Computer Science and Automation, 1ISc, Bangalore, Prof. Dr. D. P. Patil

EO0 219 Linear Algebra and Applications / August-December 2016

EO 219 Linear Algebra and Applications / August-December 2016

(ME, MSc. Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel :

+91-(0)80-2293 2239/(Maths Dept. 3212)

E-mails : dppatil@csa.iisc.ernet.in / patil@math.iisc.ernet.in

Lectures : Monday and Wednesday ; 11:00-12:30

Venue: CSA, Lecture Hall (Room No. 117)

Corrections by :

Nikhil Gupta (nikhil.gupta@csa.iisc.ernet.in;LabNo.:303)/
Vineet Nair (vineetn90@gmail . com; Lab No.: 303) /
Rahul Gupta (rahul .gupta@csa.iisc.ernet.in;LabNo.:224)/
Sayantan Mukherjee (neghanamande@gmail. com;Lab No.: 253) /

Palash Dey (palashQcsa.iisc.ernet.in;LabNo.:301,333,335)

Midterms : 1-st Midterm : Saturday, September 17, 2016; 15:00—17:00

2-nd Midterm : Sunday, October 23, 2016; 15:00—17:00

Final Examination : Thursday, December 08, 2016, 09:00 —-12:00

Evaluation Weightage : Assignments : 20%

Midterms (Two) : 30%

Final Examination : 50%

Range of Marks for Grades (Total 100 Marks)
Grade S Grade A Grade B Grade C Grade D Grade F
Marks-Range > 90 76 —90 61—75 46—60 35—45 <35
Grade A" Grade A Grade B* Grade B Grade C Grade D Grade F
Marks-Range > 90 81—90 71—80 61—70 51—60 40—50 < 40

Supplement 11

Eigenvalues,Characteristic Polynomials and
Minimal Polynomials

To understand and appreciate the Supplements which are marked with the symbol 1 one may possibly require
more mathematical maturity than one may have! These are steps towards applications to various other
branches of mathematics, especially to analysis, number theory and Affine and Projective Geometry.

Participants may ignore these Supplements — altogether or in the first reading!!

S11.1 Let n € N* and let V := K[t],. For the linear operators D :=d/dt : V — V defined by
P+— P :=d/dt(P) and f:V —V defined by P+ P(t+ 1) compute the characteristic polynomial,
minimal polynomial, eigenvalues and eigenspaces. (Ans: yp =X" = up and xy = (X —1)" = ;.
Hint : The matrix 2l = 90t{(D) (respectively B = 9!(f)) of the operator D (respectively f) with respect to
the basis t := (1,¢,...,t" 1) of V = K[t],, are

01000 0 - 0 0
002 00 0 - 0 0 L1 1 !
000 - 00 0 - 0 0 0 1 2 J=b n—1
: ,:1

ow._ |0 00 0 i 0 0 0| e |00 () Gh) 0
00 0 00 0 0 0 o :
: . . . . : : . . 000 --- 0 0 n—1
000 - 00 0 - 0 n—l 00 . o o
000 - 00 0 - 0 0

Therefore yp= Det (X €& —2() = X" and e-Spec (D) = Zk (xp)={0}. Further, since degP’ = degP—1 for
every non-constant P € I[t],. It follows that the eigenspace Vp(0) = KerD = K (=the space of constant
polynomials) and since D"~ ! (t"~!) = (n — 1)! # 0. Therefore D"~ # 0 and hence up = X" = xp, since Up
divides xp. Further, yy= Det(X€ —B) = (X —1)", e-Spec (D) = Zk (xs)={1} and since (r+ 1)/ —¢/ =
jt/=1 4., we have deg(f—id)(P)=deg(P(t + 1) — P(t)) = deg P(t)—1 for every non-constant P € K[t],.
It follows that the eigenspace V(1) =Ker (f—id) =IK (=the space of constant polynomials) and since (f—
id)""1(#"')=(n—1)! # 0. Therefore (f—id)"~ !+ 0 and hence s = (X — 1)" = xy, since Ly divides yxs.)

S11.2 Let D be the differentiation operator f — f’ on the vector space Cf;(R) of infinitely many
times differentiable IK-valued functions on R. Compute the eigenvalues, spectral-values and

eigenspaces for D. (Ans: e-Spec (D) = SpecD = KK and Vp(A) = IKe** is the eigenspace of A € KK.
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Hint : Every A € KK is an eigenvalue of D, since the solutions of linear differential equation ' — A f = 0 are
ce**, ¢ € K. Therefore, the corresponding eigenspace if 1-dimensional with basis ¢**. In particular, every
A € K is also a spectral value of D.)

S11.3 For k € NU{eo}, let S denote the integration operator f — (f+— [j f(7)dT) on the vector

space C’ﬁ{(]R) of the k-times continuously differentiable IK-valued functions on R. Then S has no
eigenvalue and 0 is the only spectral value S, i. e. e-Spec(S) =0 and Spec S = {0}. (Hint: From
S(f) =0, f € Ck.(R), it follows that f = 0 by differentiating with respect to the upper limit of the integral.
Therefore S is injective and hence 0 is not an eigenvalue of S. The operator S is not surjective, since from
S(f) =g, f,g € C¥(R), it follows that g(0) = f(? f(t)dt =0, and hence no g with g(0) # 0 can belong to
Im (S). It is more difficult to prove (and need analysis!) to show that A € IK* is neither an eigenvalue of S
nor a spectral value of S.)

S114 Let P=X"+a, | X" ' +---a1X +agp= (X — A1) --- (X — A,,)" be a monic polynomial
with coefficients ag,...,a,_1 € C and pairwise distinct zeros A;,...,A, € C of multiplicities
Fly...,rm > 0, respectively. Let V := {y € C{,(C) | P(D)y = 0} be the C-vector space of the
complex-valued solutions of the homogeneous linear differential equation of n-th order P(D)y =
Yy 4+ a, 1y .. a1y + agy = 0. Show that the differentiation D:V — V., y+— Dy =y isa
C-linear operator on V and compute its minimal polynomial, characteristic polynomials, e-Spec D
and the eigenspaces. (Hint: By construction V = Ker P(D) and Dim¢V =rj + -+ + 1y == n = degP.
Since P(D)y = 0, it follows that P(D)(Dy) = D(P(D)y) = 0 and hence D induces an operator on V. Further,
since P(D) = 0 on V, the minimal polynomial up divides P by the definition of minimal polynomial. Since
V C Ker up(D), it follows that deg P = Dim ¢V < Dim ¢Ker pp (D) = deg pp and hence pup = P. Moreover,
by Cayley-Hamilton Theorem 11.A.7, yp = up = P. The eigenspectrum e-Spec (D) =Z(xp) = {A1,-. -, Am}
and the corresponding eigenspaces Vp(A;) = Ker (Aiid — D) = Ce*, i = 1,...,m, since y € Ker (A;id — D) if
and only if y is a solution of the differential equation y’ — A;y = 0.)

S11.5 Show that the characteristic polynomial of the diagonal matrix ® = Diag(ay,...,a,) €
M, (K) is xo =T} | = (X — a;) and the minimal polynomial up = [T}, (X —a;, ), where a;,, ..., a;,

are the distinct elements among ay, ...,a,. Further, show that © is cyclic (see Exercise 11.8(d))
if and only if ay,...,a, are distinct. Moreover, in this case x| + --- +x, is a cyclic vector (see
Exercise 11.8 (d)) for every operator f : V — V whose matrix with respect to a basis xi,...,x, of a

K-vector space V is ©.

S11.6 Let €5 € M,(K) be the matrix of the permutation ¢ € &,, i. e., &5 = (5,~ (j)). Suppose that
v(o) = (Vvi,...,Vy) be the cycle type of 6. Then show that the characteristic polynomial and the
minimal polynomial of &5 are, resp. :
n
Xeo =[J(X'—1)" and pe, =lem (X" —1,... X" —1),
i=1

where Supp (v(0)) = {i,...,i}. Moreover, & is cyclic (see Exercise 11.8 (d)) if and only if o
is a cycle of order n. (Hint: Use the following two observations: (1) Note that for non-zero elements
ai,...,a, in any unique factorisation domain A,

lem(ay,...,a,) = H g(J)3V) and ged(ay,...,ay) = H o))
JEP(NG), J#0 JEP(ING), J70
where for a subset J € B(INZ), g(J) := ged(a, | j € J), £(J) :=1lem(a; | j € J) and s(J) := —(—a)V. (prove
these formulae by using p-exponents). (2) For polynomials X" — 1, X" — 1 € K[X]|, where K is arbitrary

field, ged(X™ — 1,X" — 1) = X24"7) _ 1. Prove this by going to the field extension L|K such that both
X™ —1 and X" — 1 splits into linear factors in L[X]. See also Supplement S11.14.)

S11.7 Let f be an operator on the n-dimensional K-vector space V . Suppose that the degree of
the minimal polynomial iy is m. Then show that

@) Xf+aidX)=27(X —a) and pyiqia(X) =ps(X —a), a €K.

(b) Xaf(X) = aan(X/a) and ‘LLaf(X) = a’”/,tf(X/a) , ac K*.

(c) If f isinvertible, then  x,-1(X) = (D_elt)an”xf(l/X) and p,1(X)= ﬁXmuf(l/X),
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u—u0)
n(0)Xx
0 # A € K is an eigenvalue of f if and only if A~! is an eigenvalue of f~!. (Remark: Let
2l € M,,(K), n € IN*, be an invertible matrix with adjoint Adj2A = (Det )~ '2~! see Theorem 9.D.13. If
Xo= X"+ a,1 X" 1+ -4+ a1X + ap is the characteristic polynomial of 2(, then Det2 = (—1)"ap and
x2(2l) = 0 by Cayley-Hamilton Theorem 11.A.7. It follows that Adj2A = (—1)"ao2~! = (=1)""(a; &, +
WA+ -+ a, A2+ A1) Moreover; the equation
AdiA= (—1)""Ay(A),  where Ay := (xa—x(0))/X,
also hold for arbitrary nxn-matrices, even if 2 is not invertible. Further, by Supplement S11.7? the coefficient
(—1)""!ay is the trace of Adj2A.— For a Proof of this equation, we use the Kronecker’s method
of indeterminates and consider the invertible matrix B:=Z¢&,+2 € M, (K(Z)), where Z is an
indeterminate over K, with the characteristic polynomial )(%( )= xa(X—Z) = L0 F(Z2)X* € (K[Z]) [X],
see SupplementS11.6 (a), and Ag = (ya(X—2) — xa(—2)) /X = Lot F(Z)XF1. Tt is Ay = Ay(X) =
Y1 Fi(0)X*~1. By the above proof for the adjoint, we have
AdjB = Adj (Z€,+2) = (—1)" ' A (Z&,+ ) = (=1)" ' Lio Fr(2) (Z€,+ )
Now, substituting Z = 0, we get AdjA = (—1)""1 Yo F(0) AT = (—1)" 1Ay (). .
More generally, we put Ay j := (xa— xa(4))/(X—A4) € K[X]. Then
Adj (2= 28) = (—1)" A2 (20).
By Supplement S11.6 (a) we have Ay ¢, = (Xa(X+4)—xa(A))/(X+A) —A4) = Ay 1 (X+A) and it
follows that Adj (A —A€,) = (—1)" Ay ¢, (A—AE,) = Ay 1 ().
Note that if 21 is not invertible, then the matrices Adj2( and hence Ag (2l) have rank 1 if RankA=n—1, and
are equal to 0 if Rank2(<n—1, see Supplement S9.??. Therefore, if Dim Ker2l = 1, then the factor X in the
minimal polynomial ug have the same multiplicity as in the characteristic polynomial yg. If DimKer2(> 1,
then the multiplicity of X in g is smaller than that in ). Correspondingly, we have for Adj (2(— A €,) resp.

Ag( 5 () and the multiplicities of the factor X — A in ug( resp. in g, if A is an eigenvalue of 2l. For example,
a nilpotent n X n-matrix has the minimal polynomial is X" if and only if its rank is n—1, see Exercise 11.2. )

Further, deduce that : f~! = (f) and that eigenvalue s of f are all non-zero and

S11.8 Let V be a K-vector space and let f:V — V be a linear operator. Show that
(a) fisa projection if and only if iy is a divisor of X (X — 1) = X2 - X.
(b) fis an involution if and only if i is a divisor of (X +1)(X —1) = X* — 1.

(¢) For a projection (resp. involution) on a finite dimensional vector space find the characteristic
polynomial. (Hint : For involutions the case 1+1=0 in K, i. e., Char K =2 needs to be treated carefully!. —
Ans: xr = (X — ) - X" with r = Rank f; in particular, Trf = Rank f (resp. xy = (X +1)" (X —1)" " if
CharK # 2 (since 1 (idy — f) is a projection) and x; = (X — 1)" if CharK = 2.))

S11.9 Let f:V — V be an operator of rank r on the n-dimensional K-vector space V.

(a) xris divisible by X"~ (b) uy has degree < r+1.

(Hint : Note that Ker f is an f-invariant subspace of f of dimension n — r by the Rank-Theorem, f|kerf =0
and hence ) 7| kerp =X""", |, , = X and deg iy < deg y7 = Dim xV =DimgV — DimgKer f = Rank f =
r, where f:V —Vis the operator induced by f on the quotient space V .=V /Ker f. Therefore by 11.A.8
Xf = Xflkeas Xp =X""- X7 and py divides py - 7 = X - Uz, in particular,  is divisible by X"~ and
deguy <r+1. See also Supplement S11.14. —Remark : If f V= V is a K-linear operator of rank > 1
and n = DimgV > 2, then ; is of the form = X" +a,_1 X"~ ! = X" — (Trf)X" ! = X""1(X — Trf) and
Trf = —a,— is the only # 0 eigenvalue of f. Then the minimal polynomial Ur =X (X —Trf), since f is not
homothecy. In particular, an operator is a projection onto an 1 dimensional subspace if and only if its rank is
1 and its trace is 1.)

S11.10 (a) The characteristic polynomial of the n x n-matrix

ab - b
b a - b
A = :
b b - a
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is (X+b—a)" '(X —a— (n—1)b). Compute its minimal polynomial. determine the conditions
on a and b so that 2 is invertible, moreover, in these cases, compute the inverse of this matrix.
(Hint : See also Supplement S10.52-(a). )

(b) Let 2Ap,..., 2,1 € M,,,(K). The characteristic polynomial of the mn x mn-matrix

0 0 - 0 %
¢, e 0 —2,
Be—| 0 G 0 -
0 0 - & —A

is Det(X"€,, +X" 1A, 1+ + XA +Ap).
(c) Let2A=Diag(ay,...,a,) € M,(K) be a diagonal matrix and let B = (b;;) € M,,(K) be a matrix
of rank < 1. Then
n n
da—m =[[(X—a)+ Y b [[X —ai).
i=1 =1 i#j

If 2A is invertible, then 2 — *B is invertible if and only if c¢:= ?:1 b; jajTl # 1. Further, in this case

(A-—B) = ((1 —c)ai_l5ij+al~_1b,~ja;1)]§i7j§n.

l1—c¢

S11.11 Let f be a linear operator on the K-vector space V. In the parts (c) and (d) below assume
that DimgV =n € IN. Show that

(a) f is nilpotent if and only if us is a power of X. Deduce that: if f is nilpotent, then Tr(f) =0
and Det(f) =0.

(b) f is unipotent, i. e. f —id is nilpotent if and only if i/ is a power of X — 1. Deduce that: if f is
nilpotent, then Tr(f) =n and Det(f) =1.

(c) fisnilpotent if and only if yr = X". (Hint : Use Cayley-Hamilton Theorem 11.A.7. )
(d) fis unipotent if and only if xr = (X —1)".

S11.12 Let K C L be a field extension and let 2( € M,,(K) C M,,(L) . For the minimal- as well as
the characteristic polynomial of 2{ are independent if the matrix 2 is considered over K or over L.
(Hint : For the minimal polynomial use the |[Supplement S7.36.)

S11.13 Let f and g be two commuting operators on the K-vector space V and assume that the
operator g is nilpotent. Then ¥, = Xy and in particular, Det(f +g) = Detf and Tr(f +g) =
Trf. (Hint: It is enough to prove the assertion for matrices. First note that the matrix X¢&; — 2l is
invertible in M;(K(X)). Since AB = B2 and B is nilpotent, (X&; —A)~ !B is also nilpotent and hence
Det (¢, — (X& —2)~'B) = 1 by Supplement S11.11 (b). Therefore from the equality X &; — (A +B) =

(X € —2A) (¢ — (X& —A)~'B), it follows that yo 15 = Xa.)

S11.14 Suppose that the K-vector space V is the sum of invariant subspaces U and W under the
K-linear operator f: V — V. Then f is algebraic if and only if f|U and f|W are algebraic. Further,
in this case Uy =lcm (,ufw , .uf|W) . (Remark : See Exercise 10.8-(c) for an application. — Hint : Since
Ur(f1U)=pup(f)TU=0and use(f1W)1=us(f)1W =0, clearly (by definition of minimal polynomial),
Hyiv and Wrw both divide gty On the other hand put p :=lem (U, tyw ). Then pu(f) 1U =p(f1U)=0
and pu(f)1W =pu(f1W)=0, since u is a multiple of both psy and usw. Now, since V=U +W, it
follows that p1(f) = 0. Therefore (by definition of 1) uy divides p.)

S11.15 Let f:V — V be an operator and let 1 be the minimal polynomial of the restriction of
fonimf. Then either u or X - u is the minimal polynomial of f. In particular, an operator f
of finite rank r is algebraic and the degree of its minimal polynomial is < r+ 1. (Note that for the
minimal polynomial p; of f, the operator () =0 and hence us(f 1Imf) = pus(f) 1 Im f = 0. Therefore
M = Usim ¢ divides py. On the other hand (X - 1) (f) = fou(f) = u(f)o f=0,since p(f) 1 Im f = 0. This
proves that u; divides X - 4 and hence the only possibilities are either py =t or pip =X - 1.)
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S11.16 Let f be an invertible operator on the K-vector space V. Show that A € K is an eigenvalue
(resp. a spectral-value) of f if and only if 1/A is an eigenvalue (resp. spectral-value) of f~!,1i.e.,
e-Spec (1) = (e-Spec f) ' :={A ' | A € e-Spec £} and Spec (f 1) = (Spec f) ' :={A | A e
Spec f}.

S11.17 Let f and g be operators on the K-vector space V. Then show that

(a) The non-zero eigenvalue s of fg and gf are same.
(b) The non-zero spectral-values of fg and gf are same. (Hint: For a € K*, fg— aid is invertible if
and only if gf — aid invertible. In this case (gf —aid) ™' =a! (g(fg—aid)~'f—id).)

(c) Given an example such that the eigenvalue s (resp. spectral-values) of fg and gf are not
same. (Hint: Let f,g:V := K[X] — V = K[X] be the K-linear operators on the K-vector space V = K[X]
of polynomials over K (with basis X", n € IN) defined by f(X") := X"*!, n € IN and g(X") := X", for
n>1and g(X°) =g(1) =0, i.e. f:=Ax is the left multiplication by X and g(P) := (P — P(0)) /X for
PinK[X]. Then 0 is an eigenvalue (and hence a spectral-value) of fg, since (fg)(1) = f(0) =0=0-1, but
0 is not an eigenvalue (and moreover, not a sspectral-value) of gf, since 0-idy — gf = gf = idy because
(gf)(X™) = g(X™*!) = X" foralln € IN.)

S11.18 Let f:V — V be a K-linear operator on the K-vector space V and let U C V be an f-invariant
subspace of V. Further, let f : V /U — V /U be the operator on V /U induced by f. Then

(a) Show that every eigenvalue of f|U is an eigenvalue of f and every eigenvalue of f is aneigen-
value of f|U or of f.
(b) The same statement as in the part (a) for the spectral-values, i. e.,

Spec f|U C Spec f C Spec (f|U)USpec f.
(¢) If f is algebraic, then Spec f = Spec (f|U) U Spec f.

S11.19 Let f:V — V be a K-linear operator and let V be the direct sum of the f-invariant
subspaces V;, i € I. Show that

(a) The set of all eigenvalues of f is the union of the set of all eigenvalue s of f|V;, i€ 1,i.e.,
e-Spec (f) = e-Spec (fIVi).
icl
(b) For the spectral-values the analogous statement as in the part (a) holds, i. e.,
Spec f = Spec (f]Vi).

icl
(c) Let Ax denote the multiplication by the indeterminate X on the K-vectors space
(i) V = K[X] of polynomials over K, then e-Spec (Ax) = 0@ and Spec (Ax) = K.
(if) V = K(X) of rational functions over K, then e-Spec (Ax) = Spec (Ax) = 0.
(i) V={P/Q € K(X) | P,Q € K[X],0(0) # 0}, then e-Spec (Ax) = @ and Spec (Ax) = {0}.
(iv) V = K[ X] of formal power series K, then e-Spec (Ax) = 0 and Spec (Ax) = {0}.

S11.20 Let f:V — V be an operator on the K-vector space V and let P € K[X| be a non-constant
polynomial. Then show that

(a) If A is an eigenvalue (resp. spectral-value) of f, then P(A) is an eigenvalue (resp. a spectral-
value) of P(f), 1. e. P(e-Spec(f)) C e-SpecP(f) and P(Spec (f)) C SpecP(f). (Hint: Let A € K.
Then A is a zero of the polynomial P(X) — P(A) € K[X] and hence P(X) —P(A) = (X — 4) - Q(X) for some
0 € K[X]. Therefore P(A)idy — P(f) = (Aidy — f) o O(f) = Q(f) o (Aidy — f) and hence if (Aidy — f) is
not injective (resp. not surjective), then P(A)idy — P(f) is not injective (resp. not surjective).)

(b) If K is algebraically closedEl then every eigenvalue (resp. every spectral-value) of P(f)
of the form P(A) with an eigenvalue (resp. a spectral-value) A of f, i. e., P(e-Spec(f)) =

'Afield K is calledan algebraically closed if every non-constant polynomial P € K[X] has a zero in K.
For example, by the Fundamental Theorem of Algebra (see Footnote 2) the field C of complex numbers is algebraically
closed. But the fields @, R and finite fields are not algebraically closed.

D. P. Patil/ TISc 2016CSA-E0219-laa-suppl1.tex November 7, 2016 ; 10:23a.m. 5]




Page 6 EO0 219 Linear Algebra and Applications / August-December 2016 Supplement 11

e-Spec P(f) and P(Spec(f)) C SpecP(f). Hint: Let u € K andlet P(X) —pt=c(X — A1) - (X — )
with ¢, A1, ... 4, € K (since K is algebraically closed. Therefore uidy — P(f) = (—=1)""'c(Ajidy — f)o---0
(Anidy — f) and hence if A; & e-Spec f (resp. A; & Spec f), then u ¢ e-Spec P(f) (resp. 1 & Spec P(f)).)
S11.21 Let f and g be operators on the K-vector space V with [f,g] := fg—gf = aidy and let
a# 0in K. Show that if A is an eigenvalue of gf with the eigenvector x € V, then gf(g"(x)) =
(A +na)g"(x), n € N. In particular, if g"(x) # 0, then A +na is also an eigenvalue of gf.
Moreover, if g is invertible, then A +na is an eigenvalue of gf with the eigenvector g"(x) for n € Z.
(Hint : By the way the relation fg— gf = aidy with a # 0 is possible only in the case of a field characteristic
0 and only if V is either O or infinite dimensional. Otherwise, (DimV)-a = Tr(aidy) =Tr(fg) —Tr(gf) =0
is a contradiction. It follows that there is no finite dimensional subspace 0 # U C V which is invariant under
both f as well as g. In particular, f and g have no common eigenvectors.)

S11.22 Let f:V — V be an operator on the K-vector space with the dual operator f*:V* — V*.
Then show that

(a) A subspace U of V is f-invariant if and only if U° is f*-invariant. (Hint: Suppose that
f(U) CU and e € U°. Then e(x) =0 for all x € U and hence (f*(e))(x) = e(f(x)) =0 for all x € U,
since f(x) € U forallx € U, i. e. f*(e) € U°. This proves that f*(U°) C U°. Conversely, suppose that
f(U°) CU° and let x € U. For every e € U°, we have f*(e) € U° and hence e(f(x)) = (f*(e))(x) = 0.
Therefore every e € V* which vanish on U also vanish on f(x) and hence f(x) € U by Theorem 5.G.7. This
proves that f(U) CU.)

(b) If a subspace W of V* is f*-invariant, then °W is f-invariant. If V is finite dimensional,
then the converse hold. (Hint: Suppose that f*(W) C W and let x €° W. Then for every e € W, we have
f*(e) € W and hence e(f(x)) = (f*(e))(x) =0, since x €° W. Therefore f(°W) C° W. Conversely, suppose
that V is finite dimensional and f(°W) C° W. Then by Theorem 5.G.10 (°W)° = W and hence by the part

@ ffW)=f(CW)) S (W) =W)

(¢) Spec f* = Spec f and in general e-Spec f* # e-Spec f (Example?).

S11.23 Let V be a n-dimensional vector space over a field K and let A € Altg(n,V) be an
n-alternating linear form V" — K. For f € Endg(V) and xy,...,x, € V, show that

Tr(f) - A(xy,...,xn) = ZA(xh...,xi_l,f(xi),xiH,...,xn).
i=1

S11.24 Let f:V — V be an operator on the finite dimensional K-vector space V and U be an
f-invariant subspace of V. Then show that

Trf =Te(f 1 U)+ T ],
where f is the operator V /U — V /U induced by f. In particular,

Trf=Tr(f 1 Imf)+Tr(f) with f:V/Kerf —V/Kerf.

(Hint: By 11.A.8 we have xr = xr v X7~ Remark: The last equation is used to define trace of an
operator of finite rank onnotnecessary on finite dimensional vector spaces.)

S11.25 Let f:V — V be an operator on the finite dimensional K-vector space V # 0. Show that
the following statements are equivalent:

(i) xyis a prime polynomial in K[X].
(i1)) OandV are the only f-invariant subspaces of V.

(ii1)) Every non-zero x € V is a cyclic vector (see Exercise 10.8-(d)) for f.

(Hint: If U is an f-invariant subspace of V with 0 <m :=DimgU <DimgV, then xr = Xy - X7 by 11.A.8
and deg xriy = DimgU = m and hence yry is a proper divisor of ), in particular, ¥ cannot be a prime
polynomial. Conversely, if xr is not a prime polynomial and if P is a proper prime divisor of x, then by
11.A.12 there exists an f-invariant subspace U of V of dimension Dim xU = deg P < deg xy = DimgV'.)

S11.26 Let f:V — V be an operator on the finite dimensional K-vector space V. Show that
(a) If f is cyclic (see Exercise 10.8-(d)) with the characteristic polynomial y := )y, then V has

exactly
[T vz)+1)
neP(K[X])
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f-invariant subspaces and restrictions of f to each one of these subspaces is again a cyclic operator,
where P(K[X]) denote the set of all monic prime polynomials in K[X] and v denote the 7-
exponents.

(b) If K is infinite and if V has only finitely many f-invariant subspaces, then f is a cyclic operator.
(Hint : Use Exercise 2.2.)

S11.27 Let f:V — V be a cyclic operator (see Exercise 10.8-(d)) on the finite dimensional K-
vector space V of dimension n with the cyclic vector x € V. Then the dual operator f* : V* — V*
is also a cyclic operator on the dual space V* with a cyclic vector ("~ !(x))*, where (f"~!(x))*
belong to the dual basis of V* with respect to the basis x, f(x),..., "' (x) of V.

S11.28 Let f:V — V be an operator on the finite dimensional K-vector space V.

(a) Let v;, i €1 beaK-basis of V. Show that Tr f'=}.;c;v; (f(vi)). (Hint: Let MY (f) = (aij); jyepns
be the matrix of f with respect to the basis v = {v; | i € I}, i. e. f(v;) = Liesai;vi- Therefore vi(f(v;)) =
Vi(Lieraijvi) = Lier aijv;i(vi) = Lier aij6ij = ajj and ¥ je vi(f(v;)) = Ljerajj = Te(f).)

(b) If Rank f <1, then show that f is nilpotent if and only if Tr f = 0. (Hint : By Test-Exercise T10.9
the characteristic polynomial xy = X"~1(X —Tr(f)).)

S11.29 Let K be a field and let n € IN*. Then

(a) Show thatthe commutators [A,B]:=AB —BA, A B € M, (K), generate a subspace
of codimension 1 in M, (K). This subspace is the kernel of the trace function Tr:M,(K) — K.

(b) Show that every K-linear form /: M, (K) — K with h(AB) = h(BA) for all A, B € M,,(K)
is a scalar multiple of the trace function on M,,(K).
S11.30 Let n € IN and let K be a field with k1x #£0 for k=1,...,n.

(a) For every operator f:V — V with Tr f =0 on a n-dimensional K-vector space V, show that
there exists a basis vy,...,v, of V with v(f(v;)) =0, i=1,...,n. (Hint: By induction on k show

that : there exist linearly independent vectors vy, ...,v; and a subspace Wy of V such that
Kvi®---oKvideW,=V and f(v,') S ZKVj+Wk-
J#

Suppose that k = 1. If every element of V is an eigenvector of f, then by Exercise 10.3 f is the homothecy
aidy, a € K and it follows that 0 = Trf = n - a. Therefore @ = 0 and f = 0, in this case the assertion is trivial.
Otherwise, there exists a vector v; € V with f(v;) & Kv;. Weextend vy, f(v1) toabasis vy, f(vi),wi,...,Wy—2
of V and take W) the subspace of V generated by f(vi),wi,...,w,_a. With this the required assertion holds.

For the inductive step rom k to k+ 1, consider the map po f|W;, where p projection onto W along
Z/J‘-Zl Kv;. Extend vy,...,v to a basis vi,...,Vg,wi,...,w,_t. Then removing the first K rows and first k
columns from the matrix of f with respect to this basis, we obtain the matrix of po f|W; with respect to

the basis wy,...,w,_,. Since the first k£ digonal elements of the matrix of f are O by construction and since
Trf =0, it follows that Tr(po f|W;) = 0.

If every non-zero element of W; is an eigenvector of p o f|W;, then by Exercise 10.3 po f|Wj is a homothecy
a-idw,, a € K and it follows that 0 = Tr(po f|Wy) = (n— k) - a and hence a = 0 by hypothesis on K. Therefore
poflWy=0,.e. f(Wy) CKviD---®Kv. We can take arbitrary non-zero vy € Wy and Wy a complement
of Kvk+1 in Wk.

Otherwise there exists vx; € W such that (po f|Wi)(vis1) & Kviyr and so f(vir1) € Kvi @ - @ Kvp ®
Kviy1. We extend vy, ..., v, Vi1, f (Vi) to a basis v, ..o, Vi, Vi 15 f (Vi 1)s Wi - - o, Wy—k—1 of V and take
Wi the subspace of Wy generated by f(vki1),wi,...,w,_k—1. With this the required assertion holds.
Now, in the case k = n, W, = 0 and hence vy, ...,v, is a basis of V such that f(vj) = Z#i a;jjvj, 1. e. the
diagonal elements of the matrix of f with respect to this basis are all 0.)

(b) Show that every matrix 2 € M,(K) with Tr2l = 0 is a commutator, i.e. is of the form [*B, €] =
BE — CB. (Hint: By part (a) above the matrix 2 is similar to the matrix 21" whose diagonal entries are
all 0, i. e. there exists an invertible matrix ® € M, (K) such that 2 = DA'D~!. It is enough to show that
there are matrices B,¢ € M,,(K) such that [B,¢] = 2'. For, then A = DA D! = D(BC - B)D ! =
(OBD (DD — (DD H(DBD ) = [DBD !, DED!]. Therefore, without loss of generality
assume that all main-diagonal entries of % = (a;;) are 0. Since #K > n by hypothesis on K, there exists
distinct elements by, ...,b, € K. Then for the diagonal matrix 8 = Diag(by,...,by), and an arbitrary matrix
¢ = (cij) € M, (K), we have
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by 0 - 0 Ci1 €12 '+ Cip ci1 €12+ Clp by 0 - 0
0 b, -+ O 21 € ot Cop 1 € ot Oy 0 b, --- 0
0 o -+ 0 Cnl Cp2 *°+ Cpp Cnl Cp2 *+ Cpp 0 o -~ 0
bici1 bicia .-+ biciy bici1 bycia --- bycin
B byca1 bycyy --- bacy, bicar bycyy --- bucy,
bncnl bncn2 o bncnn blcnl bZCHZ o bncnn
0 (b1 —by)cia -+ (b1 —by)cin
B (by —b1)cn 0 oo (by—Dby)can
(bn - b] )cnl annZ o 0

Now, one can take ¢;j := a;;/(b; — bj) for i # j and ¢;; = 0, so that the equation [*B, €] = 2 holds.)

S11.31 Let V be a finite dimensional K-vector space.

(a) Foraprojection p of V, show that Tr p =Rank p (= (Rank p)1g). (Hint : Use Test-Exercise T8.9-
(a).)

(b) Suppose that m- 1x # 0 for 1 < m < DimgV . Further, let py, ..., p, be projections of V with
p1+---+ pr =idy. Further, suppose that either CharK =0 or )/, Rank p; — DimgV < CharK,
if CharK > p. Then show that p;p; = 0;;p; for 1 <i, j <r and in particular, V is the direct sum of
the subspaces Im p;, i =1,...,r. (Hint: Since p; +---+ p, = idy, we have Imp; +---+Imp, =V and
hence DimgV = Tr(idy) = Tr(p;) + - - - + Trp, == Rank p; + - - - + Rank p,. Therefore by the assumption
on the characteristic of K, the equality Dim gV = Rank p; + - - - + Rank p, also hold in IN and hence the sum
V =Im;@---®Imp, is direct. Therefore Imp; C Ker p; for all i # j and hence p;op; =0 for all i, j, i # j.
Further, p; o p; = p;, since p; is a projection, foralli=1,...,r.)

(¢) Suppose that a finite group G operates on V as the group of K- automorphisms and that
|G|-1x # 0 in K. Then show that:

is a projection of V onto FixgV (see also Example 6.E.10) and the equality (in K)

Dim gFixgV = Z Tro.
GeG

(Hint : For a fixed T € G, note that G={to|o¢€ G}. Therefore for p i= 2= Y 5e O, we have

G
Y o) to= (:I:G)ZG;GG Zo p.

#G g oeG  1€G GEG
Therefore p is a projection of V. For a x € FixgV, o(x) = x for all 0 € G and hence p(x) = 75 ¥ 5ecx = x.
Conversely, for y = p(x) € Imp, it is immediate that T(y) = 7= Y 5e TO(X) = 75 Loe 0(x) = p(x) =y for

all 7 € G. Therefore Dimg FixgV = DimgImp = Rankp =Trp = % YoegTro.)

S11.32 (Jacobson-Lemma) Let f,g be operators on the n-dimensional K-vector space
V with [f, lf, g]] = 0. Suppose that m- 1g # 0 for 1 <m < DimgV . Then [f,g] nilpotent. (Hint :
The condition [f,[f,g]] =0 is equivalent with f[f,g] = [f,g]f and so f commute with the powers [f,g]",
n € IN. It follows that [f,g]" = (fg —gf)[f. 8" = falf.g" ' —sflf.8]" " = falf.8)" " —slf.8)" ' f=

[f.81f.8]""']. Now, since [f,g]""! are also commutators, they have trace 0 and hence [f,g] is nilpotent by
Exercise 10.5-(a).)

S11.33 Let 2 be a n x n-matrix over the field K. Suppose that the sum of elements of every
row of 2 is equal to A € K. Then show that A is an eigenvalue of 2 with the eigenvector
'(1,1,...,1) € K". If all the column-sum of 2 are equal to A, then A is an eigenvalue of 2.
(Hint : Clearly, 20"(1,...,1) ="(4,...,4) =A"(1,...,1), i. e., A is an eigenvalue of 2. — Remark : An
eigenvector corresponding to this eigenvalue is, in general, no so easy to give explicitly.)
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S11.34 Let A € M,, ,(K) and B € M, ,,(K), m > n. Show that Ygpu = X" "Yqe . (Hint: Fill
the matrices 2( and B with zeroes to get square m X m-matrices. (2 0) <%> = 2AB and <£B> (2A0) =

0 0
BA 0 . . . B
0o o0l Therefore the characteristic polynomial g is equal to that of (2( 0) 0 and hence the

characteristic polynomial of <?> (200) is equal to Det (XQE" 0_ B XQEO ) =X"""Det(X€&,—BA) =

X" e by Exercise 10.7-(b).)

S11.35 (a) LetV be a finite dimensional vector space over a field K and let f € EndgV. Further, let

Ly :EndgV — EndgV, g — fg (respectively Ry : EndgV — EndgV, g — g f be the left-translation
by f. Show that

X = Xr(r) = (Xr)" s TrL(f) = TrR(f) = n-Tr f and DetL(f) = DetR(f) = (Det f)" .
(See also Example 11.A.27).

(b) Show that the characteristic polynomial of a complex number z as an element of the R-algebra
Cis ;= (X —2)(X —2). In particular, N$z = zZ = |z|?> and Trz = z+Z=2Rez.

S11.36 Let f be an operator on a finite dimensional K-vector space and let P € K[X| be a
polynomial. Show that P(f) is invertible if and only if P and uy (or also P and y) are relatively
prime. (Hint : Let Q := gcd(P, uy). If Q = 1, then SP+ Ty = 1 for some polynomials S,7 € K[X] and
hence id = S(f)P(f) + T (f)us(f) = S(f)P(f), i. e. P(f) is invertible with inverse S(f). Conversely, if
Q#1,then uf =R-Q,P =P -Q with R, P’ € K[X] and degR < deg s and hence R(f) # 0 and Q(f) # 0,
but 0 = s (f) =R(f) o Q(f) = O(f) oR(f). Therefore Q(f) is not injective and hence P(f) = P'(f) o Q(f)

is also not injective. In particular, P(f) is not invertible. )

S11.37 Let K be a field.

(a) Let P and Q be monic polynomials over the field K. Suppose that degP =n, Q is a divisor
of P and moreover that P and Q have the same prime factors in K[X]. Then show that on every
n-dimensional K-vector space V there exists an operator f € EndgV with characteristic polynomial
X = P and minimal polynomial s = Q.

(b) Let S and S’ be subsets of K with S C §’. Show that there exists a K-linear operator f :V — V
on a K-vector space V such that e-Spec f = S and Spec f = §’. (Hint : For eacha € K, let g, = — A,
and h, := Ax_, be operators on the K-vector space K[[X]. Then e-Specg, = {a} = Specg,, e-Spech, =0
and Spech, = {a}, see Test-Exercise T10.19-(c). Let g := (Buesga) : K — K®) and h:= (Daes\sha) :
K8\ 5 k(58 be the direct sum of operators g,, a € S and h,, a € §"\ S respectively. Now it is easy to
check that the operator f := g @ h have the required properties. See Test-Exercise T10.19 also. )

S11.38 Show that an operator f on a R-vector space has exactly one real eigenvalue if and only if
f? has an eigenvalue > 0. (Hint : /2 —a%d = (f —aid)(f +aid).)

S11.39 Let f be a C-linear operator on the finite dimensional C-vector space V, which we
consider as R-vector space. Then show that f is also R-linear and

Xf,R=Xf,€c Xy - (forapolynomial P= YaX' € C[X], we put P := Y@ X")
Further, for the minimal polynomials show that tiy g = LCM ( Mrc, U f7@).

S11.40 Let 2 = (a;j) € M,(K) be a n x n-matrix over the field K. Then

(a) Let Xj,...,X, be indeterminates over K. For 1 <ij < --- <i, <n, show that the coefficient of
X;, ---X;, in the polynomial

an+Xp - ain
: € K[Xy,...,X,]
anl o Appt Xy
is equal to the diagonal minor of 2l obtained by removing the rows and columns numbered by
i1,...,ir. (Hint : Expand the determinant successively using the rows iy,...,i,.)
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(b) For r=1,...,n, show that the coefficient a, of X" in the characteristic polynomial yg of 2l
is (—1)"""-times the sum of the diagonal minors of the order n—r of 2.

S11.41 Let K C L be a field extension and let 2( € M,,(K) C M,,(L) be a matrix with an eigenvalue
A € L—K. Then there exists an eigenvector r # 0 in L" of 2, i. e. Ar = Ax; but there is no
eigenvector in K", i. e. K"NKer, (A&, —2)=0.

S11.42 (Jacobi’s Matrix) For k=0,...,n,let

al b1 o -- 0 0
cl1 a b2 0 0
0 cr daz .- 0 0
D=1 . . . . ) . € M (K)
0 0 o - ak—1 bk—l
0 0 o -- Ck—1 [25%

and let Dy := Det (D) (see exercise (13.30)). Put x; := xp, . Show that

@ xo=1,01=X—a1, s =X —a) k-1 — bi—1ck—1 X2 forall k=2,....n.

(b) If K=R and bycy >0 forall k=1,...,n, then ¥, has n-distinct real roots and the number
of positive roots of y,, is the number of changes in the sign of the sequence 1,—Dj,...,(—1)"D,.

S11.43 Let A = (a,‘j)lgi’jgn c Mn(K) Show that
X = X" —S1Xn_l -|-S2Xn_2 —ee 4 (—1)"sn,

where s is the sum of (Z) minors Det (A(i,iz,...,i)), 1 <ij <ip < <ip<n.

S11.44 Let a,b,c € C with bc # 0 and let

a b 0 --- 00
cab -~ 00
0O ca - 00
To=1. . . . . .| eMy(K), for k=0,...,n.
000 - a b
00 0 - c a
Show that :
(@) A& =a—+2vbccos (%‘1) , k=1,...,n are eigenvalues of T, .
(b) For k=1,...,n, the vector with i-th components ( %)i_l sin (;25) i=1,...,n, is an eigen-

vector corresponding to the eigenvalue A;. (Hint : We may assume that a = 0. Let u € C with u? # bc
andlet 7,,(u) :=Det (1€, —%,). Then show that To(u) = 1,71 (u) = p and Ty (1) = uTir1 (1) —beTi (1)
(uy ™ — it

(1 — t2)
roots of the quadratic X> — uX + bc. Now, determine  so that ut! = pi*'.)

for all kK > 0. Therefore by Test-Exercise T10.42 T, (1) = where u; and u, are distinct

S11.45 Let V be a n-dimensional vector space over a field K and let f € Endg (V).

(a) If Char(K) = p > 0 then, show that yz»(X?) = (xf)p . In particular, Tr(f?) = (Tr(f))?.
(Hint : For 2l € M,,(A) we have (X€, —2()? = XP¢&, — AP .— This is a special case of the following more
general exercise in part (b) below.)

(b) For r € N, prove that .
xpr(X7) = (=1)" DT (),
i=1

where {;,i=1,...r are the r-th roots of unity, i.e. X" —1=[]._;(X — ;). Deduce that % »» (X?) =
(=12 (X) 25 (=X).

S11.46 Let A € M,,(K) and let yg = X" +a, (X" ' 4---+a1X +ag. Show that
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(@) Adj(2) = (=" 4, A" 2+ @y €).
(b) Xagjcwy = X"+ (—1)"L a; (Det(A))' ' X", where a, == 1.

S11.47 Let [ be a finite indexed set. Let R := K[X;; | i, j € I] (respectively, Q := K(X;; | i,j € I})
be a polynomial algebra (respectively the field of rational functions) over a field K and let 2l =
(Xij) € M;(Q). Then the characteristic polynomial xy € R[X] is a prime polynomial in R[X].

S11.48 Let f,g be operators on a finite dimensional K-vector space V such that s = x,. Then
show that xp( ) = Xp(g) for every polynomial P € K[X]. (Hint : It is enough to show that: if A € M,,(K)
and if B is the companion matric of the polynomial Yy, then xp) = xp(w) for all P € K[X]. For this
we may take R := K[X;;, Y, | i,j € [,k=0,...,m] (respectively, Q := K(X;;,Y | i,j € I,k=0,...,m}) the
polynomial algebra (respectively the field of rational functions) over K, 2 := (X;;) € M;(Q) and P =
Yo+ X+---4+Y,X". Now 2 is similar to the companion matrix of 2 by Test-Exercises T10.?? and
T10.7?.)

S11.49 Let 2l € M,,(K). Show that the following equality holds in the field of rational functions
K(X) over K :

X3 d
Tr((X¢,—2A)) = %—2, where = o
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