−1,Hn , are homology spaces
of V•, then (generalisation of Example ???) we have

n

∑
i=0

(−1)i Dim KHi =
n

∑
i=0

(−1)i Dim KVi .

(Remark : This alternating sum is known as the E u l e r - P o i n c a r é - C h a r a c t e r i s t i c of the
complex V• and is denoted by χ(V•) . One can already define it if the homology spaces Hi , i = 0, . . . ,n, are
finite dimensional.
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Analogously, for a complex of finite abelian groups G• : 0−→ Gn −→ ·· · −→ G0 −→ 0 with homology
groups H0, . . . ,Hn , one has n

∏
i=0
|Hi|(−1)i

=
n

∏
i=0
|Gi|(−1)i

.)

S8.9 ( I n d e x o f a l i n e a r m a p ) If the kernel Ker f and the cokernel Coker f of a K-linear
map f :V →W are finite dimensional, then we say that f have an i n d e x , and define

Ind f := Dim K Ker f −Dim K Coker f

(Therefore −Ind f is the Euler-Poincaré-Characteristic of the complex 0−→V
f−→W −→ 0 .)

(a) If V and W are finite dimensional, then Ind f = Dim KV −Dim KW .

(b) Let
0 // Vn

fn
��

// · · · // V0

f0
��

// 0

0 //Wn // · · · //W0 // 0

be a commutative diagram of K-vector spaces and K-linear maps with exact rows. If all the linear
maps h0,h1, . . . ,hn except one of them are of finite index, then all these linear maps are of finite
index and ∑

n
i=0(−1)i Indhi = 0. ( Hint : By induction on n. In the case n = 2, use the Snake-Lemma

Supplement S8.2. )
(c) If f :V →W and g :W → X have index, then the composition g f :V → X also have index and
Indg f = Indg+ Ind f . (Hint : One may consider the following commutative diagram with exact rows :

0 // Ker f

��

// V
f //

idV

��

W

g
��

// Coker f

g
��

// 0

0 // Ker g f // V
g f // X // Coker g f // 0 .)

(d) If f : V →W have an index and if g : V →W have finite rank, then f + g has index and
Ind( f + g) = Ind f . (Hint : Define U := Im g and ( f ,g)(x) :=

(
f (x) ,g(x)

)
and consider the following

commutative diagrams
0 // 0

��

// V

( f ,g)
��

id // V

f+g
��

// 0

0 // U //W ⊕U //W // 0

0 // 0

��

// V

( f ,g)
��

id // V

f
��

// 0

0 // U //W ⊕U //W // 0 .)

(e) The K-linear map f :V →W has an index if and only if its dual map f ∗ :W ∗→V ∗ has an index.
In this case, Ind f ∗ =−Ind f . ( Hint : see Supplement S8.4 (b). )

S8.10 If kernel and cokernel of a homomorphism h :G→ F of abelian groups are finite, then we
say that h has a H e r b r a n d - q u o t i e n t6 and it is defined by

q(h) := |Kerh|/|Cokerh| .
( Remark : Note that analogy with the concept of the index in Supplement S8.9. )

(a) If G and F are finite, then q(h) = |G|/|F | .

6The Herbrand quotient was invented by a French mathematician Jacques Herbrand (1908-1931). It has an important
application in class field theory. Although he died at only 23 years of age, he was already considered one of “the
greatest mathematicians of the younger generation” by his professors Helmut Hasse, and Richard Courant.
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(b) Let
0 // Gn

hn
��

// · · · // G0

h0
��

// 0

0 // Fn // · · · // F0 // 0

be a commutative diagram of abelian groups and group homomorphisms. If all the homomorphisms
h0,h1, . . . ,hn except one of them are of finite index, then all these homomorphisms have a Herbrand-
Quotient and

∏
n
i=0 q(hi)

(−1)i
= 1.

( Hint : For the analogous concept see the concept of index in Supplement S8.9. )
(c) If h :G→ F and j :F → E have Herbrand-Quotients, then the homomorphism j h :G→ E also
has Herbrand-Quotient and q( j h) = q( j)q(h) .
(d) If h :G→ F has a Herbrand-Quotient and if j :G→ F is a homomorphism with a finite image,
then h+ j also a Herbrand-Quotient and q(h+ j) = q(h) .

S8.11 Let V ′→V →V ′′ be a complex of K-vector space with the homology spaces H and X be
another K-vector space. Then the homology spaces of the complexes

HomK(V ′′,X)−→ HomK(V,X)−→ HomK(V ′,X) and

HomK(X ,V ′)−→ HomK(X ,V )−→ HomK(X ,V ′′)

are canonically isomorphic to HomK(H,X) and HomK(X ,H) , respectively, see Supplement S8.3.
In particular, if X 6= 0, then it follows from the exactness of one of the both Hom-sequences, the
exactness of the original sequence.
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