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S u p p l e m e n t 9

Matrices — The Matrix of a linear map — Rank of matrices — Elementary matrices

To understand and appreciate the Supplements which are marked with the symbol † one may possibly require
more mathematical maturity than one may have! These are steps towards applications to various other
branches of mathematics, especially to analysis, number theory and Affine and Projective Geometry.
Participants may ignore these Supplements — altogether or in the first reading!!

S9.1 ( M a t r i x m u l t i p l i c a t i o n1 ) The following (classical) example may help you to
understand why multiplication of matrices is defined the way it is.
Let

a11x1 +a12x2 + · · ·+a1nxn = b1

a21x1 +a22x2 + · · ·+a2nxn = b2

· · · · · · · · · · · ·
am1x1 +am2x2 + · · ·+amnxn = bm

be a system of m linear equations in n unknowns x1, . . . ,xn over a field K. If we make the linear
( h o m o g e n e o u s ) c h a n g e o f v a r i a b l e s, (i. e. substitute the following expressions
for x1, . . . ,xn)

x1 = b11y1 +b12y2 + · · ·+b1`y`
x2 = b21y1 +b22y2 + · · ·+b2`y`
· · · · · · · · · · · ·
xn = bm1y1 +bm2y2 + · · ·+bn`y`

in the above system of linear equations, then we obtain the following new system of m linear
equations in ` unknowns y1, . . . ,y` :

c11y1 + c12y2 + · · ·+ c1`y` = b1

c21y1 + c22y2 + · · ·+ c2ny` = b2

· · · · · · · · · · · ·
cm1y1 + cm2y2 + · · ·+ cmny` = bm

1Matrix multiplication is very different from matrix addition and subtraction. we do not multiply corresponding
entries; in particular,

(
2 3

)
·
(
4 5

)
6=
(
2 ·4 = 8 3 ·5 = 15

)
! Indeed, we know that these matrices are not even

“compatible" for matrix multiplication. At first glance, the definition of matrix multiplication may seem strange and
complicated. However, it is defined in a way that makes it perfect for working with systems of equations.
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where the matrix of coefficients C = (cir) 1≤i≤m
1≤r≤`

∈Mm,`(K) is obtained by multiplying the m× n-

matrix of coefficients A=
(
ai j
)

1≤i≤m
1≤ j≤n

∈Mm,n(K) with the n×`-matrix of coefficients of the change

of variables B=
(
b jr
)

1≤ j≤n
1≤r≤`

∈Mn,`(K), i. e. C= A ·B , or equivalently,

cir = (ai1, . . . ,ain) ·

b1r
...

bnr

=
n

∑
j=1

ai jb jr = ai1b jr + · · ·+ainbnr .

(One can also see the (boring) numerical example : The students in a large high school (grades 9 through
12) get there in a variety of ways: by bike, by bus, and by car. The percentage of students using different
modes of transportation is summarized on the left below. The total number of male and female students in
each grade is summarized in the table on the top right.

Gender Male Female
9th 110 105
10th 100 95
11th 95 90
12th 85 80

Modes of
Transportation

9th 10th 11th 12th

Bike 25% 20% 15% 10% 0.25×110+0.20×100
+0.15×95+0.10×85 = 70

0.25×105+0.20×95
+0.15×90+0.10×80 = 67

Bus 55% 65% 55% 40% 0.55×110+0.65×100
+0.55×95+0.40×85 = 212

0.55×105+0.65×95
+0.55×90+0.40×80 = 201

Car 20% 15% 30% 50% 0.20×110+0.15×100
+0.15×95+0.30×85 = 108

0.20×105+0.15×95
+0.15×90+0.30×80 = 102

Now strip away the labels, record the percentages as decimals, and suppress the computations. Put the
“Modes" matrix in blue and the “Gender" matrix in purple. The product of these two matrices is shown in
white and is displayed in the most conventional way as :(0.25 0.20 0.15 0.10

0.55 0.65 0.55 0.40
0.20 0.15 0.30 0.50

)
·

110 105
100 95
95 90
85 80

=

( 70 67
212 201
108 102

)
. )

S9.2 For the following K-linear maps find the matrix Mv
v( f ) ∈MN,N(K) of f with respect to the

basis v := {t i | i ∈N} of the polynomial algebra K[t] .

(1) f :K[t]→K[t] , x(t) 7→ ẋ(t) (the derivative of x(t) with respect to t ).
(2) f :K[t]→K[t] , x(t) 7→ y(t) ·x(t) , where y(t) := a0 + · · ·+antn is a fixed polynomial inK[t] .

(3) f :K[t]→K[t] , x(t) 7→ x(t +1) .

S9.3 Let A ∈MI,J(K) and i ∈ I, j ∈ J. Compute eiA and Ae j , where ei ∈ K(I) is the standard
row-vector in K(I) and e j ∈ K(J) is the standard column-vector in K(J).

T0.4 Compute the matrix product a1
...

am

 · (b1, . . . ,bn) ,

where a1, . . . ,am ,b1, . . . ,bn are elements in a field.

S9.5 Let I,J be finite sets. For a matrix A ∈MI,J(K), compute the products Ei jA respectively,
AErs , where Ei j ∈MI(K) and Ers ∈MJ(K) are the elements in the standard basis of MI,J(K).
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S9.6 Let f :V →W be a K-linear map from the n-dimensional vector space into the m-dimensional
vector space W . There exist bases v= {v1, . . . ,vn} of V and w= {w1, . . . ,wm} of W such that the
matrix mv

w( f ) of f with respect to v and w is a matrix of the form

1 · · · 0 0 · · · 0
... . . . ...

... . . . ...
0 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0
... . . . ...

... . . . ...
0 · · · 0 0 · · · 0


∈Mm,n(K) .

The number of 1’s in this matrix is the rank of f and hence is uniquely determined. (Hint : As in
the proof of the Rank-Theorem, show that there exists a basis u1, . . . ,ur,v1, . . . ,vs of V such that u1, . . . ,ur
is a basis of Ker f and w1 := f (v1), . . . ,ws := f (vs) is a basis of Im f . Put vs+ j := u j for j = 1, . . . ,r and a
basis v := (v1, . . . ,vn), n := r+s of V . Moreover, extend w1, . . . ,ws to a basis w := (w1, . . . ,wm) of W . Then
f (v j) = w j for j = 1, . . . ,r and f (v j) := 0 for j = r+1, . . . ,n, i. e. Mv

w( f ) has the required form. — On the
other hand, if Mv

w( f ) has the given form with respect to some bases v of V and w of W , then the image Im f
has the basis w1, . . . ,ws, where s is the number of 1’s and hence Rank f = Dim Im f = s.)

S9.7 Let V be a finite dimensional K-vector space and let g ∈ EndK(V ) with Rank(g) = 1. Show
that there exist y ∈V and e ∈V ∗ such that g(x) = e(x) · y for every x ∈V . Further, show that
(a) The vector y ∈V and the linear form e ∈V ∗ are unique up to scalar multiples in K×. The scalar
e(y) ∈ K is unique and will be denoted by λ = λ (g) . Show that λ (g) = 0 if and only if g2 = 0.
(b) There exists a basis v= {v1, . . . ,vn} of V such that the matrix Mv

v(g) of g with respect to v is
of the form 

λ 0 · · · 0
0 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 or


0 0 · · · 0
1 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0


according as λ 6= 0 or λ = 0.

S9.8 ( P s e u d o - r e f l e c t i o n s and r e f l e c t i o n s ) Let V be a finite dimensional K-
vector space. An automorphism f ∈ Aut K(V ) is called a p s e u d o - r e f l e c t i o n of V if
Rank( f − idV ) = 1. A pseudo-reflection f of V is called a d i l a t a t i o n (resp. t r a n s v e c -
t i o n or s h e a r i n g) if λ ( f − idV ) 6= 0 (resp. λ ( f − idV ) = 0), see Supplement S9.7.

(a) For f ∈ Aut K(V ) , show that the following conditions are equivalent :
(i) f is a pseudo-reflection of V .
(ii) The set Fix( f ) := {x ∈V | f (x) = x} of fixed points of f is a hyperplane in V .
(iii) There exist a vector y ∈ V , y 6= 0 and a linear form e ∈ V ∗, e 6= 0 on V such that f (x) =
x+ e(x) · y for every x ∈V .
Moreover, if these equivalent conditions are satisfied then f is a dilatation (resp. transvection)
according as e(y) 6= 0 (res. e(y) = 0).
(b) Show that the inverse of a dilatation (resp. transvection) is a dilatation (resp. transvection).
( Hint : If f ∈ Aut K(V ) is a pseudo-reflection then write f−1 in the form idV +h . )
(c) Show that every f ∈ Aut K(V ) is a product of transvections and at most one dilatation. (Hint :
Prove by induction on m := Rank( f − idV ) . If m≥ 2 and z 6∈U := Ker( f − idV ) , then show that there exists
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f1 ∈Aut K(V ) which is a transvection or a product of two transvections such that f1(z) = f (z) and f1(x) = x
for every x ∈U . Now consider f−1

1 f .)

(d) A pseudo-reflection f ∈ Aut K(V ) of V is called a r e f l e c t i o n of V if f 2 = idV . If
CharK = 2, then f ∈ Aut K(V ) is a reflection of V if and only if f is a transvection of V . Suppose
that CharK 6= 2. For each reflection f ∈ Aut KV , there is a corresponding direction decomposition
V = V+⊕V− in the sense of Supplement S7.6. Further, the subspace of fixed-points Fix( f ) :=
{x ∈V | f (x) = x} of f is non-empty (for every point x ∈V , the mid-point 1

2 · x+
1
2 f (x) of x and

f (x) is a fixed point of f and Fix( f ) =V+) and is called the m i r r o r of f .

(e) For f ∈ Aut K(V ) , show that the following conditions are equivalent :

(i) f is a reflection of V .

(ii) There exist a vector y ∈V ,y 6= 0 and a linear form e ∈V ∗, e 6= 0 on V such that e(y) =−2
and f (x) = x+ e(x) · y for every x ∈V .

(iii) There exists a basis v= {v1, . . . ,vn} of V such that the matrix Mv
v( f ) of f with respect to v

is of the form 
−1 0 · · · 0

0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 .

In particular, if f is a reflection then it is a dilatation.

S9.9 Let V be n-dimensional K-vector space and let f ∈ EndK(V ). Show that (in all matrices given
below, entries at the non-marked places are 0)

(a) f is a projection, i. e., f 2 = f if and only if there exists a basis v= {v1, . . . ,vn} of V such that
the matrix Mv

v( f ) of f with respect to v is of the form

1
. . .

1
0

. . .
0


∈Mn(K) .

(Hint : By Supplement S7.21 f is a projection if and only if there exists a basis v= (v1, . . . ,vn) of V such that
f (vi) = vi , i = 1, . . . ,r, and f (vi) = 0, i = r+1, . . . ,n, or equivalently, the matrix Mv

v( f ) has the required
form.)

(b) Suppose that CharK 6= 2. Then f is an involution, i.e. f 2 = idV if and only if there exists a
basis v= {v1, . . . ,vn} of V such that the matrix Mv

v( f ) of f with respect to v is of the form

1
. . .

1
−1

. . .
−1


∈Mn (K) .

(Hint : Since g2 = 1
4(idV− f )2 = 1

4(idV −2 f+ f 2) = 1
4(2idV −2 f )+ 1

4( f 2− idV ) = g+ 1
4( f 2− idV ), we have

g2 = g if and only if f 2 = idV . Therefore, f is an involution of V if and only if g := 1
2(idV − f ) is a projection,

By the above part (a) g is a projection if and only if there exists a basis x = (x1, . . . ,xn) of V such that
g(xi) = xi , i = 1, . . . ,r, and g(xi) = 0, i = r+1, . . . ,n, and hence (since f = id−2g) f (xi) = xi−2xi =−xi ,
i = 1, . . . ,r, and f (xi) = xi−0 = xi, i = r+1, . . . ,n, or equivalently, the matrix of f with respect to the basis
xn, . . . ,x1 has the required form.)
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(c) Show that f is a transvection (see Supplement S9.8) if and only if there exists a basis v =
{v1, . . . ,vn} of V such that the matrix Mv

v( f ) of f with respect to v is of the form
1 0
1 1

1
. . .

1

 ∈Mn (K) .

(Hint : By definition, an automorphism f is a transvection if the fixed-point space Fix( f ) := H := {x∈V |
f (x) = x} of f is a hyperplane in V and if for one (and hence for every) x∈VrH the direction of the reflection
f (x)−x belongs to H. In this case choose a v1∈VrH and extend v2 := f (x)−x 6= 0 by adding v3 . . . ,vn to a
basis v2, . . . ,vn of H. Then v= (v1, . . . ,vn) is a basis of V, and we have f (v1)= v1+( f (v1)−v1) = v1+v2 and
f (v j) = v j for j = 2, . . . ,n. Mv

v( f ) has the required form. Conversely, if f has such a matrix representation
with respect to a basis v1, . . . ,vn, then f (v j) = v j for all j = 2, . . . ,n, and f (v1) = v1 + v2, and hence
H := {x∈V | f (x) = x} (n−1)-dimensional and for x := v1 /∈ H we have f (x)−x = v2 ∈ H, i. e., f is a
transvection.)

(d) Show that f is a dilatation (see Supplement S9.8) if and only if there exists a basis v =
{v1, . . . ,vn} of V such that the matrix Mv

v( f ) of f with respect to v is of the form
λ

1
. . .

1

 ∈Mn (K)

where λ ∈ K ,λ 6= 0,1. (Hint : By definition an automorphism f is a dilatation, if the fixed-point space
Fix( f ) := H := {x∈V | f (x) = x} of f is a hyperplane in V and if for one (and hence for every) x∈V \H
the direction of the reflection f (x)−x does not lie in H. In this case we put v1 := f (x)−x and extend v1 to
a basis v1,v2, . . . ,vn of H. Then f � H = idH , and f (x) = λx+h with h∈H, and so λ 6= 0, since otherwise
Im f ⊆ H a contradiction to the bijectivity of f , and further λ 6= 1, since otherwise f (x)−x ∈ H. Moreover,
f (v1) = f ( f (x)−x) = f (λx+ h)− f (x) = λ f (x)+ h− (λx+ h) = λ ( f (x)−x) = λv1 and f (vi) = vi for
i= 2, . . . ,n. Therefore Mv

v( f ) has a required form. The converse is trivial.)

S9.10 Let V be an n-dimensional K-vector space and let f :V →V be a linear operator. Then the
matrices Mv

v( f ) and Mv′
v′( f ) of f with respect to bases v and v′ of V , respectively, are equal if

and only if f is a homothecy a idV , a ∈ K.

S9.11 From the above Test-Exercise T8.8 deduce that : for a finite dimensional K-vector space V :
(a) The center Z(EndKV ) := { f ∈ EndKV | f g = g f for all g∈ EndKV} of the K-algebra EndKV ,
is the subalgebra {a idV | a ∈ K} of homothecies of V .
(b) The center Z(AutKV ) of the automorphism group AutKV of V is the subgroup {a idV | a ∈ K×}
of homothecies of V .
(c) What is the center Z(MI(K)) of the matrix algebra MI(K) resp. the group GLI(K)? where I
is a finite set.

T0.12 Let V be K-vector space of dimensions n, v = {u1, . . . ,ur,w1, . . . ,ws} be a K-basis of V ,
U := Ku1 + · · ·+Kur , W := Kw1 + · · ·Kws and let f ∈ EndK(V ) . Then
(a) The subspace U of V is invariant under f , i. e., f (U)⊆U if and only if the matrix Mv

v( f ) of
f with respect to v is of the form

a11 · · · a1r c11 · · · c1s
... . . . ...

... . . . ...
ar1 · · · arr cr1 · · · crs

0 · · · 0 b11 · · · b1s
... . . . ...

... . . . ...
0 · · · 0 bs1 · · · bss


∈Mr+s(K) .
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In this case a11 · · · a1r
... . . . ...

ar1 · · · arr

 ∈Mr(K) and

b11 · · · b1s
... . . . ...

bs1 · · · bss

 ∈Ms(K)

is the matrix of f |U with respect to the basis u= {u1 . . . ,ur} of U resp. the matrix of the K-linear
map f : V/U →V/U induced by f with respect to the (residue class-)basis w= w1, . . . ,ws} of
V :=V/U .
(b) Both the subspaces U and W of V are invariant under f , i. e., f (U)⊆U and f (W )⊆W if and
only if ci j = 0 for all 1≤ i≤ r ,1≤ j ≤ s in the matrix Mv

v( f ) of the part (a).

S9.13 The matrix Mv
v( f ) of the part a) is usually written as the block matrix

(
A C
0 B

)
, where

A ∈Mr(K) ,B ∈Ms(K) ,C ∈Mr(K) . Show that such a block matrix is invertible if and only if A
and B are invertible. Further, show that(

A C
0 B

)−1

=

(
A−1 −A−1CB−1

0 B−1

)
.

S9.14 The matrix
(

a c
b d

)
∈ M2(K) is invertible if and only if ad− bc 6= 0. In this case, its

inverse is
1

ad−bc

(
d −c
−b a

)
.

S9.15 Find the matrix of the linear map f :R2→R4 defined by

f (a1,a2) := (3a1 +3a2 , 2a1−a2 ,−5a1 +3a2 , 4a1−3a2)

with respect to the standard bases of R2 resp. R4; also find it with respect to the bases (1,1) , (1,2)
of R2 resp. (1,0,0,1) , (0,1,1,0) , (0,0,1,1) , (0,0,1,0) of R4.

S9.16 Suppose that the endomorphism f of Q3 have the matrix0 1 1
1 0 1
1 1 0


with respect to the standard basis e1,e2,e3 of Q3. Find the matrix of f with respect to the basis (?)
of Q3.

S9.17 Let I be a finite set. The map f : GLI(K)→ GLI(K) defined by A 7→ t A−1, (which
maps every matrix to its contra-gredient matrix) is an automorphism of the group GLI(K). More-
over, its inverse is itself. (Hint : f (AB) = t(AB)−1 = t(B−1A−1) = tA−1 tB−1 = f (A) f (B) . Further,
f
(

f (A)
)
= t
(

tA−1
)−1 =

(
A−1

)−1 = A and hence f 2 = id.)

S9.18 In Mn(K), for all a ∈ K× and all m ∈ Z, prove that
a 1 · · · 0 0
0 a · · · 0 0
...

... . . . ...
...

0 0 · · · a 1
0 0 · · · 0 a


m

=



am (m
1

)
am−1 · · ·

( m
n−2

)
am−n+2 ( m

n−1

)
am−n+1

0 am · · ·
( m

n−3

)
am−n+3 ( m

n−2

)
am−n+2

...
... . . . ...

...

0 0 · · · am (m
1

)
am−1

0 0 · · · 0 am


.

(Hint : We denote by Dn,1 := (δi+1, j)1≤i, j≤n = (δi, j−1)1≤i, j≤n ∈Mn(K) the (n×n)-matrix, in which the first
next-diagonal above the main-diagonal has 1 everywhere and all other coefficients are 0. More generally, we
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put Dn,k := (δi+k, j)1≤i, j≤n ∈Mn(K) the (n×n)-matrix, in which k-th next-diagonal above the main-diagonal
has 1 everywhere and all other coefficients are 0 everywhere. Then Dn,0 = En the identity matrix, and for
k∈N, we have (Dn,1)

k =Dn,k. From this the inductive-step from k to k+1 follows, since the element in the

i-th row and the `-th column of (Dn,1)
k+1 = (Dn,1)

k Dn,1 =Dn,kDn,1 is equal to
n
∑
j=1

δi+k, j δ j,`−1 = δi+k,`−1 =

δi+k+1,` , which is also the corresponding element of Dn,k+1. In particular, it follows that Dn
n,1 = Dn,n =

0. Now, the m-th power of the matrix aEn+Dn,1 is: (aEn+Dn,1)
m =

n

∑
k=1

(m
k

)
am−k(En)

m−k (Dn,1)
k =

n

∑
k=1

(m
k

)
am−kDn,k . This is precisely the given matrix on the right-hand side.)

S9.19 In Mn(K) with n−1 ∈ K×, prove that
1 1 · · · 1 0
1 1 · · · 0 1
...

... . . . ...
...

1 0 · · · 1 1
0 1 · · · 1 1



−1

=
1

n−1


1 1 · · · 1 2−n
1 1 · · · 2−n 1
...

... . . . ...
...

1 2−n · · · 1 1
2−n 1 · · · 1 1

 .

(Hint : It is enough to show that the product
(
1−δn−i+1, j

)
1≤i, j≤n ·

( 1
n−1 − δ j,n−`+1

)
1≤ j,`≤n is the identity

matrix. This follows from the fact that in the i-th row and `-th column of the product of these matrices is the
following element :

n

∑
j=1

(1−δn−i+1, j)
( 1

n−1 −δ j,n−`+1
)
=

n

∑
j=1

1
n−1 −

1
n−1

n

∑
j=1

δn−i+1, j−
n

∑
j=1

δ j,n−`+1 +
n

∑
j=1

δn−i+1, j δ j,n−`+1

= n
n−1 −

1
n−1 −1+δi` = δi` .)

S9.20 (a) ( B i n o m i a l i n v e r s i o n f o r m u l a ) Let n ∈N. From the equations

(1+ t) j =
j

∑
i=0

(
j
i

)
t i , t j = (1+ t−1) j =

j

∑
i=0

(−1) j−i
(

j
i

)
(1+ t)i , j = 0, . . . ,n ,

deduce that the matrices
(0

0

) (1
0

)
· · ·

(n
0

)
0

(1
1

)
· · ·

(n
1

)
...

... . . . ...

0 0 · · ·
(n

n

)

 and


(0

0

)
−
(1

0

)
· · · (−1)n(n

0

)
0

(1
1

)
· · · (−1)n−1(n

1

)
...

... . . . ...

0 0 · · ·
(n

n

)


in Mn+1(K) are inverses of each other.

(b) ( F o u r i e r - i n v e r s i o n f o r m u l a ) Let n ∈N∗ and ζ be a primitive n-th root of unity,
for example, ζ := exp(2πi/n) . Then the matrices

(ζ µν)0≤µ,ν<n and
1
n

(
ζ
−µν

)
0≤µ,ν<n

are inverses of each other in Mn(C) . (Proof : We have to show that
n−1
∑

ν=0
ζ µν 1

n ζ−νλ = δµλ . For λ = µ in-

deed
n−1
∑

ν=0
ζ µν 1

n ζ−νµ =
n−1
∑

ν=0

1
n = 1. For λ 6= µ we have

n−1

∑
ν=0

ζ
µν 1

n ζ
−νλ =

1
n

n−1

∑
ν=0

(
ζ

µ−λ
)ν

=
1
n

1−
(
ζ µ−λ

)n

1−ζ µ−λ
=

1−
(
ζ n
)µ−λ

n(1−ζ µ−λ )
=

1−1µ−λ

n(1−ζ µ−λ )
= 0. — Remark : More generally, the same assertion holds for an arbitrary

field K. – We say that an element ζ ∈ K is a p r i m i t i v e n - t h r o o t o f u n i t y if ζ generates a
subgroup of order n in the multiplicative group K× of the field K, for example, ζ := exp(2πi/n) ∈ C is a
primitive root of unity in the field C. Note that n 6= 0 in K. Otherwise K will have a prime characteristic
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p = CharK which is a divisor of n, i. e. n = pm with m ∈N and (ζ m− 1)p = ζ mp− 1 = ζ n− 1 = 0 and
hence ζ m−1 = 0 a contradiction to the hypothesis that ζ is a primitive n-th root of unity.)

S9.21 ( V a n d e r m o n d e - m a t r i c e s2) Let λ0, . . . ,λn be pairwise distinct elements of the

field K. For j = 0, . . . ,n , let f j(t) = ∏
i6= j

(t−λi)

(λ j−λi)
= a0 j +a1 jt + · · ·+an jtn . Then the matrices

(λ
j

i ) =

1 λ0 · · · λ n
0

...
... . . . ...

1 λn · · · λ n
n

 and (ai j) =

a00 · · · a0n
... . . . ...

an0 · · · ann


in Mn+1 (K) are inverses of each other. (Hint : Both these matrices are the transition matrices from the
basis t := {1, t, . . . , tn} to the basis f := { f0, . . . , fn} (check this!) of the space V = K{λ0,...,λn} of K-valued
functions on the set {λ0, . . . ,λn} and the other way, respectively, i. e. Mf

t(idV )= (ai j) and Mt
f(idV )=

(
λ

j
i

)
—

Matrices of this type (λ j
i ) are called V a n d e r m o n d e ’ s m a t r i c e s .)

S9.22 ( C a u c h y - m a t r i c e s3) Let λ1, . . . ,λn resp. µ1, . . . ,µn be pairwise distinct elements of
the field K such that λi +µ j 6= 0 for all i, j = 1, . . . ,n. Let g(t) := (t +µ1) · · ·(t +µn) and

f j(t) =
g(λ j)∏i 6= j(t−λi)

g(t)∏i 6= j(λ j−λi)
=

n

∑
i=1

ai j

t +µi
(partial fraction decompostion) .

Then the matrices(
1

λi +µ j

)
=


1

λ1+µ1
· · · 1

λ1+µn
... . . . ...
1

λn+µ1
· · · 1

λn+µn

 and (ai j) =

a11 · · · a1n
... . . . ...

an1 · · · ann


in Mn (K) are inverses of each other. Compute the elements ai j explicitly. (bf Hint : For the
calculation of the coefficients ai j, we shall use the method of calculation of the coefficient of 1/(t +µi) in
the partial fraction decomposition of f j(t) and rewrite the result by using the substitutions of the polynomial
h(t) := (t +λ1) · · ·(t +λn) :

ai j =
g(λ j) ∏ 6̀= j(−µi−λ`)

g′(−µi)∏ 6̀= j(λ j−λ`)
=

1
(µi+λ j)

g(λ j)

g′(−µi)

(−1)n−1 h(µi)

(−1)n−1 h′(−λ j)
=

1
(µi+λ j)

g(λ j)

g′(−µi)

h(µi)

h′(−λ j)
.

Now, by the choice of the ai j, the (k, j)-th coefficient of the matrix-product
(
1/(λk+µi)

)
(ai j) is

n

∑
i=1

1
λk+µi

·ai j = f j(λk) =
g(λ j) ∏i6= j(λk−λi)

g(λk)∏i6= j(λ j−λi)
= δk j ,

since numerator and denominator of the fractions are equal for k= j and if k 6= j the product in the numerator

is zero. – Matrices of the type
(

1
λi +µ j

)
1≤i≤m,
1≤ j≤n

, with with distinct elements λ1, . . . ,λm ∈ K and distinct

elements µ1, . . . ,µn ∈ K, are called C a u c h y - m a t r i c e s. The H i l b e r t - m a t r i x is a special case
of the Cauchy matrix, where λi + µ j = i+ j− 1. Every submatrix of a Cauchy matrix is itself a Cauchy
matrix.)

S9.23 Let v= (vi)i∈I and v′ = (vi)i∈I be bases of the finite dimensional K-vector space V and let
v∗ resp. v′ ∗ be the corresponding dual bases of V ∗. If A=Mv

v′(idV ) is the transition matrix from

2In linear algebra, a Vandermonde matrix, named after A l e x a n d r e - T h é o p h i l e V a n d e r m o n d e
(1735-1796), who was a French musician, mathematician and chemist who worked with Bézout and Lavoisier; his
name is now principally associated with determinant theory in mathematics. Vandermonde was a violinist, and became
engaged with mathematics only around 1770.

3Named after B a r o n A u g u s t i n - L o u i s C a u c h y (1789-1857) a French mathematician who was an
early pioneer of analysis. He started the project of formulating and proving the theorems of infinitesimal calculus in a
rigorous manner, rejecting the heuristic principle of the generality of algebra exploited by earlier authors. He defined
continuity in terms of infinitesimals and gave several important theorems in complex analysis and initiated the study
of permutation groups in abstract algebra. A profound mathematician, Cauchy exercised a great influence over his
contemporaries and successors. His writings cover the entire range of mathematics and mathematical physics.
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the basis v to the basis v′ , then show that the contra-gradient matrix tA−1 is the transition matrix
Mv′∗

v∗ (idV ∗) from the basis v∗ to the basis v′ ∗ .

†S9.24 (C l a s s i c a l s p a c e - t i m e - w o r l d) Perhaps the greatest obstacle to understand the
theories of special and general relativity 4 arises from the difficulty in realising that a number of
previously held basic assumptions about the nature of space and time are wrong. We therefore spell-
out some key assumptions about space and time. We can consider space and time (≡ space-time 5)
to be a continuum composed of e v e n t s, where each event can be thought as a point of space at
an instant of time.
Up to now we have only considered the universe S over the vector space VS of translations, and
time was ignored. Classically, time is a real affine line T . The corresponding vector space is
denoted by VT ; for the measurement of time, we choose a basis τ of VT , pointing into the “future”,
i.e. for given moments t1 and t2 in T , we say that “t1 comes before t2” if the vector −→t1t2 has a
representation aτ with a positive real number a (a r r o w i n t h e d i r e c t i o n o f t i m e) .
The motion of a free particle on a line in the universe gives an isomorphism of this line onto T . The
most naive description of the space-time-world as a whole is done through the four-dimensional
product space S×T which is, in a natural way, an affine space over theR-vector space VS×VT . Both
the projections of S×T onto S and T are affine maps. They associate to every w o r l d - p o i n t
in S×T its position resp. its time. The fibres of these projections are the points with the same
position resp. time.
It has been known from early times — at least from the time of Aristotle – that it does not make sense
to talk about two events taking place at different times at the same place. Description of position is
only possible relative to a frame of reference; one cannot distinguish any one of these frames of
reference as a fixed frame of reference. On the other hand, in the area of classical physics one has
the concept of simultaneousness : Two distinct world-points are n o t s i m u l t a n e o u s if and
only if (at least in the mental experiment) the same mass-point can occupy both these world-points.
Therefore, one describes the classical space-time-world as a four dimensional real affine space
E with an affine (non-constant) map z : E → T from E onto the time T . For an event P ∈ E, we
call z(P) the t i m e at which the event P takes place. The fibres of the affine map z define the
space-directions. Our universe, which we have handled so far, was always such a fibre. All these
fibres are parallel to the three-dimensional subspace VS of the vector space VE corresponding to E.

Two world-points P and Q in E differ from each other by the vector
−→
PQ. P and Q are simultaneous

if and only if
−→
PQ ∈VS. Therefore the vectors in VS are called s p a c e - l i k e vectors. Every vector

in VE , which is not a space-like vector, is called t i m e - l i k e. The world-points representing
the motion of a free particle m1 (which is not subject to any outer forces), form an affine line
g1 =Rv1 +P1 in E, the so called w o r l d - l i n e of these mass-points. It is parallel to the line
Rv1 in VE generated by some time-like vector v1 (G a l i l e a n l a w o f i n e r t i a) . Then the
line g1 representing the time and the affine subspace VS +P1 give a decomposition of E into space
and time (as above) . After normalising the vector v1 by the condition z0(v1) = τ , where z0 is the
linear part of z, this vector v1 is called the a b s o l u t e or f o u r - v e l o c i t y of the mass-point
under consideration.
If m2 is another mass-point with the absolute velocity v2 (moving freely without being subject to
outer forces) , then v2− v1 ∈VS is a space-like vector. It is called the r e l a t i v e v e l o c i t y

4The general theory of relativity is one of the greatest intellectual achievements of all time. Its originality and
unorthodox approach exceed that of special relativity. And for so more than special relativity, it was almost completely
the work of a single man, A l b e r t E i n s t e i n (1879-1955). The philosophic impact of relativity theory on the
thinking of man has been profound and the vistas of science opened by it are literally endless.

5H e r m a n n M i n k o w s k i (1864-1909) referred to space-time as t h e w o r l d, hence events are w o r l d -
p o i n t s and a collection of events giving history of a particle is a w o r l d - l i n e. Physical laws on the interaction
of particles can be thought of as the geometric relation between the world-lines. In this sense Minkowski maty be said
to have geometrized physics.
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o f m2 w i t h r e s p e c t t o m1.

The simultaneousness as defined above requires arbitrary large relative velocities. Since obser-
vations suggest that arbitrary large velocities cannot occur, one tries to abandon the notion of
simultanousness. A first step in this direction is the special theory of relativity.
As automorphisms of the classical space-time-world E described above we shall consider the
affinities f of E, which are compatible with the time map z :E → T . By this we mean that there
exists an affinity fT :T → T (which is necessarily uniquely determined) such that z◦ f = fT ◦ z :

E
f //

z
��

E

z
��

T
fT // T

These automorphisms f of E form a subgroup G of the affine group A(E) of E. This subgroup G
is called the a f f i n e G a l i l e a n g r o u p . An affinity f in A(E) belongs to G if and only if
its linear part maps the vector space VS of the space-like vectors into itself. By G0 we denote the
subgroup of automorphisms h of VE with h(VS) ⊆ VS. Then the map G→ G0 defined by f 7→ f0
is a surjective group homomorphism, and its kernel is the group T(E) of all translations of E. In
particular, G/T(E)∼= G0 .
Sometimes the subgroup of all f ∈ G such that the time-part fT is the identity, is also called the
affine Galilean group.

S9.25 With the notations and concepts as in the above Test-Exercise T8.21, let v1 a time-like vector
and let v2,v3,v4 be a basis of the space VS the space-like vectors. Then show that the affinity f of
the space-time-world E belongs to the affine Galilei-group G if and only if its linear part f0 with
respect to the basis v1, . . . ,v4 of VE is a block-matrix of the form(

a 0
c B

)
, a ∈R× , B ∈ GL3(R) , c ∈R3 = M3,1(R) ,

Further, it preserves the time-orientation if and only if a > 0.

S9.26 Let A,B ∈ GLn(R) be inverses of each other with all coefficients are ≥ 0. Then show that
every row and every column of A and B has only one non-zero coefficient. ( Remark : Geometrically
the hypothesis mean: A and A−1 maps the cone Rn

+ ⊆Rn into itself. )

S9.27 (a) Compute the rank of the following matrices over Q :
1 1 1
−2 −1 0

0 −1 −2
3 4 5

 ,


1 2 2 −1
2 4 6 −4
5 10 10 −5
3 6 6 3

 ,


1 3 1 −2 −3
1 4 3 −1 −4
2 3 −4 −7 −3
3 8 1 −7 −8

 .

(b) Let K be an arbitrary field. Compute the rank of the 4×4 matrix (magic-square) given in the
Supplement S6.27 depending on the characteristic CharK of K. Further, compute the rank of the
following n×n-matrix : 

1 2 . . . n
n+1 n+2 . . . 2n

...
... . . . ...

(n−1)n+1 (n−1)n+2 . . . n2

 .
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S9.28 Compute the rank of the matrices A,B,AB,BA over Q for

A :=


−2 0 −5 0 1 6
−1 2 2 2 2 0

4 −2 −2 1 1 0
2 0 4 −2 5 3
0 3 6 −2 5 4

 , B :=


2 2 1 1 1
0 3 −2 1 2
4 1 4 1 0
3 −1 0 −4 3
5 1 1 −3 4
0 −1 −1 −2 1

 .

S9.29 Prove the assertion on the ranks of matrices corresponding to the assertions on the ranks
of linear maps given in Supplement S6.17 and Supplement S6.18 : For matrices A ∈Mm×n(K) ,
B ∈Mn×`(K) and C ∈M`×p(K) , show that ;
(a) (S y l v e s t e r ’ s i n e q u a l i t y)

Rank A+RankB−n ≤ Rank AB ≤ min{RankA , RankB} .
(b) (F r o b e n i u s i n e q u a l i t y)

Rank AB+Rank BC ≤ Rank B+Rank ABC .

S9.30 Determine which of the following matrices are invertible over Q and in the appropriate cases
compute the inverse matrix :1 −1 0

1 0 1
1 1 2

 ,

1 1 2
1 2 1
1 1 1

 ,

1 3 2
2 2 2
3 1 2

 ,


1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1

 ,


5 2 3 −4
8 3 5 7
7 2 4 6
6 2 3 5

 ,


2 5 −3 −2
−2 −3 2 −5

1 3 −2 2
1 6 −4 −3

 .

S9.31 Determine which of the following matrices are invertible over C and in the appropriate cases
compute the inverse matrix : 1 0 1+ i

0 1 i
1− i −i 1

 ,

2 0 i
1 −3 −i
i 1 1

 ,

 1 i −i
2i−1 2+ i i

i 1+ i 0

 .

S9.32 Let I, J be finite sets and let A ∈MI,J(K) .
(a) For every sub-matrix U of A , RankU≤ RankA .
(b) The rank of A is the maximum of the ranks of the invertible square sub-matrices of A .
In particular, if A= (ai j), r := RankA , then there is an injective maps σ , τ from [1,r] into I resp.
J such that (aσ(i)τ( j))1≤i≤r,1≤ j≤r is invertible.
(c) Let K be a subfield of the field L. Then show that RankKA= RankLA.
( Hint : see Supplement S7.36 (a). ) Further, show that A is invertible over K if and only if A is
invertible over L. ( Remark : Naturally, then the inverses over K and over L are same. )

S9.33 Prove the Theorem 8.B.3 by using the Supplement S9.6 : Let I and J be finite sets and let
A = (ai j) ∈MI,J(K) be an I× J-matrix. Then RankA = Rank tA , i. e. the column-rank of A is
equal to the row-rank of A. (Proof : Let f : KJ → KI be the linear map defined by f (x) = Ax. Then A
is the matrix of f with respect to the standard bases of KJ respectively KI . By Test-Exercise T8.6 there
exist bases v of KJ and w of KI such that the matrix D with respect to these bases have all zero coefficients
except 1’s on the first r places on the main-diagonal, where r = Rank f = RankA. If B respectively C are
the corresponding transition matrices (with v as columns of B and w as columns of C), then D= C−1AB by
Theorem 8.B.14 and it follows from Theorem 8.B.18 and Theorem 8.A.19 that D= tD= tB tA tC−1, i. e. D
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and tA describes the same linear map KI → KJ , (only with respect to different bases). Once again it follows
from the Supplement S9.6 that r= Rank tA.)

S9.34 Let A ∈Mm,n(K). Show that RankA≤ r if and only if there exist an m× r-matrix B and
an r× n-matrix C over K such that A = BC. Further, show that the following statements are
equivalent :
(i) RankA= r.
(ii) RankB= RankC= r.
(iii) Columns of B form a basis of the column-space of A.
(iv) Rows of C form a basis of the row-space of A.
Formulate the case r = 1 explicitly.
(Remark : For a matrix A ∈Mm,n(K) of rank r ≥ 1, (B,C) is said to be a r a n k - f a c t o r i s a t i o n
of A if A=BC and B ∈Mm,r(K) and C ∈Mr,n(K). This exercise show that every non-zero matrix has a
rank-factorisation. But it is not unique in general, for instance if (B,C) is a rank-factorisation of A, then
for every G ∈ GLr(K), (BG,G−1C) is also a rank-factorisation of A. However, if (B,C) and (B,C′) are
rank-factorisations of A, then C= C′ and similarly, if (B,C) and (B′,C) are rank-factorisations of A, then
B=B′.)

S9.35 Let a1, . . . ,an ∈ Kn be column-vectors. Show that the n×n-matrices ai
ta j ∈Mn(K) , 1 ≤

i, j ≤ n, form a K-basis of Mn(K), if and only if a1, . . . ,an, is a K-basis of Kn.

†S9.36 Let Pj = (a1 j, . . . ,am j) , j = 1, . . . ,n, be points in the affine space Am (K) = Km. The
dimension of the affine subspace of Am (K) generated by the points P1, . . . ,Pn is 1 less than the rank
of the matrix 

1 1 · · · 1
a11 a12 · · · a1n

...
... . . . ...

am1 am2 · · · amn

 ∈Mm+1,n (K) .

S9.37 The normalised lower (resp. upper) triangular matrices
LTn(K) := {

(
ai j
)
∈Mn(K) | ai j = 0 for all i < j and aii = 1 for all i = 1, . . . ,n} (resp.

UTn(K) := {
(
ai j
)
∈Mn(K) | ai j = 0 for all i > j and aii = 1 for all i = 1, . . . ,n}

in Mn(K) form a subgroup of GLn(K) .

S9.38 The center of the group GLn(K) is the subgroup K×En = {aEn | a ∈ K×} , where En is
the unit matrix. ( Hint : Use ABrs(1)−Brs(1)A = AErs−ErsA for 1 ≤ r,s ≤ n with r 6= s . See also
Supplement S9.11-(c). )

S9.39 Let r,s, i be pairwise distinct indices in {1, . . . ,n} and let a ∈ K. Then in GLn(K) show that
PrsBis(a) =Bir(a)Prs , PrsBrs(a) =Bsr(a)Prs .

S9.40 Let A ∈Mm,n(K) be a m×n-matrix of rank m .
(a) Show that there exists elementary matrices C1, . . . ,Cq ∈Mn(K) and a diagonal matrix D=
Diag(d,1, . . . ,1) ∈Mm,n(K) such that AC1 · · ·Cq =D .
(b) Show that there exists a normalised lower triangular matrix L ∈Mm(K) , a normalised up-
per triangular matrix R′ ∈Mm,n(K) , a diagonal matrix D = Diag(d1, . . . ,dm) ∈ GLm(K) and a
permutation matrix Pϕ ∈Mn(K) such that APϕ = LDR′ .
( Hint : Analogous to Theorem 8.C.8 respectively, Theorem 8.C.9. )

S9.41 Let A= (ai j) ∈ GLn(K) . For k = 1, . . . ,n , let

Ak :=

a11 · · · a1k
... . . . ...

ak1 · · · akk

 .
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Show that there exist a lower triangular matrix L and an upper triangular matrix R in GLn(K)
such that A = LR if and only if Ak ∈ GLk(K) for k = 1, . . . ,n . Remark : Therefore we have a
criterion : In the case of invertible matrices in Theorem 8.C.9 and Supplement S9.40 (b), when exactly we do
not need the permutation matrix. In particular, in the case of a positive or negative definite real-symmetric or
complex-hermitian matrices A , there exist L and R . Moreover, if we choose L normalized, then L and R
are uniquely determined.)

S9.42 Compute the product representation as in the Theorem 8.C.8 and Theorem 8.C.9 and Supple-
ment S.9.40 for the matrices

A :=

 1 2 4
1 3 5
−2 −1 2

 respectively A :=

0 1 1
1 0 1
1 1 0


and therefore determine A−1 in GL3(R) .

S9.43 Let

A=


2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 ∈M5(R) .

Compute a normalized lower triangular matrix L and an upper triangular matrix R such that
A= LR .

S9.44 Suppose that the well-known t r i - d i a g o n a l m a t r i x

A=



a1 c1 0 · · · 0 0
b2 a2 c2 · · · 0 0
0 b3 a3 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · an−1 cn−1
0 0 0 · · · bn an


∈Mn(K)

satisfy the equivalent conditions of the Supplement S9.41, i. e. all principal minors DetAk 6= 0 for
all k = 1, . . . ,n. Show that (by induction on n), there exists a normalised lower triangular matrix L
of the form

L=B21(β2)B32(β3) · · ·Bn,n−1(βn) =


1 0 · · · 0 0
β2 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0
0 0 · · · βn 1


and an upper triangular matrix R of the form

R=


α1 c1 · · · 0 0
0 α2 · · · 0 0
...

... . . . ...
...

0 0 · · · αn−1 cn−1
0 0 · · · 0 αn


in Mn(K) such that A= LR .

S9.45 Determine a representation as in 8.C.11 for the matrix

A=

0 4 −6
2 2 0
4 −2 6

 ∈M3(Z) .
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†S9.46 The natural numbers e1, . . . ,er ∈N∗ and s∈N in Theorem 8.C.12 are uniquely determined by
the finitely generated abelian group G. Moreover, if e1 > 1, then ei divides ei+1 for all i= 1, . . . ,r−1.
( Remark : This also provides the uniqueness proof for elementary divisors e1, . . . ,er in Theorem 8.C.11 (up
to the signatures). )

†S9.47 Using the Chinese Remainder Theorem 6.A.21, prove that the order of the finite cyclic
summands in Theorem 8.C.12 can be chosen as prime powers.

†S9.48 Prove Theorem 6.A.25 by using Theorem 8.C.12.
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