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S10.1 For n≥ 3, the symmetric group Sn is not abelian and for n≥ 4, the alternating group An is
not abelian.

S10.2 ( I n v e r s i o n s o f a p e r m u t a t i o n ) In the case I = {1, . . . ,n} the signature of a
permutation σ ∈S(I) =Sn can also be computed by counting the so-called i n v e r s i o n s .
For σ ∈ Sn a pair (i, j) ∈ I× I is called a i n v e r s i o n of σ if i < j, but σ(i) > σ( j). The
number of inversions of σ is denoted by z(σ). For example :
(1) The transposition 〈i, j〉 ∈ Sn, i < j, has the inversions (i, i+ 1) , . . . ,(i, j) ; (i+ 1, j) , . . . ,( j− 1, j) and
hence z(〈i, j〉) = 2( j− i)−1.
(2) In the permutation σ :=

(1 2 ... n
n n−1 ...1

)
∈ Sn all the pairs (i, j) with 1 ≤ i < j ≤ n inversions and hence

z(σ) =
(n

2

)
.

(3) The permutation σ :=
(12345

31524

)
∈S5 has the inversions (1,2), (1,4), (3,4) and (3,5) and hence z(σ) = 4.

In general, for an arbitrary permutation σ ∈Sn, Signσ = (−1)z(σ). (Proof : Since by Example (1)
above a transposition has an odd number of inversions, it is enough to prove that : For σ ,τ ∈Sn, (−1)z(στ) =

(−1)z(σ) (−1)z(τ). For σ ∈ Sn, clearly (−1)z(σ) = ∏
1≤i< j≤n

Sign
(
σ( j)−σ(i)

)
. Therefore (−1)z(στ) =

∏
1≤i< j≤n

Sign
(
σ(τ( j))−σ(τ(i))

)
= (−1)z(τ)

∏
1≤r<s≤n

Sign
(
σ(s)−σ(r)

)
= (−1)z(τ) (−1)z(σ) . The second

equality follows from the fact that exactly there are z(τ) pairs
(
τ(i) , τ( j)

)
, 1≤ i < j ≤ n such that their

components are interchanged and for this we need to consider the set of all pairs (r,s) , 1≤ r < s≤ n .)

S10.3 For the following permutations σ find the canonical cycle decompositions, representations
as the product of transpositions, the number of inversions, the signatures, the inverse permutation
σ−1 and the orders (in the permutation group) :
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(a)
(

1 2 3 4 5 6 7 8 9 10 11 12
3 2 9 10 8 12 4 6 1 11 7 5

)
∈ S12 . Moreover, compute the power σ51.

(Ans : Signσ = 1, Ordσ = 12.)

(b)
(

1 2 3 4 5 6 7 8 9 10 11 12
7 12 1 10 8 2 11 4 6 5 3 9

)
∈S12 . Moreover, compute the power σ51.

(Ans : Signσ =?, Ordσ =??.)

(c)
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 4 10 12 5 7 11 2 15 14 9 8 6 3 13

)
∈S15 .

(Ans : Signσ =?, Ordσ =??.)

(d)
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
15 8 17 4 7 14 20 19 18 13 10 6 11 5 3 12 1 9 2 16

)
∈S20 .

Moreover, compute the power σ100. (Ans : Signσ = 1, Ordσ = 84.)

(e)
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
17 19 11 6 12 2 20 8 10 18 1 13 5 15 9 4 3 ‘4 16 7

)
∈S20 .

Moreover, compute the power σ100. (Ans : Signσ = 1, Ordσ = 60 and σ100 = 〈5,12,13〉.)

S10.4 For a subset J ⊆ {1, . . . ,n} with J = { j1, . . . , jm} , j1 < · · · < jm , let σJ be the so-called
s h u f f l e - p e r m u t a t i o n :

σJ =

(
1 . . . m m+1 . . . n
j1 . . . jm i1 . . . in−m

)
∈Sn ,

where the numbers i1 < · · ·< in−m are the elements of the complement J ′ of J in {1, . . . ,n}. Show
that the number of inversions of σJ is z(σJ) = ∑

m
µ=1( jµ −µ) =

(
∑

m
µ=1 jµ

)
−
(m+1

2

)
. In particular,

Sign(σJ) = (−1)z(σJ) . (Hint : See Supplement S10.2. — The set of inversions of σJ is {(µ,ν) | µ =
1, . . . ,m , ν = m+1, . . . ,n and jµ > iν} . — Remark : In general, it is important and difficult to compute
the order of the shuffle-permutations in the permutation group Sn. For computations of the order of shuffle-
permutations and applications, see the article : [ D. P. Patil and U. Storch : Group Actions and Elementary
Number Theory. J. Indian Inst. Sci. 91 (2011), No. 1, 1-45. ] )

S10.5 Let I, J be two finite sets, |I|= m, |J|= n, and σ ∈S(I), τ∈S(J). Then compute the sign
of the following permutations :
(a) (x1,x2) 7→ (x2,x1) of I× I.
(b) σ] τ ∈S(I] J) with (σ] τ) |I = σ , (σ] τ) |J = τ .
(c) σ× τ ∈ S(I× J) with (σ× τ)(x,y) = (σ(x),τ(y)). (Hint : The permutation in (a) has the sign
(−1)(

m
2) and Sign(σ] τ) = Signσ ·Signτ and Sign(σ×τ) = (Signσ)n · (Signτ)m.)

S10.6 Let I be a finite set, |I| = m and Pr(I) be the set of the r-subsets of I, 0≤ r≤m. For
σ ∈S(I), compute the sign of the permutation induced by σ : Pr(σ) : J 7→σ(J) of Pr(I). (Ans :
Sign

(
Pr(σ)

)
= (Signσ)(

m−2
r−1), where we put

(m−2
−1

)
:= 0 for all m∈N. — Proof : Note that Pr(στ) =

Pr(σ)Pr(τ) for σ ,τ∈Pr(I). Therefore, it is enough to prove this assertion for a transposition σ = 〈a,b〉.
Since E0(I) = { /0}, we may assume that r≥ 1. If J∈Pr(I) and if either both a 6∈ J, b 6∈ J, or both a,b ∈ J,
then σ(J) = J. Further, σ interchanges the subsets {a}∪ J′ and {b}∪ J′, J′∈Pr−1(Ir{a,b}). Now, since
|Pr−1(Ir{a,b})|=

(m−2
r−1

)
, the assertion follows. •

— Remark : If m≥ 2, then by Supplement S10.5 (b), σ induces a permutation P(σ) on P(I) = ]m
r=0Pr(I)

and (Signσ )2m−2
= ∏

m
r=0 Sign(Pr(σ)).)

S10.7 A subgroup of the permutation group Sn, n ∈ N+, which contain an odd permutation
contains equal number of even and odd permutations. (Hint : Let σ ∈ H be an odd permutation. The
left translation λσ : H→ H, τ 7→ στ is bijective (with inverse λσ−1) and maps even permutations in H onto
odd permutations in H.)

S10.8 (a) A permutation σ ∈Sn, n ∈N+ which is of odd order is an even permutation.

(b) The square σ2 of a permutation σ ∈Sn, n ∈N+, is an even permutation.
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(Hint : If the order of σ is odd, then all cycles in the canonical decomposition of σ have also odd order, since
the order of σ is the LCM of these orders. Therefore, all these cycles are of odd lengths and hence even
permutations. Therefore, their product is also even. (b) follows from Signσ2 = (Signσ)2 = 1. — Remark :
More generally : If H ⊆ G is a subgroup of a group G of index 2, then a2 ∈ H for all a ∈ G. Note that (b)⇒
(a) : If σ is an element of an odd order m in an arbitrary group G, then σ = σm+1 = τ2 with τ := σ (m+1)/2.)

S10.9 Let σ = 〈i0, . . . , ik−1〉 be a cycle of length k≥ 2. What is the inverse of σ ? For which m∈Z,
σm is a cycle of length k ?

S10.10 Let σ ∈Sn and m ∈ Z. Every orbit of σ of length k decomposes into gcd(k,m) orbits of
the length k/gcd(k,m) of σm.

S10.11 Let I be a finite set. The inverse σ−1 of a permutation σ ∈S(I) has the same orbits and
same sign as those of σ .

S10.12 Let m = pα1
1 · · · pαr

r be the canonical prime factorisation of m ∈N∗. Then the permutation
group Sn contain an element of order m if and only if n ≥ pα1

1 + · · ·+ pαr
r . Give an element of

biggest possible order in the group S5. For which n ∈ N there exists an element of order 3000
(respectively 3001) in the group Sn?

†S10.13 Let T be a set of transpositions in the group Sn , n≥ 1. We associate the graph 1 ΓT to
T as follows : the vertices of ΓT are the numbers 1, . . . ,n and two vertices i and j with i 6= j are
joined by a edge if and only if the transposition 〈i, j〉 = 〈 j, i〉 belong to T . Let Γ1, . . . ,Γr be the
connected components of ΓT .
(a) The transpositions in T generate the group2 Sn if and only if ΓT is connected, i.e. if any two
vertices of ΓT can be joined by the sequence of edges in ΓT . The subgroup of Sn generated by T
is the product S(Γ1)×·· ·×S(Γr)⊆Sn .
(b) If T is a generating system for the group Sn , then T has at least n− 1 elements. (Hint :
Let τ1, . . . ,τm be the elements of T (may be with repetitions) with τ1 · · ·τm = id . Then m is even and
m≥ 2∑

r
ρ=1( |Γρ |−1) .)

(c) Every generating system of Sn consisting of transpositions contain a (minimal) generating
system of Sn with n−1 elements. (Remarks : The graphs corresponding to such a minimal generating
systems are called t r e e s . Every connected graph has a generating system which is a tree. See also remarks
in Subsection 6.D. — There are exactly nn−2 generating systems consisting n−1 transpositions (C a y l e y3).

1Simplicial Complexes and Graphs. A s i m p l i c i a l c o m p l e x K is a set V(K) called the v e r t e x s e t
(of K) and a family of subsets of V(K) , called s i m p l e x e s (in K ) such that (i) for each v ∈ V(K), the singleton
set {v} is a simplex in K. and (ii) if s is a simplex in K then so is every subset of s.
A simplex s in K is called a q-s i m p l e x if card(s) = q+1 and say that s has d i m e n s i o n q. For a simplicial
complex K , we put dim(K) := sup{q | there exists a q-simplex in K} and is called the d i m e n s i o n of K . A
simplicial complex of dimension ≤ 1 is called a g r a p h.
An e d g e in K is an ordered pair (v0,v1) of vertices such that {v0,v1} is a simplex in K . If e = (v0,v1) is an edge in
K, then we put v0 = α(e) and v1 = ε(e)) and are called the i n i t i a l and e n d points of e, respectively.
A p a t h γ in K of length n is a sequence e1e2 · · ·en of edges in K with ε(ei) = α(ei+1) for every 1≤ i≤ n−1. For a
path γ = e1e2 · · ·en, we put α(γ) = α(e1) and ε(γ) := ε(en) and are called the i n i t i a l and e n d points of γ .
A simplicial complex K is called c o n n e c t e d if for every pair (v0,v1) of vertices in K there exists a path α in K
such that orig(α) = v0 and end(α) = v1.

2The smallest subgroup H(ai | i ∈ I) of a group G containing the family ai, i ∈ I, of elements in G, is called the
s u b g r o u p g e n e r a t e d b y t h e f a m i l y ai, i ∈ I (it is the intersection of the subgroups of G containing all
ai, ∈ I) and the family ai, i ∈ I, is called a g e n e r a t i n g s y s t e m for the subgroup H(ai | i ∈ I). A family ai,
i ∈ I, is called a g e n e r a t i n g s y s t e m for the group G if G = H(ai | i ∈ I). We say that a group in f i n i t e l y
g e n e r a t e d if there exists a finite family a1, . . . ,ar ∈ G such that G = H(a1, . . . ,ar). Finite groups are clearly
finitely generated. The groups (Z,+) and (Zn,+n) are generated by single elements, namely by 1 and [1]n, respectively.
Such groups are called c y c l i c g r o u p s. The groups (Q,+) and (Q×, ·) are not finite generated! (remember the
Fundamental Theorem of Arithmetic)

3A r t h u r C a y l e y (1821-1895) an English mathematician and leader of the British school of pure mathematics
that emerged in the 19th century. The most important of Cayley’s work is in developing the algebra of matrices and
work in non-euclidean and n-dimensional geometry.
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For this prove somewhat general: For 1≤ k≤n, let fn,k denote the number of forests with the vertex set
{1, . . . ,n} and exactly k marked trees (so-called r o o t - t r e e s), then fn,n = 1, (n−k+1) fn,k−1 = n(k−1) fn,k
(by "grafting" one can get from a forest with k ≥ 2 root-trees n(k−1) forest with k−1 root-trees and by
removing a edge at a time from a forest with k−1 root-trees n−k+1 forest with k root-trees) and hence
fn,k =

(
n−1
k−1

)
nn−k, 1≤k≤n. — The required number is fn,1/n.)

(d) The transpositions 〈1,2〉 , 〈2,3〉 , . . . ,〈n− 1,n〉 (respectively 〈1,2〉 , 〈1,3〉 , . . . ,〈1,n〉) form a
minimal generating system of Sn . (Proof : By induction on j, show that every transposition 〈i, j〉, i < j,
is a product of transpositions of the form 〈1,2〉 , 〈2,3〉 , . . . ,〈n−1,n〉. Induction starts at j = i+1 and for
the inductive step, note that 〈 j, j+1〉〈i, j〉〈 j, j+1〉 = 〈i, j+1〉. For the minimality, suppose that 〈i, i+1〉
can be dropped. Then, since for all other remaining transpositions the subsets {1, . . . , i} and {i+1, . . . ,n}
are invariant, every permutation σ ∈Sn with σ(i) = i+1, in particular, 〈i, i+1〉, can not represented as a
product of the remaining transpositions. — For the second sequence of transpositions, every transposition
〈i, j〉, i < j is a product 〈1, i〉〈1, j〉〈1, i〉= 〈i, j〉. For minimality, suppose 〈1,〉i can be dropped. Then, since i
is fixed under all other remaining transpositions, a permutation σ ∈Sn for which i is not fixed, in particular,
〈1, i〉 can not be represented as a product of the remaining transpositions. • )

(e) An analogous assertion to the part (a) also hold for the alternating group. For a “triangle”
4 = {a,b,c} ∈P3({1, . . . ,n}), let α(4) denote the set of the two 3-cycles 〈a,b,c〉, 〈a,c,b〉 =
〈a,b,c〉−1 (which is independent of an order or of “orientation” of the4).
For 3-sets4 41, . . . ,4m ∈ P3({1, . . . ,n}), show that α(41)∪ ·· · ∪ α(4m) generates the group
A(Γ1)×·· ·×A(Γr)⊆An, where Γ1, . . . ,Γr are the connected components of the graph with vertex-
set {1, . . . ,n} and whose edges belongs to any one of the triangle 41, . . . ,4m. (Hint : By induction
on t prove that : If 41, . . . ,4t are 3-sets with 4i∩4i+1 6= /0 for i = 1, . . . , t−1, then α(41)∪·· ·∪α(4t)
generates the alternating group A(41∪·· ·∪4t).)
Deduce that : The minimal number of 3-cycles which generates the group An, n≥ 3, is d(n−1)/2e.
Give three 3-cycles which generates the group A5, but no two (= d(5−1)/2e) among them generate
the group A5.( Hint : Check that 〈1,2,3〉, 〈1,2,4〉, 〈1,2,5〉, is a minimal generating system for the group
A5. )

(f) For n≥ 3, the 3-cycles 〈1,2,3〉 , 〈2,3,4〉 , . . . ,〈n−2,n−1,n〉 (resp. 〈1,2,3〉 , 〈1,2,4〉 , . . . ,〈1,2,n〉 )
form a generating system for the alternating group An. ( Hint : Note that (e)⇒(f). )
(g) If n is even (resp. odd), then the cycles 〈1,2,3〉, σ := 〈1,2,3, . . . ,n〉 (resp. 〈1,2,3〉, τ :=
〈2,3, . . . ,n〉) generate the alternating group An. ( Hint : Since σ k〈1,2,3〉σ−k = 〈k+1,k+2,k+3〉 and
τk〈1,2,3〉τ−k = 〈1,k+2,k+3〉, k = 0, . . . ,n−3, it follows that (e)⇒(g). )

†S10.14 A permutation σ ∈Sn with s orbits has a representation as a product of n− s transpositions
and no representation as a product of less number of n− s transpositions. (Remark : This exercise has
a following natural generalisation : Let T ⊆Sn be a set of transpositions which generates the group Sn (for
example, by the given connected graph Γ = ΓT on the vertex set {1, . . . ,n} , see Supplement S10.12 (a)). For
σ ∈Sn determine the minimum `(σ) = `T (σ) of the m∈N, for which there is a representation σ = τ1 · · ·τm
with τi∈T . Incidentally, `(σ) = `(σ−1) , and d(σ1,σ2) := `(σ2σ

−1
1 ) , σ1,σ2∈Sn, is a metric on Sn. Further,

the left- and right-translations λτ : Sn→Sn, σ 7→ τσ and ρτ : Sn→Sn, σ 7→ στ are distance preserving
(for this, it enough to check that d(τσ1,τσ2) = `(τσ2 · (τσ1)

−1)`(τσ2σ
−1
1 τ−1) = `(σ2σ

−1
1 ) = d(σ1,σ2) and

similarly, d(σ1τ,σ2τ) = d(σ1,σ2) for every transposition τ ∈Sn). For ΓT , besides the complete graphs, one
can also consider the following examples :

1
1 1

2
2

23
3

n
n

n
etc.

For the first of these graph see Exercise 10.2. For T ⊆ T ′, it is clear that `T ′ ≤ `T .)

S10.15 (a) The cycles 〈1,2〉 , 〈2, . . . ,n〉 generate the group Sn , n≥ 2. (Proof : Since ord 〈2,3, . . . ,n〉=
n−1, 〈2,3, . . . ,n〉n−1 = id and 〈2,3, . . . ,n〉n−2 = 〈2,3, . . . ,n〉−1. By Supplement S10.13 (d), it is enough to
prove that every transposition of the form 〈1, j〉 is a product of given cycles. This is proved by induction on j.

4For any r ∈N, let Pr(I) denote the subset of the power set P(I) of a set I consisting of subsets J ⊆ I of cardinality
exactly r. With this r-s e t is an element Pr({1, . . . ,n}), i. e. a subset of {1, . . . ,n} of cardinality r.
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Induction begins at j=2 and the inductive step follows from 〈1, j+1〉= 〈2,3, . . . ,n〉〈1, j〉〈2,3, . . . ,n〉−1 =
〈2,3, . . . ,n〉〈1, j〉〈2,3, . . . ,n〉n−2 .)

(b) The cycles 〈1,2〉 , 〈1,2, . . . ,n〉 generate the group Sn , n≥ 2. More generally : if k,n ∈N are
natural numbers with 1 < k ≤ n, then the cycles 〈1,k〉, 〈1,2, . . . ,n〉 generate the group Sn if and
only if gcd(k−1,n) = 1. In particular, the cycles 〈1,n〉, 〈1, . . . ,n〉 generate the group Sn, n ≥ 2.
( Hint : Use Supplement S10.12 (d). )

S10.16 ( B o s s - P u z z l e ) Let r,s ∈N∗, r,s≥ 2. In an right side box there are rs−1 numbers
1,2, . . . ,rs−1 are arranged in a r× s-rectangle (as shown in the left-rectangle which is made up of
equal rs sliding square-blocks) by the permutation

ν =

(
1 2 3 · · · rs−2 rs−1
ν1 ν2 ν3 · · · νrs−2 νrs−1

)
∈Srs−1

ν1 · · · νs−1 νs

νs+1 · · · ν2s−1 ν2s

... · · ·
...

...
ν(r−1)s+1 · · · νrs−1 #

1 · · · s−1 s
s+1 · · · 2s−1 2s

... · · ·
...

...
(r−1)(s−1)+1 · · · rs−1 #

The lower-right corner square-block marked with # is kept free. The goal is to reposition the
square-blocks by sliding the square-blocks (one at a time) into the standard-configuration (shown in
left-hand table). Show that this possible if and only if the permutation ν ∈Srs−1 is even.
(Remark : The special case r = 4 and s = 4 is the (original) 15-puzzle 5:

This puzzle has inspired a sizable number of articles and references in the mathematical literature. Most
references explain the impossibility of obtaining odd permutations, but the result that every even permutation
is indeed possible is proved by few authors and a number of them give unnecessarily complicated explanations.
Indeed, H e r s t e i n and K a p l a n s k y in (see: [Herstein, I. N. and Kaplansky, K.: Matters Mathematical,
Chelsea, New York, 1978, 114-115]) write that “no really easy proof seems to be known”. — Hint : A s i m -
p l e m o v e interchanges the blank-square # with adjacent to it; for example, there are two beginning
simple moves, namely, either interchange # and νrs−1 or interchange # and ν(r−1)s. To analyze the game,
note that each simple move is a special kind of transposition, namely, one that moves # . Moreover,
performing a simple move corresponding to a special transposition τ from a position corresponding to
the permutation σ yields a new position (corresponding to the permutation τσ ). For example, if ν is the
position above and τ = 〈#,νrs−1〉, then τν(#) = τ(#) = νrs−1, τν(rs−1) = τ(νrs−1) = # and τν(i) = i for
all other i. Therefore to come to the standard position, one needs special transpositions τ1,τ2, . . . ,τm such

5The 15-puzzle (also called G e m P u z z l e, B o s s P u z z l e, G a m e o f F i f t e e n, M y s t i c S q u a r e
and many others) was "invented" by N o y e s P a l m e r C h a p m a n, a postmaster in Canastota, New York as early
as 1874. The game became a craze in the U. S. in February 1880, Canada in March, Europe in April, but that craze had
pretty much dissipated by July.
S a m u e l L o y d (1841-1911) an American chess player-composer, puzzle author, and recreational mathematician,
claimed from 1891 until his death in 1911 that he invented the 15-puzzle. This is false — Loyd had nothing to do with
the invention or popularity of the puzzle. Later interest was fuelled by Loyd offering a $1,000 prize for anyone who
could provide a solution for achieving a particular combination specified by Loyd, namely reversing the 14 and 15, i. e.
σ = 〈14,15〉. This was impossible, as had been shown over a decade earlier by J o h n s o n and S t o r y (1879), (see:
[Johnson, W. W.; Story, W. E.: Notes on the 15-Puzzle, American Journal of Mathematics, 2 (4), (1879), 397-404])
as it required an even permutation. R o b e r t J a m e s “ B o b b y ” F i s c h e r (1943-2008) an American chess
Grandmaster and the 11-th World Chess Champion, was an expert at solving the 15-Puzzle and had demonstrated on
Nov. 8, 1972 a solution within 25 seconds. Today the puzzle appears on some computer screen savers and a version
is distributed with every Macintosh computer. For larger versions of the n-puzzle, finding a solution is easy, but the
problem of finding the shortest solution is NP-hard (??).
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that τm · · ·τ2τ1ν = id. Each simple move takes # up, down , left or right. Therefore the total number m of
moves is u+d + `+ r , where u, d, `, r are the numbers of up, down, left, right moves, respectively. If #
is to return at the position where it was, then u = d and `= r. Therefore the total number of moves must
be m = 2u+2r even. The permutation ν ∈S16 corresponding to the configuration in the above picture is
ν = 〈1,15,14,13,3,2〉〈4,12,11,5〉〈6,10〉〈7,9,8〉 is an odd permutation and hence it is not possible to bring
it to the standard configuration. For the converse, use Supplement S10.13 (f) to reduce the problem to the
cases s = 2, r = 2 or 3. — The permutations for which this is possible form a subgroup of Sn, in fact, it is
the a l t e r n a t i n g g r o u p An on n symbols.
— How to solve the 15-Puzzle for the magic square painted in the Dürers painting (where the number 16
represents the empty square, see the right picture above)?
— How can one convert the sequence of alphabets on the left side into the quotation of J. Sylvester (1814-1897)
given on the right side. (see also a book by J. DieudonnÃl’ (1906-1992)).

— For more such problems of this kind see : [Wilson, R.M.: Graph Puzzles, Homotopy, and the Alternating
Group, Journal of Combinatorial Theory (B) 16, 86-96 (1974).] )

S10.17 Let n ∈N+. Show that
(a) The number of permutations τ ∈Sn which commute with the permutation σ ∈Sn of the type
(ν1, . . . ,νn) is ν1! · · ·νn!1ν1 · · ·nνn . (Hint : These permutations form the centraliser CSn(σ) of σ , see
Example 9.A.20.)

(b) The number of involutions, , i. e., σ2 = id (called r e f l e c t i o n ) in S2n without any fixed
point in S2n is 1 ·3 · · ·(2n−1) = (2n)!/n!2n (∼

√
2(2n/e)n for n→ ∞).

(c) The number of involutions (reflections) in Sn is ∑k≥0

( n
2k

)(2k)!
k!2k .

(d) The number of permutations in Sn with exactly t orbits is the S t i r l i n g ’ s n u m b e r o f
f i r s t k i n d s(n, t) . ( — The S t i r l i n g ’ s n u m b e r s s(m,n), 0 ≤ n ≤ m, o f f i r s t k i n d

are defined by the equation:
(

x
m

)
=

1
m!

m

∑
n=0

(−1)m−n s(m,n)xn (and otherwise s(m,n) = 0). They clearly

satisfy the recursion-formula : s(0,n) = δ0n and s(m+1,n) = ms(m,n)+ s(m,n−1).)

(e) The number of permutations in Sn such that its canonical decomposition contain a (and hence
exactly one) cycle of length >n/2, is n!

(
∑n/2<k≤n 1/k

)
(∼ n! ln2 for n→∞). (Proof : Let 1<k≤ n.

A cycle 〈i0, . . . , ik−1〉 of length k in Sn is determined by the injective map {0, . . . ,k−1}→ {1, . . . ,n}, ν 7→ iν ,
where two such injective maps σ1 and σ2 define the same cycle if and only if σ1 = σ2 ϕ with an element
ϕ in the cyclic subgroup of S({0, . . . ,k− 1}) generated by the cycle 〈0, . . . ,k−1〉. Therefore, there are
[n]k/k = n!/k · (n−k)! cycles of length k in Sn. Since a permutation in Sn has at most one cycle of the length
k> n/2, for such a cycle there are exactly (n−k)! permutations such that this cycle occurs in its canonical

decomposition. Therefore altogether, there are ∑
n/2<k≤n

(n−k)! · n!
k · (n−k)!

= n! ∑
n/2<k≤n

1/k = n!(Hn−Hn/2)

permutations in Sn such that a cycle of length >n/2 occur in their canonical decomposition (Hx= ∑
k∈N∗,k≤x

1/k

for x∈R×+ are the h a r m o n i c n u m b e r s.) The asymptotic representation ∑
n/2<k≤n

1/k ∼ ln2 for

n→∞ follows directly from ∑
n/2<k≤n

1/k = ∑
1≤k≤n

(−1)k−1/k and
∞

∑
k=1

(−1)k−1/k = ln2 , or also from Hx =

lnx+ γ +O(1/x) for x→∞. •
— Remark : The probability that a permutation in Sn has a cycle of length > n/2 in its canonical de-
composition is Hn−Hn/2 and for n→ ∞ symptotically equal to ln2 = 0.693... . – For an application, see
Exercise 10.2.)
(f) The number of permutations in Sn without any fixed point is n!

(
∑

n
k=0(−1)k/k!

)
(∼ n!/e for

n→ ∞). (Hint : For counting use the Inclusion Exclusion Principle.)

S10.18 (a) Using the simplicity of the alternating group An, n≥ 5, prove that the group An is the
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only non-trivial normal subgroup of the group Sn for n≥ 5. ( Hint : See Example 9.A.23. )
(b) Let n≥2 be a natural number. Show that the group Sn is isomorphic to a subgroup of An+2,
but not isomorphic to any subgroup of An+1.

S10.19 (a) The groups A4 and V4 are the only non-trivial normal subgroups in S4.

(b) The group V4 is the only non-trivial normal subgroup in A4. ( Hint : See Example 9.A.23. )

S10.20 (a) For a natural number n≥ 2, Sign : Sn→{−1,1} is the only non-trivial group homo-
morphism. (Hint : 〈ab〉 and 〈cd〉 be two transpositions Sn . If σ ∈Sn be an arbitrary permutation with
a 7→ c, b 7→ d , then σ〈ab〉σ−1 = 〈cd〉 and so every homomorphism ϕ : Sn→{1,−1} have the same value
on all transpositions. If this value is 1, then ϕ; if it is −1, then ϕ = Sign.)

(b) Show that An = [Sn,Sn] (= the commutator subgroup 6 of Sn).

S10.21 Let I be a finite set and let σ ∈S(I) be a permutation of I. If the order Ordσ = pm is a
prim power, then n := |I| ≡ |Fixσ |(mod p) , where Fixσ := {a ∈ I | σ(a) = a} is the fixed point
set of σ . In particular, : (1) If n is not divisible by p, then σ has at least one fixed point. (2) If n
is divisible by p, then the number of fixed points of σ is also divisible by p. ( Remark : This is a
special case of the assertion at the end of Example 6.E.5. )

S10.22 Which of the following maps f :R2×R2→R are bilinear, symmetric resp. alternating?
(a) f

(
(x1,x2) ,(y1,y2)

)
:= x1 + y2 . (b) f

(
(x1,x2) ,(y1,y2)

)
:= x1y2 .

(c) f
(
(x1,x2) ,(y1,y2)

)
:= x1x2− y1y2 . (d) f

(
(x1,x2) ,(y1,y2)

)
:= x1y2− y1x2 .

(e) f
(
(x1,x2) ,(y1,y2)

)
:= x1y2 + y1x2 .

S10.23 Let V and W be K-vector spaces, I be a finite indexed set and f :V I →W be a multi-linear
map. Let g :U → V and h :W → X be K-vector space homomorphisms. Then h◦ f ◦gI :U I → X
is a multi-linear map, where gI is defined by gI((ui)

)
:=
(
g(ui)

)
, (ui) ∈U I . If f is symmetric

(respectively skew-symmetric, alternating), then so is h◦ f ◦gI .

S10.24 Let v j , j ∈ J be a basis of the K-vector space V and let w( ji), ( ji) ∈ JI be a family of
elements of the K-vector space W , where I is a finite indexed set. Then there exists a unique
K-multi-linear map f :V I →W such that f

(
(v ji)i∈I

)
= w( ji) , ( ji) ∈ JI . If V and W are finite

dimensional, then the K-vector space of the multi-linear maps from V I into W has the dimension
(Dim KV )|I| ·Dim KW .

S10.25 A n-linear map f :V n→W of K-vector spaces is alternating if f (x1, . . . ,xn) = 0 for every
n-tuple (x1, . . . ,xn) in which two consecutive components are equal. (Proof : By induction on d>0,
we shall show that f (x1, . . . ,xn) = 0 for all i, j ∈ {1, . . . ,n} with |i− j|= d, if in the n-tuple (x1, . . . ,xn) the
i-th and the j-th components are equal. The case d=1 is the hypothesis and so induction starts. For the
inductive step we choose a k ∈ {1, . . . ,n} in between i and j. Then |i−k| and | j−k| are smaller than d, and
hence by the induction hypothesis

0 = f ( . . . ,x+ y, . . . ,x+ y, . . . ,x, . . .) = f ( . . . ,x, . . . ,x, . . . ,x, . . .)+ f ( . . . ,y, . . . ,x, . . . ,x, . . .)
+ f ( . . . ,x, . . . ,y, . . . ,x, . . .)+ f ( . . . ,y, . . . ,y, . . . ,x, . . .) = f ( . . . ,x, . . . ,y, . . . ,x, . . .) ,

where only the i-th, k-th and j-th components in the arguments are noted, the remaining are not altered.)

S10.26 Let K be a field and let V , W be vector spaces over K. Let f : V n→ K be an alternating
multi-linear form on V and let g : V →W be a K-linear map. Show that the map

(x0, . . . ,xn) 7−→
n

∑
i=0

(−1)i f (x0, . . . ,xi−1 ,xi+1 , . . . ,xn)g(xi)

6 For an arbitrary group G, the subgroup generated (see Footnote 8) by the c o m m u t a t o r s [a,b] := aba−1b−1,
a,b ∈ G, is called the c o m m u t a t o r s u b g r o u p or the d e r i v e d g r o u p of G; it is usually denoted by
[G,G] or by D(G). Clearly, G is abelian if and only if [G,G] is trivial. More generally, [G,G] is a normal subgroup of G
and the quotient group G/[G,G] is abelian.
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is an alternating K-multi-linear map V n+1 →W . (Proof : The map is obviously multi-linear. By
Supplement S10.25 it is enough to show that it vanish on every (n+ 1)-tuple with two equal consecutive
components, say xi = xi+1 =: x. Since f is alternating, in the above sum all terms except the i-th and the
(i+1)-th term, are all 0. The remaining sum of two terms is:

(−1)i f (x0, . . . ,xi−1 ,xi+1 ,xi+2 , . . . ,xn)g(xi)+(−1)i+1 f (x0, . . . ,xi−1 ,xi ,xi+2 , . . . ,xn)g(xi+1)

= (−1)i
(

f (x0, . . . ,xi−1 ,x ,xi+2 , . . . ,xn)g(x)− f (x0, . . . ,xi−1 ,x ,xi+2 , . . . ,xn)g(x)
)
= 0.)

S10.27 Let A be a K-vector space of dimension n with a (n+1)-multi-linear map An+1→ A,
(x0, . . . ,xn) 7→ x0 · · ·xn+1. Then show that ∑σ∈Sn+1(Signσ)xσ0 · · ·xσn = 0 for all x0, . . . ,xn ∈ A.
(Hint : By Theorem 9.B.7 the map (x0, . . . ,xn) 7→ ∑σ∈Sn+1(Signσ)xσ0 · · ·xσn is alternating (n+1)-linear
map and by Corollary 9.B.6 it is 0, since DimA = n. – We mention the following example: Let A×A→ A
be a K-bilinear (or an arbitrary) operation (x,y) 7→ xy on A. Then ∑σ∈Sn+1(Signσ)xσ0 · · ·xσn = 0 for
all x0, . . . ,xn ∈ A, if we compute all the (n+1)-fold products with one and the same fixed given rule of
parentheses. — There are 1

n+1

(2n
n

)
possible rules of parentheses.)

S10.28 For the matrices

A :=


1 1 0 1
2 0 0 0
1 1 1 1
2 1 0 1

 and B :=


5 5 3 1
1 2 1 0
2 1 1 1
3 1 1 2


compute the adjoint matrices, the determinants and the product A ·AdjA and B ·AdjB.

S10.29 Determine for which a ∈R the following systems of linear equations over R has exactly
one solution and in this case find the solution by the Cramer’s rule :

ax1+ x2+ x3=b1

(1) x1+ax2+ x3=b2

x1+ x2+ax3=b3 .

x1+ x2− x2=b1

(2) 2x1+3x2+ax2=b2

x1+ax2+3x2=b3 .

(Answers : (1) This system of equations has a unique solution if and only if a 6∈ {1,−2} with the solution :

x1 =
b1(a+1)−b2−b3

(a−1)(a+2)
, x2 =

b1(a+1)−b1−b3

(a−1)(a+2)
, x3 =

b1(a+1)−b1−b2

(a−1)(a+2)

(2) This system of equations has a unique solution if and only if a 6∈ {2,−3} with the solution :

x1=
b1(a−3)+b2−b3

a−2
, x2=

b1(6−a)−4b2+b3(a+2)
(a−2)(a+3)

, x3=
b1(3−2a)+b2(a−1)−b3

(a−2)(a+3)
.)

S10.30 Let A = (ai j) be an n×n-matrix over the field K. For c1, . . . ,cn ∈ K×, show that :
Det(ai j) = Det

(
cic−1

j ai j
)

. In particular, Det(ai j) = Det
(
(−1)i+ jai j

)
.

S10.31 Let A and B be n×n invertible matrices over the field K. Then show that:

(a) Adj(AB) = AdjB ·AdjA . (b) AdjA−1 = (AdjA)−1 .

(c) Det(AdjA) = (DetA)n−1 . (d) Adj(AdjA) = (DetA)n−2A .

( Remark : All these formulas, except (b) are also valid for not-invertible matrices ; for (d) assume n > 1. )

S10.32 Let A be a non-invertible n×n-matrix over the field K, n≥ 1. Show that the rank of the
adjoint matrix AdjA is :

Rank AdjA=

{
1, if Rank A= n−1 ,
0, if Rank A< n−1 ,

Moreover, if RankA= n−1, then show that every non-zero column of AdjA generates the kernel
of A, i. e. the space of all x∈Kn with Ax= 0.

S10.33 The n×n-matrix A′ = (a′i j) obtained from the n×n-matrix A= (ai j) by reflection through
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the anti-diagonal, i. e., a′i j = an− j+1,n−i+1 . Then show that DetA′ = DetA, i. e.,∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1,n−1 a1n
a21 a22 · · · a2,n−1 a2n

...
... . . . ...

...
an−1,1 an−1,2 · · · an−1,n−1 an−1,n

an1 an2 · · · an,n−1 ann

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

ann an−1,n · · · a2n a1n
an,n−1 an−1,n−1 · · · a1,n−1 a1,n−1

...
... . . . ...

...
an2 an−1,2 · · · a22 a12
an1 an−1,1 · · · a21 a11

∣∣∣∣∣∣∣∣∣∣∣
.

(Hint : Use Det A = Det tA, see Theorem 9.D.1 and the permutation σ : {1, . . . ,n} → {1, . . . ,n}, i 7→
n− i+ 1 on the rows or columns of tA and use Rule (3) before Theorem 9.D.2 to conclude : Det tA′ =

Det
(

a′i j

)
=Det (an− j+1,n−i+1)=Det

(
an− j+1,σ(i)

)
= Sign(σ)Det

(
aσ( j),i

)
= Sign(σ)Sign(σ)Det (a j,i)=

(Sign(σ))2Det tA= Det A.)

S10.34 Let x1, . . . ,xn∈Kn be columns of the matrix A ∈Mn(K).
(a) Let I, J⊆ {1, . . . ,n} be (n−r)-element subsets with the complements I′= {i1, . . . , ir}, J′=
{ j1, . . . , jr}, 1≤ i1< · · · < ir≤n, 1≤ j1< · · · < jr≤n. In the matrix A replace the columns with
numbers j1, . . . , jr by the standard basis vectors ei1, . . . ,eir , then the determinant of this matrix is
the higher cofactor (−1)∑

r
ρ=1(iρ+ jρ )Det AI ,J , where the matrix AI ,J is obtained from the matrix A

by removing the rows and columns with numbers i1, . . . , ir and j1, . . . , jr, resp.
( Note that the usual cofactor (−1)i+ jAi j correspond to the (n−1)-element subsets I= {1, . . . , î, . . . ,n} and
J= {1, . . . , ĵ, . . . ,n}. — Proof : Interchanging the rows with numbers i1, . . . , ir in altogether ∑

r
ρ=1(iρ−ρ)

steps bring to the positions 1, . . . ,r and interchanging the columns with numbers j1, . . . , jr in altogether

∑
r
ρ=1( jρ−ρ) steps bring to the positions 1, . . . ,r, we obtain a block matrix of the form

(
Er A′

0 AI ,J

)
with

the determinant Det AI,J . •)
(b) Let B be another n×n-matrices with columns y1, . . . ,yn ∈ Kn. For a subset J ⊆ {1, . . . ,n}, let
CJ be the n×n-matrix with the columns z(J)1 , . . . ,z(J)n , where

z(J)i :=

{
xi , if i ∈ J ,
yi , if i /∈ J .

Show that
Det (A+B) = ∑

J⊆{1,...,n}
Det CJ .

(Hint : Det (A+B) = ∆e(x1 + y1, . . . ,xn + yn) = ∑
J⊆{1,...,n}

∆e(z
(J)
1 , . . . ,z(J)n ) = ∑

J⊆{1,...,n}
Det CJ .— Remark :

If B= Diag(b1, . . . ,bn) is a diagonal matrix, then Det CJ = bJ′Det AJ ,J , where bI = ∏i∈I bi for I⊆ {1, . . . ,}
and J′ is the complement J. Altogether, we have :

Det (A+Diag(b1, . . . ,bn)) = ∑
J⊆{1,...,n}

bJ′Det AJ ,J .)

S10.35 (a) Suppose that a column (or a row) of the n× n-matrix A has all entries 1. For the
cofactors (−1)i+ jAi j , i, j = 1, . . . ,n, of A, show that

n

∑
i=1

n

∑
j=1

(−1)i+ jAi j = DetA .

(b) Let A= (ai j) be an n×n-matrix over the field K with the cofactors (−1)i+ jAi j , i, j = 1, . . . ,n.
Further, let

I :=

1 · · · 1
... . . . ...
1 · · · 1

 ∈Mn(K)

is the matrix with all the coefficients are equal to 1. Show that

Det(A+aI) = DetA+a
n

∑
i=1

n

∑
j=1

(−1)i+ jAi j .
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(Hint : To apply Supplement S10.34 (b) with B= aI and with the introduced matrices CJ . If |J| ≤ n−2, then
two distinct columns of CJ are equal to t(a, . . . ,a) and hence Det CJ = 0. If J = {1, . . . , j−1, j+1, . . . ,n}, then
CJ have same columns as A except the j-th column which has all entries a. Expanding the determinant with

respect to the j-th column, we get Det CJ =
n
∑

i=1
(−1)i+ jaAi j . Finally, CJ =A for J = {1, . . . ,n}. Therefore, by

Supplement S10.34 (b), Det (A+aJn) = ∑
J⊆{1,...,n}

Det CJ = Det A+
n
∑
j=1

n
∑

i=1
(−1)i+ jaAi j . — Remark : Using

the Remark in Supplement S10.34, it follows that
Det (aJn+Diag(b1, . . . ,bn)) = b1 · · ·bn+a

n
∑
j=1

b1 · · · b̂ j · · ·bn.)

S10.36 Let K be a field and A=
(
ai j
)
∈Mn(K), n ∈N∗ be a matrix of rank ≤ 1. Show that :

Det (aE+A) = an +an−1
n

∑
i=1

aii for all a ∈ K .

S10.37 Let A= (ai j) ∈Mn(Q) be an invertible matrix with integer coefficients ai j . Show that the
coefficients of the inverse matrix A−1 are again integers if and only if DetA=±1.
(Hint : If B∈Mm(Z), m∈N, then Det B∈Z. Therefore, if A , A−1∈Mn(Z), then from (Det A)(Det A−1)=

Det(AA−1) = Det En = 1, it follows that Det A = Det A−1 ∈ {±1}. Conversely, if A ∈Mn(Z) and
Det A=±1, then A−1= (Det A)−1 AdjA=±AdjA ∈Mn(Z), since A and also AdjA ∈Mn(Z).)

S10.38 Let A ∈Mn(K) be an upper-triangular matrix. Then show that AdjA and A−1 (if A is
invertible) are also upper-triangular matrices.

S10.39 Let fi j , i, j = 1, . . . ,n be differentiable functions on D⊆K . Then show that∣∣∣∣∣∣∣∣∣
f11 · · · f1n
f21 · · · f2n
... . . . ...

fn1 · · · fnn

∣∣∣∣∣∣∣∣∣
′

=

∣∣∣∣∣∣∣∣∣
f ′11 · · · f ′1n
f21 · · · f2n
... . . . ...

fn1 · · · fnn

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
f11 · · · f1n
f ′21 · · · f ′2n
... . . . ...

fn1 · · · fnn

∣∣∣∣∣∣∣∣∣+ · · ·+
∣∣∣∣∣∣∣∣∣
f11 · · · f1n
f21 · · · f2n
... . . . ...

f ′n1 · · · f ′nn

∣∣∣∣∣∣∣∣∣ .

S10.40 If σ ∈S(I) is a permutation of the finite indexed I and let

Pσ = (δiσ( j)) ∈MI(K)

be the p e r m u t a t i o n m a t r i x a s s o c i a t e d t o σ . This is the matrix obtained from the
unit matrix EI by permuting the columns according to σ : The j-th column of Pσ is eσ( j) , see
Example 8.C.6. Then for σ ,τ ∈S(I) :
(a) DetPσ = Signσ . (b) Pστ =PσPτ . (c) (Pσ )

−1 =Pσ−1 = t(Pσ ) .

(Proof : (a) Obviously, Det Pσ = (Signσ)DetEI = Signσ (see Rule (3) before Theorem 9.D.2).
(b) Pσ = (δi,σ j) = (δσ−1i, j), Pτ = (δ j,τk). The (i,k)-th entry of the matrix PσPτ is ∑

n
j=1 δσ−1i, jδ j,τk =

δσ−1i,τk = δi,στk which is the (i,k)-th entry of the matrix Pστ . Or : Pσ is the matrix of the endomorphism
fσ : KI→KI , fσ (e j)= eσ( j), j∈ I, with respct to the standard basis ei, i∈ I, of KI . Then PσPτ is the matrix
of the composition fσ fτ : e j 7→eτ( j) 7→ eστ( j), and hence Pστ is the matrix of fστ .

— Remark : The homomorphisms σ 7→Pσ and σ 7→ fσ are canonical embeddings of the group S(I) in the
groups GLI(K) and Aut(KI), resp.

(c) PσPσ−1 =Pσσ−1 =Pid = EI , by (b) and hence (Pσ )
−1 =Pσ−1 . Moreover, (i, j)-th entry of tPσ is

δ j,σ i = δσ−1 j,i = δi ,σ−1 j which is the (i, j)-th entry of Pσ−1 . •)

S10.41 Let A = (ai j) ∈ MI(K) be a s k e w - s y m m e t r i c matrix (I finite indexed), i. e.,
tA=−A . If |I| is odd and if CharK 6= 2, i. e., 2 = 2 ·1K 6= 0 in K, then DetA= 0.
(Proof : By Theorem 9.D.1 Det A = Det tA = Det (−A) = (−1)|I|Det A = −Det A, since |I| is odd. It
follows that 2 ·Det A= 0, and hence Det A= 0 because 2 6= 0 in K. •)
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S10.42 Let A :=
(
ai j
)
∈Mn(Z) be the n× n-matrix defined by ai j :=

(
i

j−1

)
. Compute the

determinant Det A. ( Hint : What is ai j−ai−1, j? )

S10.43 (a) For two matrices A∈Mm,n(K) and B∈Mn,m(K) with m> n, show that Det (AB)= 0.
( Hint : Consider A and B in Mm,m(K) by filling the extra entries 0. )
(b) Let A= (ai j) ∈Mn(K) and B := (bi j) ∈Mn(K) with bi j := (−1)i+ jai j , 1≤ i , j ≤ n. Show
that Det A= Det B.

S10.44 Let K be a field and A ∈Mr(K) , B ∈Ms(K) , C ∈Mr,s(K) and 0sr = 0Ms, ,r(K). Then

Det
(
C A
B 0sr

)
= (−1)rs Det A ·DetB .

(Hint : Each of the last r columns of the matrix have interchanged with the first s columns and hence
altogether there are rs interchanges of columns and then apply the Block Matrix Theorem 9.D.4 :

Det
(
C A
B 0sr

)
= (−1)rs Det

(
A C
0sr B

)
= (−1)rs Det A ·DetB .)

S10.45 Prove the Product Formula 9.D.5 for determinants as follows :
Let A,B ∈Mn(K). By adding suitable multiples of the first n columns of the block-matrix(

A 0
−E B

)
to the last n columns transform this matrix to the block matrix(

A AB
−E 0

)
and then use Supplement S10.44.

S10.46 Let n ∈N be an odd natural number and A ∈Mn(R). Then there exists a real number t ∈R
such that Det(A+ tEn) = 0. (Hint : The determinant is a polynomial function of odd degree n in t and
hence by the Intermediate Value Theorem (see Footnote 4 in Exercise Set 10) has a zero in R. — Remark :
Note that Det (A+ tEn) = χ−A(t) is the characteristic polynomial χ−A of −A, see Subsection 11.A)

S10.47 Let f1, . . . , fn functions on the set D with values in the field K. Then show that f1, . . . , fn
are linearly independent in KD if and only if the function

(t1, . . . , tn) 7−→

∣∣∣∣∣∣∣
f1(t1) · · · f1(tn)

... . . . ...
fn(t1) · · · fn(tn)

∣∣∣∣∣∣∣
on Dn is not the zero-function. (Remark : See Theorem 5.G.17 — Determinants of this form are called
a l t e r n a n t or (particularly in Physics) S l a t e r ’ s D eterminant. For example the Vandermonde’s
determinant corresponding to fi := t i−1 , i = 1, . . . ,n , D := K , see the Exercise 10.6 (a) and the Cauchy’s
double-alternants, see the Exercise 9.5-(b).

S10.48 Let f1, . . . , fn be polynomial functions over K of deg < n−1, n ∈N∗ . For all t1, . . . , tn ∈
K , prove that : ∣∣∣∣∣∣∣

f1(t1) · · · f1(tn)
... . . . ...

fn(t1) · · · fn(tn)

∣∣∣∣∣∣∣= 0 .

S10.49 ( C a u c h y ’ s D o u b l e - a l t e r n a n t ) Let a1, . . . ,an, b1, . . . ,bn ∈K with ai+b j 6= 0
for all i, j = 1, . . . ,n . Show that

Det
(( 1

ai +b j

)
1≤i, j≤n

)
=

∏1≤i< j≤n(a j−ai) ∏1≤i< j≤n(b j−bi)

∏
n
i, j=1(ai +b j)

.

( Hint : Induction on n. — See also Supplement S9.22. )
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S10.50 For t1, . . . , tn, u1, . . . ,un ∈ C , compute∣∣∣∣∣∣∣∣∣
sin(t1 +u1) sin(t1 +u2) · · · sin(t1 +un)
sin(t2 +u1) sin(t2 +u2) · · · sin(t2 +un)

...
... . . . ...

sin(tn +u1) sin(tn +u2) · · · sin(tn +un)

∣∣∣∣∣∣∣∣∣ .
(Hint : The two cases n ≤ 2 and n > 2 separately. For n≥3, we apply the addition theorem for the sin
function and the Determinant product formula to note that

Dn =

∣∣∣∣∣∣∣∣
sin t1 cos t1 0 · · · 0
sin t2 cos t2 0 · · · 0

...
...

...
. . .

...
sin tn cos tn 0 · · · 0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
cosu1 cosu2 · · · cosun
sinu1 sinu2 · · · sinun

...
...

. . .
...

0 0 · · · 0

∣∣∣∣∣∣∣∣= 0 · 0 = 0 .

See also Supplement S10.17.)

S10.51 For elements a1, . . . ,an,b1, . . .bn, n∈N∗, of a field K, show that :

Dn :=

∣∣∣∣∣∣∣∣
1+a1b1 1+a1b2 · · · 1+a1bn
1+a2b1 1+a2b2 · · · 1+a2bn

...
... . . . ...

1+anb1 1+anb2 · · · 1+anbn

∣∣∣∣∣∣∣∣= 0 ,

if n≥3, and D1= 1+a1b1, D2= (a2−a1)(b2−b1).

S10.52 Let D be a set, t1, . . . , tn ∈D and f0, . . . , fn be linearly independent K-valued functions on
D such that the (n+1)×n-matrix  f0(t1) · · · f0(tn)

... . . . ...
fn(t1) · · · fn(tn)


has the maximal rank n . (because of the linear independence of f0, . . . , fn , this is the case in general,
see Supplement S10.47. In this case we say that the points t1, . . . , tn are in g e n e r a l p o s i t i o n with
respect to the f0, . . . , fn .) Then show that the function

t 7−→

∣∣∣∣∣∣∣∣∣
f0(t) f0(t1) · · · f0(tn)
f1(t) f1(t1) · · · f1(tn)

...
... . . . ...

fn(t) fn(t1) · · · fn(tn)

∣∣∣∣∣∣∣∣∣
is a non-trivial linear combination of the functions f0, . . . , fn , which vanish on the points t1, . . . , tn
and is uniquely determined up to a constant factor λ 6= 0,

S10.53 Let D be a set, E := {t1, . . . , tn} be a subset of D with n elements and f1, . . . , fn K-valued
functions on D with ∣∣∣∣∣∣∣

f1(t1) · · · f1(tn)
... . . . ...

fn(t1) · · · fn(tn)

∣∣∣∣∣∣∣ 6= 0 .

Show that the functions f1 |E , . . . , fn |E form a basis of KE . For arbitrary elements b1, . . . ,bn ∈ K ,
there exists a unique linear combination f of f1, . . . , fn with f (ti) = bi , i = 1, . . . ,n. This follows
from the equation ∣∣∣∣∣∣∣∣∣

f (t) b1 . . . bn
f1(t) f1(t1) · · · f1(tn)

...
... . . . ...

fn(t) fn(t1) · · · fn(tn)

∣∣∣∣∣∣∣∣∣= 0

by expanding in terms of the first column. (Remark : The uniquely determined function f is called
the solution of the i n t e r p o l a t i o n p r o b l e m f (ti) = bi , i = 1, . . . ,n , w i t h t h e f u n c t i o n s
f1, . . . , fn .)
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S10.54 Let f ∈ ZN∗ be number-theoretic function and let F ∈ ZN∗ be its s u m m a t o r f u n c -
t i o n o f f , i. e., F(n) := ∑

d |n
f (d), n ∈N∗. For n ∈N∗, show that the determinant of the matrix

F :=
(
F(gcd(i , j))

)
1≤i , j≤n ∈ Mn(Z) is equal the product ∏

n
m=1 f (m) . In particular, ( F o r -

m u l a o f H e n r y J . S . S m i t h7 ) DetF= ϕ(1) · · ·ϕ(n) = n!∏p∈P

(
1− 1

p

)[n/p]
, where

ϕ is the Euler’s totient function, see Supplement S1.3. (Hint : For the computation of Det F , we

consider the matrix M :=
(
µ i j
)

1≤i , j≤n, where µ i j :=
{

µ(i/ j) if j divides i ,
0 , otherwise .

, and µ : N∗ → Z is the

M ö b i u s f u n c t i o n8 defined by µ(n) := (−1)r, if n = p1 · · · pr is the product of r distinct prime
numbers, otherwise µ(n) = 0. Note that M is a lower triangular matrix and MF is an upper triangular
matrix with diagonal entries f (1), . . . , f (n) . This follows immediately from the so-called M ö b i u s i n -
v e r s i o n f o r m u l a : (a relation between a number theoretic function and its summator function)
f (m) = ∑

d |m
µ(m/d) ·F(d) , m ∈ N∗. The last formula of Smith follows from the fact that the summator

function of the Euler’s totient function ϕ is the function ψ :N∗→Z, n 7→ n, since n = ∑
d |n

ϕ(d) .

— Remarks : It is interesting to note that number-theoretic functions and their properties can be studied lucidly
by using the ring structure on ZN

∗
, where addition is defined point-wise and the multiplication is defined

using so-called D i r i c h l e t ’ s c o n v o l u t i o n : For f ,g ∈ZN∗, define ( f ∗g)(n) := ∑
d |n

f (d)g(n/d) .

With these addition and multiplication ZN∗ is a commutative ring — called the r i n g o f n u m b e r -
t h e o r e t i c f u n c t i o n s denoted by ZF(Z) and its elements are called n u m b e r - t h e o r e t i c
f u n c t i o n s. The multiplicative indenty in this ring is the function ε : N∗ → Z, defined by ε(1) = 1
and ε(n) = 0 for n ≥ 2. An element e ∈ ZF(Z) is a unit if and only if e(1) ∈ Z× = {±1}. Euler’s totient
function ϕ , the functions T, S :N∗→ Z with T(n) (resp. S(n)) the number of positive divisors (resp. the
sum of positive divisors) of n, the function ζ :N∗→ Z, ζ (n) := 1 for all n ∈N∗ are all number-theoretic
functions studied in elementary number theory. It is easy to check that ζ ∗ f is the summator function of
every f ∈ ZF(Z) ; ζ ∗ζ = T , ζ ∗ψ = S. Further, ζ ∈ ZF(Z)× and ζ−1 = µ is the Möbius function defined
above and hence f = µ ∗ (ζ ∗ f ) for every f ∈ ZF(Z). )

S10.55 (a) Let Pi = (a1i , . . . ,ani) , i = 0, . . . ,n be points in the affine space An(K) = Kn . Then
the Pi are affinely dependent if and only if∣∣∣∣∣∣∣∣∣

1 1 · · · 1
a10 a11 · · · a1n

...
... . . . ...

an0 an1 · · · ann

∣∣∣∣∣∣∣∣∣ .
(b) Let Pi = (a1i, . . . ,ani) , i= 1, . . . ,n be affinely independent points in An(K) =Kn . The equation
of the affine hyperplane H in An(K) generated by the points P1, . . . ,Pn is∣∣∣∣∣∣∣∣∣

1 1 · · · 1
x1 a11 · · · a1n
...

... . . . ...
xn an1 · · · ann

∣∣∣∣∣∣∣∣∣= 0 ,

i. e., the point P = (x1, . . . ,xn) ∈ Kn belong to H if and only if its component satisfy the above
(affine) equation. (See Supplement S9.36.)

7Henry John Stephen S m i t h ( 1 8 2 6 – 1 8 8 3 ) was an Irish mathematician remembered for his work in
elementary divisors, quadratic forms, and Smith-Minkowski-Siegel mass formula in number theory. In matrix theory
the S m i t h N o r m a l F o r m a normal form that can be defined for any matrix (not necessarily square) with
entries in a principal ideal domain (PID), e. g. Z, it is a diagonal matrix, and can be obtained from the original matrix
by multiplying on the left and right by invertible square matrices. In particular, since Z is a PID, so one can always
calculate the Smith normal form of an integer matrix. The Smith normal form is very useful for working with finitely
generated modules over a PID, and in particular for deducing the structure of a quotient of a free module.

8In 1832 A . F . M ö b i u s ( 1 7 9 0 – 1 8 6 8 ) defined Möbius function which is important in number theory
and combinatorics where it is used and generalized extensively.
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S10.56 Let P1 = (a11 ,a21) , P2 = (a12 ,a22) , P3 = (a13 ,a23) be three points in R2 which do not
lie on a line. Then show that :∣∣∣∣∣∣∣∣

1 1 1 1
x1 a11 a12 a13
x2 a21 a22 a23

x2
1 + x2

2 a2
11 +a2

21 a2
12 +a2

22 a2
13 +a2

23

∣∣∣∣∣∣∣∣= 0

is the equation of the circle passing through P1,P2,P3 .

S10.57 Let (ai j) and (bi j) be two n×n-matrices over the field K . Then show that :

n

∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n
... . . . ...

bi1 · · · bin
... . . . ...

an1 · · · ann[

∣∣∣∣∣∣∣∣∣∣∣∣
=

n

∑
j=1

∣∣∣∣∣∣∣
a11 · · · b1 j · · · a1n

... . . . ... . . . ...
an1 · · · bn j · · · ann

∣∣∣∣∣∣∣ .
(Hint : If (−1)i+ jAi j are the cofactors of (ai j), then by expanding the determinants by using the i-th row
respectively the j-th column we have the equality :

n

∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n
...

. . .
...

bi1 · · · bin
...

. . .
...

an1 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣
=

n

∑
i=1

n

∑
j=1

(−1)i+ jbi jAi j =
n

∑
j=1

n

∑
i=1

(−1)i+ jbi jAi j =
n

∑
j=1

∣∣∣∣∣∣∣
a11 · · · b1 j · · · a1n

...
. . .

...
. . .

...
an1 · · · bn j · · · ann

∣∣∣∣∣∣∣ .)

S10.58 Compute the following n×n-determinants over Q :

(a)

∣∣∣∣∣∣∣∣∣∣∣

1 n n · · · n
n 2 n · · · n
n n 3 · · · n
...

...
... . . . ...

n n n · · · n

∣∣∣∣∣∣∣∣∣∣∣
. (b)

∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 · · · n
2 1 2 3 · · · n−1
3 2 1 2 · · · n−2
...

...
...

... . . . ...
n n−1 n−2 n−3 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
.

Ans : = (−1)n−1n! Ans : = (−1)n−1(n+1)2n−1

(c)

∣∣∣∣∣∣∣∣∣∣∣

1 2 2 · · · 2
2 2 2 · · · 2
2 2 3 · · · 2
...

...
... . . . ...

2 2 2 · · · n

∣∣∣∣∣∣∣∣∣∣∣
. (d)

∣∣∣∣∣∣∣∣∣∣∣

1 2 3 · · · n−2 n−1 n
2 3 4 · · · n−1 n 1
3 4 5 · · · n 1 2
...

...
... . . . ...

...
...

n 1 2 · · · n−3 n−2 n−1

∣∣∣∣∣∣∣∣∣∣∣
.

Ans : = (−2)(n−2)! Ans : =−1)(
n
2)(n+1)nn−1/2

(Hints (a) Subtract the blast column from all other columns to get the upper triangular matrix with diagonal
entries 1−n,2−n,3−n, . . . ,1,n .)

S10.59 Let n∈N, n≥2. Compute the determinant of the following matrices from Mn(Z) :

(a)

∣∣∣∣∣∣∣∣∣∣
1 2 · · · n

n+1 n+2 · · · 2n
2n+1 2n+2 · · · 3n

...
...

...
...

(n−1)n+1 (n−1)n+2 · · · n2

∣∣∣∣∣∣∣∣∣∣
. (b)

∣∣∣∣∣∣∣∣∣
1 2 3 · · · n−1 n
1 1 1 · · · 1 1−n
1 1 1 · · · 1−n 1
...

...
...

...
...

...
1 1−n 1 · · · 1 1

∣∣∣∣∣∣∣∣∣ .
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(Hint : For the matrix (b) add all other columns to the first column and then successively interchange 1-st
column with n-th, 2-nd with (n−1)-th etc. and apply Supplement S10.60 (a). — Ans : (−1)(

n
2) n+1

2 nn−1 .)

(c)

∣∣∣∣∣∣∣∣∣∣∣

1 n n · · · n
n 2 n · · · n
n n 3 · · · n
...

...
... . . . ...

n n n · · · n

∣∣∣∣∣∣∣∣∣∣∣
.

S10.60 Verify the following determinant formulas for (n+1)× (n+1)-matrices with coefficients
in a field K. (At the places marked by ∗ one may take arbitrary elements of K.)

(a)

∣∣∣∣∣∣∣∣∣∣∣

a b b · · · b
b a b · · · b
b b a · · · b
...

...
... . . . ...

b b b · · · a

∣∣∣∣∣∣∣∣∣∣∣
= (a+nb)(a−b)n . (b)

∣∣∣∣∣∣∣∣∣∣∣

1 a1 a2 · · · an
1 a1 +b1 ∗ · · · ∗
1 a1 a2 +b2 · · · ∗
...

...
... . . . ...

1 a1 a2 · · · an +bn

∣∣∣∣∣∣∣∣∣∣∣
= b1 · · ·bn .

(c)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 ∗ ∗ ∗ · · · ∗ 1
b1 a2 ∗ ∗ · · · ∗ 1
b1 b2 a3 ∗ · · · ∗ 1
b1 b2 b3 a4 · · · ∗ 1
...

...
...

... . . . ...
...

b1 b2 b3 b4 · · · an ∗
b1 b2 b3 b4 · · · bn 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 · · · 1 1
b1 a1 a1 a1 · · · a1 a1
∗ b2 a2 a2 · · · a2 a2
∗ ∗ b3 a3 · · · a3 a3
...

...
...

... . . . ...
...

∗ ∗ ∗ ∗ · · · an−1 an−1
∗ ∗ ∗ ∗ · · · bn an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (a1−b1) · · ·(an−bn) .

(d)

∣∣∣∣∣∣∣∣∣∣∣∣∣

−a1 a1 0 · · · 0 0
0 −a2 a2 · · · 0 0
0 0 −a3 · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · −an an
1 1 1 · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n(n+1)a1 · · ·an .

S10.61 Prove the following determinant formulas for the n× n-matrices over a field K : Let
a1, . . . ,an, b1, . . . ,bn, c1, . . . ,cn−1 be elements of K and let

Dn :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b1 0 · · · 0 0
c1 a2 b2 · · · 0 0
0 c2 a3 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · an−1 bn−1
0 0 0 · · · cn−1 an

∣∣∣∣∣∣∣∣∣∣∣∣∣
(a) (Recursion formula) : Dk = akDk−1−bk−1ck−1Dk−2 , for all k = 2, . . . ,n .

(b) In part (a) put b1 = · · ·= bn−1 = c1 = · · ·cn−1 =: b and Dn := D(b ; a1, . . . ,an). Then

D(b ; a1, . . . ,an) = an D(b ; a1, . . . ,an−1)−b2 D(b ; a1, . . . ,an−2) for all n≥ 2.

(c) Compute the determinant D(b ; a1, . . . ,an) in the following cases :

(1) b = a1 = · · ·= an = 1.
(2) a1 = · · ·= an = 0.
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(3) K =K and b = 1, a1 = cosϕ , a2 = · · ·= an = 2cosϕ .∣∣∣∣∣∣∣∣∣∣∣

cos ϕ 1 0 · · · 0
1 2cosϕ 1 · · · 0
0 1 2cos ϕ · · · 0
...

...
... . . . ...

0 0 0 · · · 2cos ϕ

∣∣∣∣∣∣∣∣∣∣∣
= cos nϕ , ϕ ∈ C.

(Remark : For the modified T c h e b y c h e v P olynomial T̃n see the recursion-formula in (3)-(iii)
below. — Recall the definition and some properties of Tchebychev Polynomials :
For n ∈N the polynomials

Tn(X) :=
[n/2]

∑
k=0

(
−1

4

)k n
n− k

(
n− k

k

)
Xn−2k and Un(X) :=

[n/2]

∑
k=0

(
−1

4

)k(n− k
k

)
Xn−2k

are called T c h e b y c h e v p o l y n o m i a l s o f f i r s t a n d s e c o n d k i n d respectively.

Properties of Tchebychev polynomials.

(1) T0 = 2,T1 = X and Tn+2 = XTn+1− 1
4 Tn for every n ∈N.

(2) 2n−1Tn(cos(ϕ)) = cos(nϕ) for every n ∈N and ϕ ∈R.

(3) For n ∈N, put T̃n(X) := 2n−1Tn(X). Then :

(i) T̃0 = 1, T̃1 = X and T̃n+2 = 2XT̃n+1− T̃n for every n ∈N.

(ii) Let n ∈N. Then T̃n(1) = 1, T̃n(−1) = (−1)n and T̃n(0) =
{
(−1)n/2 if n is even
0 if n is odd.

(iii) T̃n(cos(ϕ)) = cos(nϕ) for every n ∈N and ϕ ∈R.

(4) Tn and T̃n have n-distinct real zeros in the open interval (−1,1), namely : cos((2k + 1)π/2n) for

k = 0, . . . ,n−1 and therefore Tn(X) =
n−1

∏
k=0

(
X− cos((2k+1)π/2n)

)
for every n≥ 1. )

(4) a1 = · · ·= an =: a.∣∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 · · · 0 0
b a b · · · 0 0
0 b a · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · a b
0 0 0 · · · b a

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

[n/2]

∑
k=0

(−1)k
(

n− k
k

)
an−2kb2k .

(d) In part (a) put b1 = · · ·= bn−1 =−c1 = · · ·− cn−1 =: b and Dn := ∆(b ; a1, . . . ,an). Then

∆(b ; a1, . . . ,an) = an∆(b ; a1, . . . ,an−1)−b2∆(b ; a1, . . . ,an−2) for all n≥ 2.

Further, for a1 = · · ·= an =: a,

∆(b ; a, . . . ,a) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 · · · 0 0
−b a b · · · 0 0

0 −b a · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · a b
0 0 0 · · · −b a

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

[n/2]

∑
k=0

(
n− k

k

)
an−2kb2k .

(Remark : For a = b = 1, the determinant ∆(1; 1, . . . ,1) is the F i b o n a c c i - n u m b e r fn+1 (the
n+1-term in the Fibonacci sequence f0 := 0, f1 : +1, fn := fn−1 + fn−2 for n≥ 2), which is equal to

(B i n e t ’ s f o r m u l a) : fn+1 :=
1√
5

(1+
√

5
2

)n+1

−

(
1−
√

5
2

)n+1
. See also Supplement S1.8.)
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S10.62 Compute the determinants of the following matrices in Mn(Z):

(a)

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 0 · · · 0 0 0
1 2 1 · · · 0 0 0
0 1 2 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 1 2 1
0 0 0 · · · 0 1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

( Hint : Use induction on n. See also Supplement S10.61 (c) (4) (a = 2 b = 1 ). )

(b)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 12 0 0 · · · 0 0 0 0
−1 1 22 0 · · · 0 0 0 0

0 −1 1 32 · · · 0 0 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 0 · · · −1 1 (n−2)2 0
0 0 0 0 · · · 0 −1 1 (n−1)2

0 0 0 0 · · · 0 0 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

( Hint : Use induction on n and recursion formula in Supplement S10.61 (c) (4) (a= 1, bi = i2, i= 1, . . . ,n−1,
and c1 = c2 = · · ·= cn−1 = 1 ). )

(c)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0

0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
( Hint : Expand using the first two columns and use Supplement S10.61 (d) (a = 2 and b = 1). )

S10.63 Let a1, . . . ,an,b and ai j, 1≤ i, j ≤ n be elements of a field K. Then show that :

(a)

∣∣∣∣∣∣∣∣∣∣∣

a0 +a1 a1 0 · · · 0
a1 a1 +a2 a2 · · · 0
0 a2 a2 +a3 · · · 0
...

...
... . . . ...

0 0 0 · · · an−1 +an

∣∣∣∣∣∣∣∣∣∣∣
=

n

∑
k=0

(
∏
i6=k

ai

)
.

(b)

∣∣∣∣∣∣∣∣∣
a11 +b a12 +b · · · a1n +b
a21 +b a22 +b · · · a2n +b

...
... . . . ...

an1 +b an2 +b · · · ann +b

∣∣∣∣∣∣∣∣∣= a+b

(
n

∑
i , j=1

a′i j

)
,

where a := Det
(
ai j
)

and a′i j is the (i, j)-th cofactor of
(
ai j
)
, 1≤ i, j ≤ n.

S10.64 Prove the following determinant formulas by induction :

(a)

∣∣∣∣∣∣∣∣∣∣∣

a1 +b1 b1 b1 · · · b1
b2 a2 +b2 b2 · · · b2
b3 b3 a3 +b3 · · · b3
...

...
... . . . ...

bn bn bn · · · an +bn

∣∣∣∣∣∣∣∣∣∣∣
= a1 · · ·an +

n

∑
k=1

(
∏
i6=k

ai

)
bk ,
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(b)

∣∣∣∣∣∣∣∣∣∣∣∣∣

x+a1 a2 a3 · · · an−1 an
−1 x 0 · · · 0 0
0 −1 x · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · x 0
0 0 0 · · · −1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣
= xn +a1xn−1 + · · ·+an , .

(c)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 · · · 0 0 · · · b1
... . . . ...

... . . . ...
0 · · · an bn · · · 0
0 · · · bn an · · · 0
... . . . ...

... . . . ...
b1 · · · 0 0 · · · a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n

∏
k=1

(a2
k−b2

k) .

S10.65 Compute the determinant of the n×n matrix over a field K:

(a)

∣∣∣∣∣∣∣∣
1+a1b1 a1b2 · · · a1bn

a2b1 1+a2b2 · · · a2bn
...

... . . . ...
anb1 anb2 · · · 1+anbn

∣∣∣∣∣∣∣∣ .
(Hint: If all ai=0, then it is the identity matrix and hence its determinant is 1. Otherwise, we may assume
that an 6=0. For i = 1, . . . ,n−1, replace i-th row by adding −aia−1

n -times the n-th row to it and then replace
the last row by by adding the −anbi-times the i-th row, we get an upper triangular matrix :∣∣∣∣∣∣∣∣
1+a1b1 a1b2 · · · a1bn

a2b1 1+a2b2 · · · a2bn
...

...
. . .

...
anb1 anb2 · · · 1+anbn

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣

1 0 · · · −a1a−1
n

0 1 · · · −a2a−1
n...

...
. . .

...
anb1 anb2 · · · 1+anbn

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣∣∣
1 0 · · · −a1a−1

n
0 1 · · · −a2a−1

n...
...

. . .
...

0 0 · · · 1+
n
∑

i=1
aibi

∣∣∣∣∣∣∣∣∣∣
= 1+

n

∑
i=1

aibi .)

(b) Solve the following system of linear equations by using Cramer’s rule :

x2 + x3 + · · ·+ xn−1 + xn = 1
x1 + x3 + · · ·+ xn−1 + xn = 1
x1 + x2 + · · ·+ xn−1 + xn = 1
· · · · · · · · · · · · · · · · · ·

x1 + x2 + x3 + · · ·+ xn−1 + xn = 1

(Hint: Clearly, one sees immediately that xk+1/(n−1), k = 1, . . . ,n, is a solution. The Cramer’s Rule 9.D.14
shows that xk = Dk/D if the the denominator determinant D = Det (Jn−En) 6= 0, where Jn is the matrix
in the Supplement S10.35 (b). For its computation, we use Supplement S10.60 (a) with n instead of n+1,
a = 0 and b = 1 and note that D = (−1)n−1(n−1) 6= 0. For the computation of the numerator determinants
Dk = Det (J−En−Ekk), first subtract k-th column from all other columns and then all other columns to
the k-th column to get the diagonal matrix −En + 2 ·Ekk and hence Dk = Det (−En + 2Ekk) = (−1)n−1.
Therefore, we have again proved that xk = Dk/D = 1/(n− 1), k = 1, . . . ,n. — One can also compute the
values of D, D1, . . . ,Dn by directly using the Remark in Supplement S10.35.)

S10.66 Suppose that the matrix A= (ai j) ∈ GLn(K) satisfy the hypothesis of Supplement S9.41
and suppose that A= LDR′ with a diagonal matrix D= Diag(a1, . . . ,an) and a normalised lower
respectively upper triangular matrix L respectively R′. Then ak = Dk/Dk−1 , k = 1, . . . ,n , where
Dk = Det(ai j)1≤i, j≤k is the k-th principal minor of A , k = 0, . . . ,n . ( Put D0 = 1.)
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S10.67 Let n ∈N∗ and let K be a field. The canonical exact sequence

1−→ SLn(K) −→ GLn(K)
Det−→ K× −→ 1

is a weak-split. Further, it is strong-split if and only if the power-map x 7→ xn is an automorphism
of K×. (Remarks : An exact sequence (i. e., (i) ϕ is injective, (ii) ψ is surjective and (iii) Imϕ = Kerψ .)

(*) 1→ N
ϕ−→ G

−→
ψ H→ 1

of groups (not necessary abelian) is called a w e a k s p l i t s e q u e n c e if ψ has a section σ , i. e.
there exists a homomorphism σ : H→ G such that ψσ = idH (this means G is the semi-direct product of
Imϕ ∼= N and Imσ ∼= H) and Imσ is called a w e a k c o m p l e m e n t of Imϕ in G. — If there exists a
projection π : G→ N such that πϕ = idN , then G is a direct product of Imϕ ∼= N and Kerπ ∼= H, i. e. the
map Imϕ ×Kerπ → G, (x,y) 7→ xy is an isomorphism of groups. In this we say that the exact sequence
(∗) is a s t r o n g s p l i t s e q u e n c e and Kerπ is called a s t r o n g c o m p l e m e n t of Imϕ in
G. – Every strong split sequence is a weak split sequence. If σ is a section of ψ and if Imσ is a normal in
G, then Imσ is a strong complement if Imϕ in G and the exact sequence (∗) is a strong split. —- If G (and
hence H and N are abelian) then an exact sequence (∗) is weak split if and only if its strong split. )

S10.68 Let f :V →V be a nilpotent endomorphism of the n-dimensional K-vector space V . Then
show that Det(a · idV + f ) = an for all a ∈ K. More generally, show that Det(g+ f ) = Detg for
every operator g on V which commute with f , i. e., g f = f g.

S10.69 Let V := K[t] be the vector space of all polynomial functions over the infinite field K and
let Vn := K[t]n be the subspace of all polynomial functions of degree < n, n ∈N∗.
(a) For a,b ∈ K, let ε :V →V be defined by f (t) 7→ f (at +b) . Show that ε linear and ε(Vn)⊆Vn
for all n. Further, compute the determinant Det(ε |Vn) .

(b) Let K =K. For c0, . . . ,cr ∈K, let δ :V →V be the differential operator

f (t) 7→
r

∑
k=0

ck f (k)(t) .

Show that δ linear and for every n ∈N∗, δ (Vn)⊆Vn. Further, compute the determinant Det(δ |Vn) .

S10.70 Let m,n ∈N with m≤ n. For arbitrary matrices A=
(
ai j
)
∈Mm,n(K) and B=

(
b ji
)
∈

Mn,m(K) over a field K, show that

Det (AB) = ∑
1≤ j1<···< jm≤n

∣∣∣∣∣∣
a1, j1 · · · a1, jm

... . . . ...
am, j1 · · · am, jm

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
b j1,1 · · · b j1,m

... . . . ...
b jm,1 · · · b jm,m

∣∣∣∣∣∣
(Hint : Let f : Kn→ Km and g : Km→ Kn be the linear maps defined by the matrices A and B (with respect
to the standard bases), respectively. Then compute the composition Alt(m, f ◦ g) = Alt(m,g) ◦Alt(m, f )
using the basis ∆H , H ∈Pm({1, . . . ,n}) of the K-vector space Alt(m,Kn).)

S10.71 ( N o r m ) Let A be a finite dimensional K-algebra. For x ∈ A, let λx : A→ A be the
left-multiplication y 7→ xy by x on A. Show that λx is a K-linear operator on A. Its determinant is
called the N o r m o f x (over K) and is denoted by NA

K (x) = N(x) .
(a) For all x,y ∈ A, N(xy) = N(x)N(y) .
(b) For all a ∈ K, N(a) := N(a ·1A) = an, n := DimKA.
(c) An element z ∈ A is a unit in A if and only if N(x) 6= 0 in K.

S10.72 For all elements z of the R-Algebra C, show that NCR (z) = |z|2. ( Hint : See Supple-
ment S10.71. )

S10.73 Let A = Mn(K) be the algebra of n× n-matrices over the field K. For all A ∈ A, show
that NA

K(A) = (DetA)n. (Hint : See Supplement S10.71. — Minimal computation can be done using :
NA

K(A) = (DetA)m for a fixed m ∈N. Compute this m by specialising the matrix A, see Corollary 9.D.9.)

S10.74 Let V be a finite dimensional C-vector space and let f :V →V be a C-linear operator on V .
We consider V as a R-vector space, then f is a R-linear operator and its determinant is denoted by
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DetR f . Show that DetR f = |Det f |2 . In particular, if A is a finite dimensional C-algebra, then, for
all x ∈ A, show that NA

R(x) = |NA
C(x)|2, see Supplement S10.71. (Hint : If A+ iB , A,B ∈Mn(R) , is

the matrix of f with respect to the C-Basis v1, . . . ,vn of V , then(
A −B
B A

)
∈M2n(R)

is the matrix of f with respect to the R-Basis v1, . . . ,vn , iv1, . . . , ivn and∣∣∣∣A −B
B A

∣∣∣∣= ∣∣∣∣A− iB −B
B+ iA A

∣∣∣∣= ∣∣∣∣A− iB −B
0 A+ iB

∣∣∣∣ .)
S10.75 Determine which of the following affinities of an n-dimensional oriented real affine spaces
are orientation preserving: (a) point-reflections. (b) reflections of a hyperplanes along a lines and
product of such r reflections, r ∈N. (c) transvections. (d) dilatations. (e) magnifications.

S10.76 Let E be an oriented n-dimensional R-affine space. Suppose that the affine basis P0, . . . ,Pn
represents the orientation of E. For a permutation σ in S({0, . . . ,n}), show that the affine basis
Pσ(0), . . . ,Pσ(n) represents the orientation of E if and only if σ is even. Further, show that the affine
Basis Pn, . . . ,P0 also represents the orientation of E if and only if n≡ 0 or n≡ 3 modulo 4. ( Hint :
See also Exercise 10.9 (a). )

S10.77 In every subgroup of the affine group A(E) of an oriented finite dimensional real affine
space E which has at least one orientation reversing map, the subset of all orientation preserving
maps form a subgroup of index 2.

S10.78 Suppose that the finite dimensional R-vector space V is the direct sum of the subspaces U
and W . By the following specifications of orientations on two of the spaces U , V , W a orientation
on the third is determined : Suppose that u= (u1, . . . ,ur) respectively w= (w1, . . . ,ws) are bases of
U respectively W . Then the basis (u1, . . . ,ur ,w1, . . . ,ws) represents the orientation of V =U⊕W
if and only if the bases u respectively w both represents (or both don’t represent) the orientations of
U and W respectively. ( Hint : Note the dependence on the sequence U and W . )

S10.79 Let V be a finite dimensional R-vector space, V ′ ⊆V be a subspace of V and V =V/V ′ be
the quotient space of V modulo V ′. By the specifications of the orientations on the two of the spaces
V ′, V , V a orientation on the third is determined : Suppose that v′1, . . . ,v

′
r ∈V ′ is a basis of V ′ and

that the residue-classes of v1, . . . ,vs ∈V form a basis of V . Show that the basis v′1, . . . ,v
′
r ,v1, . . . ,vs

of V represents the orientation of V if and only if the bases v′1, . . . ,v
′
r of V ′ and v1, . . . ,vs of V both

represent (or both don’t represent) the orientations of V ′ and V respectively.

S10.80 Determine which of the following bases of Rn represent the standard orientation :
(a) n = 2; v1 = (1,1) , v2 = (1,−1) .
(b) n = 3; v1 = (−1,0,1) , v2 = (0,−1,1) , v3 = (1,−1,1) .
(c) n = 4; v1 = (1,1,1,1) , v2 = (1,2,1,1) , v3 = (1,1,3,1) , v4 = (1,1,1,4) .

S10.81 (a) Every C-linear isomorphism of finite dimensional complex vector spaces is orientation
preserving. (see Example 9.F.6.)
(b) A C-anti-linear isomorphism of finite dimensional complex vector spaces (see Example 5.C.7.)
is orientation preserving if and only if their common complex dimension is even.

S10.82 Let E be a real affine plane with the volume-function λv with respect to the basis v1,v2
of the space of the translations of E and P0, . . . ,Pr, r ≥ 2, be points with the coordinates (a j,b j) ,
j = 0, . . . ,r, with respect to an affine coordinate system O ;v1,v2. Furthermore, let [P0,P1, . . . ,Pr,P0]
be a simple closed polygon, i. e. the edges meet exactly at the adjacent vertices. Show that the
surface area of enclosed polygon is, up to a sign, equal to

1
2

(
Det
(

a0 a1
b0 b1

)
+ · · ·+Det

(
ar−1 ar
br−1 br

)
+Det

(
ar a0
br b0

))
.
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(Remark : What do we mean by sign? Think about the orientation of E. — For the inductive-step from r−1
to r use: by suitable numbering of the vertices of the polygon with vertices P0, . . . ,Pr−1 and the complement
of the triangle with the vertices Pr−1 ,Pr ,P0 with only one common edge [Pr−1 ,P0].)

S10.83 The volume of the ellipsoid{
(x1, . . . ,xn) ∈Rn ∣∣ x2

1
a2

1
+ · · ·+ x2

n
a2

n
≤ 1
}
⊆Rn ,

ai ∈R×+ , 1≤ i≤ n, is ωna1 · · ·an, where ωn is the volume of the unit-sphere{
(x1, . . . ,xn) ∈Rn ∣∣ x2

1 + · · ·+ x2
n ≤ 1

}
.

(Remarks : Note that ωn = πn/2/(n/2)! ; this needs a proof and uses Measure Theory. The volume of the unit-
sphere is ωn = πn/2/(n/2)! . — To compute the volume 9 of the unit-ball B n :=B(0;1) = {x∈Rn | ‖x‖≤1}
in Rn, where ‖−‖ denote the standard Euclidean norm.

We put ωn := λ n(B n) . The volume of a ball with radius r is then ωnrn. (Why?) It is easy to check
that ω0 = 1, ω1 = 2, ω2 = π and the equality of A r c h i m e d e s : ω3 = 4

3 π , since the surface-area
λ 2
((
{t}×R2

)
∩B 3

)
= π(1−t2) , −1≤ t≤1, is a polynomial of degree 2 (≤3) in t.)

S10.84 Sketch the picture of the set M := H1∩H2∩H3 in R2, where
Hi :=

{
(x,y) ∈R2 ∣∣ fi(x,y)≥ 0

}
,

i = 1,2,3, and f1(x,y) := x+3y+1, f2(x,y) :=−5x+ y+1, f3(x,y) := x− y+3 and compute its
area.

S10.85 Let f1, . . . , fn be a basis of the space of linear forms on Rn. Let A := (ai j) ∈ GLn(R) be
the transition matrix from the dual basis e∗1, . . . ,e

∗
n (with respect to the standard basis e1, . . . ,en of

Rn) to the basis f1, . . . , fn. Therefore f j = ∑
n
i=1 ai je∗i , and f1, . . . , fn is the dual basis with respect to

the basis v j = ∑
n
i=1 bi jei , j = 1, . . . ,n, where B := (bi j) =

tA−1 is the contra-gradient matrix of A
(see Supplement S9.23). Let d := |DetA| . Show that
(a) For c1, . . . ,cn ≥ 0, the volume of

{
x ∈Rn

∣∣ | fi(x)| ≤ ci , i = 1, . . . ,n
}

is equal to 2nc1 · · ·cn/d .

(b) For c≥ 0, the volume of
{

x ∈Rn
∣∣ ∑

n
i=1 | fi(x)| ≤ c

}
is equal to 2ncn/n!d .

(c) For c≥ 0, the volume of the ellipsoid
{

x ∈Rn
∣∣ ∑

n
i=1 | fi(x)|2 ≤ c2} is equal to ωncn/d, where

ωn have the same meaning as in Supplement S10.83.

9In general it is difficult to compute the (volume = ) Borel-Lebesgue measure λ n(M) of an arbitrary Borel-set
M⊆Rn. For subsets in R2, we have used the Fundamental Theorem of Differential–and Integral Calculus:
Theorem (F u n d a m e n t a l T h e o r e m o f D i f f e r e n t i a l – a n d I n t e g r a l C a l c u l u s) Let f :

[a ,b]→ R , a ≤ b, be a continuous function with f ≥ 0. Then the integral
∫ b

a
f (t)dt is the area of the compact

set G( f ;a,b) := {(x,y) | a≤ x≤ b, 0≤ y≤ f (x)}.
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(d) For c0,c1, . . . ,cn ∈R with c0 ≤ c1 + · · ·+ cn, the volume of the simplex{
x ∈Rn ∣∣ fi(x)≤ ci , i = 1, . . . ,n , f1(x)+ · · ·+ fn(x)≥ c0

}
is equal to bn/n!d mit b := c1 + · · ·+ cn− c0 .
(Proof : The matrix of the linear map f : Rn→Rn with f (x1, . . . ,xn) =

(
f1(x1, . . . ,xn) , . . . , fn(x1, . . . ,xn)

)
with respect to the standard basis is the transpose tA. Therefore Det f = Det tA = Det A = d and so
|Det f−1|= d−1. Now by Theorem 9.G.2 and the remarks after that λ n

(
f−1(M)

)
= λ n(M)/d . for every set

M for which λ n(M) is defined.
(a) The volume of the cuboid Q := [−c1,c2]×·· ·× [−cn,cn] is equal to the product (2c1) · · ·(2cn) = 2nc1 · · ·cn
of the lengths of its sides, and it follows that λ

n(Q) = λ
n({x∈Rn

∣∣ | f1(x)| ≤ c1, . . . , | fn(x)| ≤ cn
})

=

λ
n( f−1([−c1,c2]×·· ·× [−cn,cn]

))
= 2nc1· · ·cn/d .

(b) Since the volume of the simplex {y = (y1, . . . ,yn)∈Rn
+ | y1+ · · ·+yn ≤ c} (by 9.G.4) is equal to cn/n!, the

volume of M := {y = (y1, . . . ,yn)∈Rn | |y1|+ · · ·+ |yn| ≤ c} is 2ncn/n! . It follows that λ
n(M) = λ

n({x∈
Rn
∣∣ | f1(x)|+ · · ·+ | fn(x)|≤ c

})
= λ

n( f−1(M)
)
= 2ncn/dn! . )

S10.86 Let P0, . . . ,Pn ∈Rn be affinely independent points and let S be the (convex) simplex with
these vertices. Further, let y0, . . . ,yn ∈ R+ and H be the affine hyperplane in Rn+1 through the
points (P0,y0) , . . . ,(Pn,yn) ∈Rn+1. Therefore H is the graph of the affine function h :Rn→R with
h(Pi) = yi , i = 0, . . . ,n. If T ⊆Rn+1 is the solid-body in between S and H, i. e.,

T :=
{
(x,y) ∈Rn+1 ∣∣ x ∈ S , 0≤ y≤ h(x)

}
,

then
λ

n+1(T ) =
y0 + · · ·+ yn

n+1
λ

n(S) .

(Hint: λ n+1(T ) is additive in (y0, . . . ,yn) and does not change if the values y0, . . . ,yn are permutated. One
can also assume that all yi are equal or that all yi other than a value yi0 vanish.)
Compute the volume of the following solid-bodies in R3, where the top surface area is:

S10.87 The group GLn(R), n ∈N∗, is the direct product of the groups In(R) of volume preserving
(or u n i m o d u l a r) matrices B∈GLn(R) with |DetB|=1 and the group R×+En ∼= R×+ of the
scalar matrices aEn, a∈R×+, i. e. every matrix A∈GLn(R) has a representation A= aB=Ba with
uniquely determined (by A) elements a∈R×+ and B∈ In(R). (Remark : Deduce that : Every linear
automorphism f of Rn is the composition of a volume-preserving automorphism g and a homothecy a · id
with positive stretching-factor a, where g and a = |Det f |1/n are uniquely determined by f . The automorphism
g is called the v o l u m e - r e s e r v i n g p a r t and the scalar a is called the s t r e t c h i n g - f a c t o r
of f .)
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