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S u p p l e m e n t 11
E i g e n v a l u e s , C h a r a c t e r i s t i c P o l y n o m i a l s a n d

M i n i m a l P o l y n o m i a l s

To understand and appreciate the Supplements which are marked with the symbol † one may possibly require
more mathematical maturity than one may have! These are steps towards applications to various other
branches of mathematics, especially to analysis, number theory and Affine and Projective Geometry.
Participants may ignore these Supplements — altogether or in the first reading!!

S11.1 Let n ∈ N+ and let V := K[t]n . For the linear operators D := d/dt : V → V defined by
P 7→ P′ := d/dt(P) and f : V →V defined by P 7→ P(t+1) compute the characteristic polynomial,
minimal polynomial, eigenvalues and eigenspaces. (Ans : χD = Xn = µD and χ f = (X−1)n = µ f .
Hint : The matrix A=Mt

t(D) (respectively B=Mt
t( f )) of the operator D (respectively f ) with respect to

the basis t := (1, t, . . . , tn−1) of V = K[t]n are

A :=



0 1 0 · · · 0 0 0 · · · 0 0
0 0 2 · · · 0 0 0 · · · 0 0
0 0 0 · · · 0 0 0 · · · 0 0
...

...
...

. . .
...

...
...

. . .
...

...
0 0 0 · · · 0 i 0 · · · 0 0
0 0 0 · · · 0 0 i+1 · · · 0 0
0 0 0 · · · 0 0 0 · · · 0 0
...

...
...

. . .
...

...
...

. . .
...

...
0 0 0 · · · 0 0 0 · · · 0 n−1
0 0 0 · · · 0 0 0 · · · 0 0


and B :=



1 1 1 · · · 1 1 · · · 1
0 1 2 · · · j−1 j · · · n−1
...

...
...

. . .
...

...
. . .

...
0 0 0 · · ·

( i
i−1

) (i+1
i−1

)
· · · 0

0 0 0 · · · 1
(i+1

i

)
· · · 0

...
...

...
. . .

...
...

. . .
...

0 0 0 · · · 0 0 · · · n−1
0 0 0 · · · 0 0 · · · 1



Therefore χD = Det(XE−A) = Xn and e-Spec(D) = ZK(χD)={0}. Further, since degP′ = degP−1 for
every non-constant P ∈K[t]n. It follows that the eigenspace VD(0) = KerD =K (=the space of constant
polynomials) and since Dn−1(tn−1) = (n−1)! 6= 0. Therefore Dn−1 6= 0 and hence µD = Xn = χD, since µD
divides χD. Further, χ f = Det(XE−B) = (X −1)n, e-Spec(D) = ZK(χ f )={1} and since (t +1) j− t j =
jt j−1 + · · · ,, we have deg( f− id)(P)=deg(P(t +1)−P(t)) = degP(t)−1 for every non-constant P ∈K[t]n.
It follows that the eigenspace Vf (1)=Ker( f− id)=K (= the space of constant polynomials) and since ( f−
id)n−1(tn−1)=(n−1)! 6= 0. Therefore ( f− id)n−1 6= 0 and hence µ f = (X−1)n=χ f , since µ f divides χ f .)

S11.2 Let D be the differentiation operator f 7→ f ′ on the vector space C∞
K(R) of infinitely many

times differentiable K-valued functions on R . Compute the eigenvalues, spectral-values and
eigenspaces for D . (Ans : e-Spec(D) = SpecD =K and VD(λ ) =Keλx is the eigenspace of λ ∈K.
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Hint : Every λ ∈K is an eigenvalue of D, since the solutions of linear differential equation f ′−λ f = 0 are
ceλ x, c ∈K. Therefore, the corresponding eigenspace if 1-dimensional with basis eλ x. In particular, every
λ ∈K is also a spectral value of D.)

S11.3 For k ∈N∪{∞} , let S denote the integration operator f 7−→
(
t 7→

∫ t
0 f (τ)dτ

)
on the vector

space Ck
K(R) of the k-times continuously differentiable K-valued functions on R . Then S has no

eigenvalue and 0 is the only spectral value S, i. e. e-Spec(S) = /0 and Spec S = {0}. (Hint : From
S( f ) = 0, f ∈ Ck

K(R), it follows that f = 0 by differentiating with respect to the upper limit of the integral.
Therefore S is injective and hence 0 is not an eigenvalue of S. The operator S is not surjective, since from
S( f ) = g, f ,g ∈ Ck

K(R), it follows that g(0) =
∫ 0

0 f (τ)dτ = 0, and hence no g with g(0) 6= 0 can belong to
Im(S). It is more difficult to prove (and need analysis!) to show that λ ∈K× is neither an eigenvalue of S
nor a spectral value of S.)

S11.4 Let P = Xn +an−1Xn−1 + · · ·a1X +a0 = (X −λ1)
r1 · · ·(X −λm)

rm be a monic polynomial
with coefficients a0, . . . ,an−1 ∈ C and pairwise distinct zeros λ1, . . . ,λm ∈ C of multiplicities
r1, . . . ,rm > 0, respectively. Let V := {y ∈ Cn

C(C) | P(D)y = 0} be the C-vector space of the
complex-valued solutions of the homogeneous linear differential equation of n-th order P(D)y =
y(n)+an−1y(n−1)+ · · ·a1y′+a0y = 0. Show that the differentiation D : V → V , y 7→ Dy = y′ is a
C-linear operator on V and compute its minimal polynomial, characteristic polynomials, e-SpecD
and the eigenspaces. (Hint : By construction V = KerP(D) and DimCV = r1 + · · ·+ rm == n = degP.
Since P(D)y = 0, it follows that P(D)(Dy) = D(P(D)y) = 0 and hence D induces an operator on V . Further,
since P(D) = 0 on V , the minimal polynomial µD divides P by the definition of minimal polynomial. Since
V ⊆ Ker µD(D), it follows that degP = DimCV ≤ DimCKer µD(D) = deg µD and hence µD = P. Moreover,
by Cayley-Hamilton Theorem 11.A.7, χD = µD = P. The eigenspectrum e-Spec(D) = Z(χD) = {λ1, . . . ,λm}
and the corresponding eigenspaces VD(λi) = Ker(λiid−D) =Ceλit , i = 1, . . . ,m, since y ∈Ker(λiid−D) if
and only if y is a solution of the differential equation y′−λiy = 0.)

S11.5 Show that the characteristic polynomial of the diagonal matrix D = Diag(a1, . . . ,an) ∈
Mn(K) is χD = ∏

n
i=1 = (X−ai) and the minimal polynomial µD = ∏

r
ρ(X−aiρ ), where ai1 , . . . ,air

are the distinct elements among a1, . . . ,an. Further, show that D is cyclic (see Exercise 11.8 (d))
if and only if a1, . . . ,an are distinct. Moreover, in this case x1 + · · ·+ xn is a cyclic vector (see
Exercise 11.8 (d)) for every operator f : V →V whose matrix with respect to a basis x1, . . . ,xn of a
K-vector space V is D.

S11.6 Let Eσ ∈Mn(K) be the matrix of the permutation σ ∈Sn, i. e., Eσ =
(
δiσ( j)

)
. Suppose that

ν(σ) = (ν1, . . . ,νn) be the cycle type of σ . Then show that the characteristic polynomial and the
minimal polynomial of Eσ are, resp. :

χEσ
=

n

∏
i=1

(X i−1)νi and µEσ
= lcm(X i1−1, . . . ,X ir −1) ,

where Supp(ν(σ)) = {i1, . . . , ir} . Moreover, Eσ is cyclic (see Exercise 11.8 (d)) if and only if σ

is a cycle of order n. ( Hint : Use the following two observations : (1) Note that for non-zero elements
a1, . . . ,an in any unique factorisation domain A,

lcm(a1, . . . ,an) = ∏
J∈P(N∗n) ,J 6= /0

g(J)s(J) and gcd(a1, . . . ,an) = ∏
J∈P(N∗n) ,J 6= /0

`(J)s(J) ,

where for a subset J ∈P(N∗n), g(J) := gcd(a j | j ∈ J), `(J) := lcm(a j | j ∈ J) and s(J) :=−(−a)|J|. (prove
these formulae by using p-exponents). (2) For polynomials Xm−1, Xn−1 ∈ K[X ], where K is arbitrary
field, gcd(Xm− 1,Xn− 1) = Xgcd(m,n)− 1. Prove this by going to the field extension L |K such that both
Xm−1 and Xn−1 splits into linear factors in L[X ]. See also Supplement S11.14.)

S11.7 Let f be an operator on the n-dimensional K-vector space V . Suppose that the degree of
the minimal polynomial µ f is m . Then show that
(a) χ f+a id(X) = χ f (X−a) and µ f+a id(X) = µ f (X−a) , a ∈ K .
(b) χa f (X) = anχ f (X/a) and µa f (X) = am µ f (X/a) , a ∈ K× .

(c) If f is invertible, then χ f−1(X) =
(−1)n

Det f
Xn

χ f (1/X) and µ f−1(X) =
1

µ f (0)
Xm

µ f (1/X) ,
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Further, deduce that : f−1 =
µ−µ(0)

µ(0)X
( f ) and that eigenvalue s of f are all non-zero and

0 6= λ ∈ K is an eigenvalue of f if and only if λ−1 is an eigenvalue of f−1 . (Remark : Let
A ∈Mn(K), n ∈N∗, be an invertible matrix with adjoint AdjA = (Det A)−1A−1 see Theorem 9.D.13. If
χA = Xn+ an−1Xn−1+ · · ·+ a1X + a0 is the characteristic polynomial of A, then DetA = (−1)na0 and
χA(A) = 0 by Cayley-Hamilton Theorem 11.A.7. It follows that AdjA = (−1)na0A

−1 = (−1)n−1(a1En+
a2A+ · · ·+an−1A

n−2 +An−1). Moreover, the equation
AdjA= (−1)n−1

∆A(A) , where ∆A := (χA−χA(0))/X ,

also hold for arbitrary n×n-matrices, even if A is not invertible. Further, by Supplement S11.?? the coefficient
(−1)n−1a1 is the trace of Adj A. — For a Proof of this equation, we use the K r o n e c k e r ’ s m e t h o d
o f i n d e t e r m i n a t e s and consider the invertible matrix B := ZEn+A ∈Mn(K(Z )), where Z is an
indeterminate over K, with the characteristic polynomial χB(X) = χA(X−Z ) = ∑k≥0 Fk(Z)Xk ∈

(
K[Z]

)
[X ],

see Supplement S11.6 (a), and ∆B=
(
χA(X−Z)− χA(−Z )

)/
X = ∑k≥1 Fk(Z)Xk−1. It is ∆A = ∆A(X) =

∑k≥1 Fk(0)Xk−1. By the above proof for the adjoint, we have
AdjB= Adj(ZEn+A) = (−1)n−1

∆B(ZEn+A) = (−1)n−1
∑k≥1Fk(Z)(ZEn+A)k−1.

Now, substituting Z = 0, we get AdjA= (−1)n−1
∑k≥1 Fk(0)Ak−1 = (−1)n−1∆A(A). •

More generally, we put ∆A ,λ := (χA−χA(λ ))/(X−λ ) ∈ K[X ]. Then
Adj(A−λEn) = (−1)n−1

∆A,λ (A) .

By Supplement S11.6 (a) we have ∆A−λEn = (χA(X+ λ )− χA(λ ))/((X+λ )− λ ) = ∆A,λ (X+ λ ) and it
follows that Adj(A−λEn) = (−1)n−1∆A−λEn(A−λ En) = ∆A,λ (A).
Note that if A is not invertible, then the matrices AdjA and hence ∆A(A) have rank 1 if RankA= n−1, and
are equal to 0 if RankA<n−1, see Supplement S9.??. Therefore, if DimKerA= 1, then the factor X in the
minimal polynomial µA have the same multiplicity as in the characteristic polynomial χA. If DimKerA>1,
then the multiplicity of X in µA is smaller than that in χA. Correspondingly, we have for Adj(A−λEn) resp.
∆A,λ (A) and the multiplicities of the factor X−λ in µA resp. in χA, if λ is an eigenvalue of A. For example,
a nilpotent n×n-matrix has the minimal polynomial is Xn if and only if its rank is n−1, see Exercise 11.2. )

S11.8 Let V be a K-vector space and let f :V →V be a linear operator. Show that
(a) f is a projection if and only if µ f is a divisor of X(X−1) = X2−X .

(b) f is an involution if and only if µ f is a divisor of (X +1)(X−1) = X2−1.
(c) For a projection (resp. involution) on a finite dimensional vector space find the characteristic
polynomial. (Hint : For involutions the case 1+1=0 in K, i. e., CharK=2 needs to be treated carefully!. —
Ans : χ f = (X − a)r ·X r with r = Rank f ; in particular, Tr f = Rank f (resp. χ f = (X + 1)r(X − 1)n−r if
CharK 6= 2 (since 1

2(idV − f ) is a projection) and χ f = (X−1)n if CharK = 2.))

S11.9 Let f :V →V be an operator of rank r on the n-dimensional K-vector space V .
(a) χ f is divisible by Xn−r . (b) µ f has degree ≤ r+1.
(Hint : Note that Ker f is an f -invariant subspace of f of dimension n− r by the Rank-Theorem, f |Ker f = 0
and hence χ f |_Ker f = Xn−r, µ f |Ker f = X and deg µ f ≤ deg χ f = Dim KV = Dim KV −Dim KKer f = Rank f =
r, where f : V →V is the operator induced by f on the quotient space V :=V/Ker f . Therefore by 11.A.8
χ f = χ f |Ker f · χ f = Xn−r · χ f and µ f divides µ f |Ker f · µ f = X · µ f , in particular, χ f is divisible by Xn−r and
deg µ f ≤ r+1. See also Supplement S11.14. — Remark : If f : V →V is a K-linear operator of rank ≥ 1
and n = Dim KV ≥ 2, then χ f is of the form χ f = Xn +an−1Xn−1 = Xn− (Tr f )Xn−1 = Xn−1(X−Tr f ) and
Tr f =−an−1 is the only 6= 0 eigenvalue of f . Then the minimal polynomial µ f = X(X−Tr f ), since f is not
homothecy. In particular, an operator is a projection onto an 1 dimensional subspace if and only if its rank is
1 and its trace is 1.)

S11.10 (a) The characteristic polynomial of the n×n-matrix

A=


a b · · · b
b a · · · b
...

... . . . ...
b b · · · a
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is (X +b−a)n−1(X−a− (n−1)b) . Compute its minimal polynomial. determine the conditions
on a and b so that A is invertible, moreover, in these cases, compute the inverse of this matrix.
( Hint : See also Supplement S10.52-(a). )
(b) Let A0, . . . ,An−1 ∈Mm(K) . The characteristic polynomial of the mn×mn-matrix

B :=


0 0 · · · 0 −A0
Em 0 · · · 0 −A1
0 Em · · · 0 −A2
...

... . . . ...
...

0 0 · · · Em −An−1


is Det(XnEm +Xn−1An−1 + · · ·+XA1 +A0) .
(c) Let A= Diag(a1, . . . ,an)∈Mn(K) be a diagonal matrix and let B= (bi j)∈Mn(K) be a matrix
of rank ≤ 1. Then

χA−B =
n

∏
i=1

(X−ai)+
n

∑
j=1

b j j ∏
i 6= j

(X−ai) .

If A is invertible, then A−B is invertible if and only if c :=∑
n
j=1 b j ja−1

j 6= 1. Further, in this case

(A−B)−1 =
1

1− c

(
(1− c)a−1

i δi j +a−1
i bi ja−1

j
)

1≤i, j≤n .

S11.11 Let f be a linear operator on the K-vector space V . In the parts (c) and (d) below assume
that DimKV = n ∈N. Show that
(a) f is nilpotent if and only if µ f is a power of X . Deduce that: if f is nilpotent, then Tr( f ) = 0
and Det( f ) = 0.
(b) f is unipotent, i. e. f − id is nilpotent if and only if µ f is a power of X−1. Deduce that: if f is
nilpotent, then Tr( f ) = n and Det( f ) = 1.
(c) f is nilpotent if and only if χ f = Xn. ( Hint : Use Cayley-Hamilton Theorem 11.A.7. )
(d) f is unipotent if and only if χ f = (X−1)n.

S11.12 Let K ⊆ L be a field extension and let A ∈Mn(K)⊆Mn(L) . For the minimal- as well as
the characteristic polynomial of A are independent if the matrix A is considered over K or over L.
( Hint : For the minimal polynomial use the Supplement S7.36. )

S11.13 Let f and g be two commuting operators on the K-vector space V and assume that the
operator g is nilpotent. Then χ f+g = χ f and in particular, Det( f +g) = Det f and Tr( f +g) =
Tr f . (Hint : It is enough to prove the assertion for matrices. First note that the matrix XEI −A is
invertible in MI(K(X)) . Since AB =BA and B is nilpotent, (XEI−A)−1B is also nilpotent and hence
Det

(
EI− (XEI−A)−1B

)
= 1 by Supplement S11.11 (b). Therefore from the equality XEI− (A+B) =

(XEI−A)
(
EI− (XEI−A)−1B

)
, it follows that χA+B = χA.)

S11.14 Suppose that the K-vector space V is the sum of invariant subspaces U and W under the
K-linear operator f : V →V . Then f is algebraic if and only if f |U and f |W are algebraic. Further,
in this case µ f = lcm(µ f |U , µ f |W ) . (Remark : See Exercise 10.8-(c) for an application. — Hint : Since
µ f ( f �U) = µ f ( f ) �U = 0 and µ f ( f �W ) �= µ f ( f ) �W = 0, clearly (by definition of minimal polynomial),
µ f �U and µ f �W both divide µ f . On the other hand put µ := lcm(µ f |U , µ f |W ). Then µ( f ) �U = µ( f �U) = 0
and µ( f ) � W = µ( f � W ) = 0, since µ is a multiple of both µ f �U and µ f �W . Now, since V = U +W , it
follows that µ( f ) = 0. Therefore (by definition of µ f ) µ f divides µ .)

S11.15 Let f :V → V be an operator and let µ be the minimal polynomial of the restriction of
f on im f . Then either µ or X · µ is the minimal polynomial of f . In particular, an operator f
of finite rank r is algebraic and the degree of its minimal polynomial is ≤ r+1. (Note that for the
minimal polynomial µ f of f , the operator µ f ( f ) = 0 and hence µ f ( f � Im f ) = µ f ( f ) � Im f = 0. Therefore
µ = µ f �Im f divides µ f . On the other hand (X ·µ)( f ) = f ◦µ( f ) = µ( f )◦ f = 0, since µ( f ) � Im f = 0. This
proves that µ f divides X ·µ and hence the only possibilities are either µ f = µ or µ f = X ·µ .)
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S11.16 Let f be an invertible operator on the K-vector space V . Show that λ ∈ K is an eigenvalue
(resp. a spectral-value) of f if and only if 1/λ is an eigenvalue (resp. spectral-value) of f−1 , i. e.,
e-Spec( f−1) = (e-Spec f )−1 := {λ−1 | λ ∈ e-Spec f} and Spec( f−1) = (Spec f )−1 := {λ−1 | λ ∈
Spec f}.

S11.17 Let f and g be operators on the K-vector space V . Then show that
(a) The non-zero eigenvalue s of f g and g f are same.
(b) The non-zero spectral-values of f g and g f are same. (Hint : For a ∈ K×, f g−a id is invertible if
and only if g f −a id invertible. In this case (g f −a id)−1 = a−1

(
g( f g−a id)−1 f − id

)
.)

(c) Given an example such that the eigenvalue s (resp. spectral-values) of f g and g f are not
same. (Hint : Let f ,g : V := K[X ]→V = K[X ] be the K-linear operators on the K-vector space V = K[X ]
of polynomials over K (with basis Xn, n ∈ N) defined by f (Xn) := Xn+1, n ∈ N and g(Xn) := Xn−1, for
n ≥ 1 and g(X0) = g(1) = 0, i. e. f := λX is the left multiplication by X and g(P) := (P−P(0))/X for
PinK[X ]. Then 0 is an eigenvalue (and hence a spectral-value) of f g, since ( f g)(1) = f (0) = 0 = 0 ·1, but
0 is not an eigenvalue (and moreover, not a sspectral-value) of g f , since 0 · idV − g f = g f = idV because
(g f )(Xn) = g(Xn+1) = Xn for all n ∈N.)

S11.18 Let f :V →V be a K-linear operator on the K-vector space V and let U ⊆V be an f -invariant
subspace of V . Further, let f : V/U →V/U be the operator on V/U induced by f . Then
(a) Show that every eigenvalue of f |U is an eigenvalue of f and every eigenvalue of f is aneigen-
value of f |U or of f .
(b) The same statement as in the part (a) for the spectral-values, i. e.,

Spec f |U ⊆ Spec f ⊆ Spec ( f |U)∪Spec f .

(c) If f is algebraic, then Spec f = Spec ( f |U)∪Spec f̄ .

S11.19 Let f :V → V be a K-linear operator and let V be the direct sum of the f -invariant
subspaces Vi , i ∈ I . Show that
(a) The set of all eigenvalues of f is the union of the set of all eigenvalue s of f |Vi , i ∈ I , i. e.,

e-Spec( f ) =
⋃
i∈I

e-Spec( f |Vi) .

(b) For the spectral-values the analogous statement as in the part (a) holds, i. e.,

Spec f =
⋃
i∈I

Spec ( f |Vi) .

(c) Let λX denote the multiplication by the indeterminate X on the K-vectors space
(i) V = K[X ] of polynomials over K, then e-Spec(λX) = /0 and Spec(λX) = K.
(ii) V = K(X) of rational functions over K, then e-Spec(λX) = Spec(λX) = /0.
(iii) V = {P/Q ∈ K(X) | P,Q ∈ K[X ],Q(0) 6= 0}, then e-Spec(λX) = /0 and Spec(λX) = {0}.
(iv) V = K[[X ]] of formal power series K, then e-Spec(λX) = /0 and Spec(λX) = {0}.

S11.20 Let f :V →V be an operator on the K-vector space V and let P ∈ K[X ] be a non-constant
polynomial. Then show that
(a) If λ is an eigenvalue (resp. spectral-value) of f , then P(λ ) is an eigenvalue (resp. a spectral-
value) of P( f ) , i. e. P(e-Spec( f ))⊆ e-SpecP( f ) and P(Spec( f ))⊆ SpecP( f ). (Hint : Let λ ∈ K.
Then λ is a zero of the polynomial P(X)−P(λ ) ∈ K[X ] and hence P(X)−P(λ ) = (X−λ ) ·Q(X) for some
Q ∈ K[X ]. Therefore P(λ )idV −P( f ) = (λ idV − f )◦Q( f ) = Q( f )◦ (λ idV − f ) and hence if (λ idV − f ) is
not injective (resp. not surjective), then P(λ )idV −P( f ) is not injective (resp. not surjective).)

(b) If K is algebraically closed,1 then every eigenvalue (resp. every spectral-value) of P( f )
of the form P(λ ) with an eigenvalue (resp. a spectral-value) λ of f , i. e., P(e-Spec( f )) =

1A field K is called an a l g e b r a i c a l l y c l o s e d if every non-constant polynomial P ∈ K[X ] has a zero in K.
For example, by the Fundamental Theorem of Algebra (see Footnote 2) the field C of complex numbers is algebraically
closed. But the fields Q, R and finite fields are not algebraically closed.
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e-SpecP( f ) and P(Spec( f ))⊆ SpecP( f ). Hint : Let µ ∈ K and let P(X)−µ = c(X −λ1) · · ·(X −λn)
with c,λ1, . . .λn ∈ K (since K is algebraically closed. Therefore µidV −P( f ) = (−1)n−1c(λ1idV − f )◦ · · · ◦
(λnidV − f ) and hence if λi 6∈ e-Spec f (resp. λi 6∈ Spec f ), then µ 6∈ e-SpecP( f ) (resp. µ 6∈ SpecP( f )).)

S11.21 Let f and g be operators on the K-vector space V with [ f ,g] := f g−g f = a idV and let
a 6= 0 in K . Show that if λ is an eigenvalue of g f with the eigenvector x ∈V , then g f (gn(x)) =
(λ + na)gn(x) , n ∈ N . In particular, if gn(x) 6= 0, then λ + na is also an eigenvalue of g f .
Moreover, if g is invertible, then λ +na is an eigenvalue of g f with the eigenvector gn(x) for n∈Z.
(Hint : By the way the relation f g−g f = a idV with a 6= 0 is possible only in the case of a field characteristic
0 and only if V is either 0 or infinite dimensional. Otherwise, (DimV ) ·a = Tr(a idV ) = Tr( f g)−Tr(g f ) = 0
is a contradiction. It follows that there is no finite dimensional subspace 0 6=U ⊆V which is invariant under
both f as well as g. In particular, f and g have no common eigenvectors.)

S11.22 Let f :V →V be an operator on the K-vector space with the dual operator f ∗ :V ∗→V ∗ .
Then show that
(a) A subspace U of V is f -invariant if and only if U◦ is f ∗-invariant. (Hint : Suppose that
f (U) ⊆ U and e ∈ U◦. Then e(x) = 0 for all x ∈ U and hence ( f ∗(e))(x) = e( f (x)) = 0 for all x ∈ U ,
since f (x) ∈U for all x ∈U , i. e. f ∗(e) ∈U◦. This proves that f ∗(U◦) ⊆U◦. Conversely, suppose that
f ∗(U◦) ⊆U◦ and let x ∈U . For every e ∈U◦, we have f ∗(e) ∈U◦ and hence e( f (x)) = ( f ∗(e))(x) = 0.
Therefore every e ∈V ∗ which vanish on U also vanish on f (x) and hence f (x) ∈U by Theorem 5.G.7. This
proves that f (U)⊆U .)
(b) If a subspace W of V ∗ is f ∗-invariant, then ◦W is f -invariant. If V is finite dimensional,
then the converse hold. (Hint : Suppose that f ∗(W )⊆W and let x ∈◦W . Then for every e ∈W , we have
f ∗(e) ∈W and hence e( f (x)) = ( f ∗(e))(x) = 0, since x ∈◦W . Therefore f (◦W )⊆◦W . Conversely, suppose
that V is finite dimensional and f (◦W )⊆◦ W . Then by Theorem 5.G.10 (◦W )◦ =W and hence by the part
(a) f ∗(W ) = f ∗((◦W )◦)⊆ (◦W )◦ =W .)

(c) Spec f ∗ = Spec f and in general e-Spec f ∗ 6= e-Spec f (Example?).

S11.23 Let V be a n-dimensional vector space over a field K and let ∆ ∈ AltK(n,V ) be an
n-alternating linear form V n→ K . For f ∈ EndK(V ) and x1, . . . ,xn ∈V , show that

Tr( f ) ·∆(x1, . . . ,xn) =
n

∑
i=1

∆(x1, . . . ,xi−1, f (xi),xi+1, . . . ,xn) .

S11.24 Let f :V → V be an operator on the finite dimensional K-vector space V and U be an
f -invariant subspace of V . Then show that

Tr f = Tr( f �U)+Tr f ,

where f is the operator V/U →V/U induced by f . In particular,

Tr f = Tr( f � Im f )+Tr( f ) with f : V/Ker f −→V/Ker f .
(Hint: By 11.A.8 we have χ f = χ f �U ·χ f . – Remark: The last equation is used to define t r a c e o f a n
o p e r a t o r o f f i n i t e r a n k on not necessary on finite dimensional vector spaces.)

S11.25 Let f :V →V be an operator on the finite dimensional K-vector space V 6= 0. Show that
the following statements are equivalent:
(i) χ f is a prime polynomial in K[X ].
(ii) 0 and V are the only f -invariant subspaces of V .
(iii) Every non-zero x ∈V is a cyclic vector (see Exercise 10.8-(d)) for f .
(Hint: If U is an f -invariant subspace of V with 0 < m := Dim KU < Dim KV , then χ f = χ f �U ·χ f by 11.A.8
and deg χ f �U = Dim KU = m and hence χ f �U is a proper divisor of χ f , in particular, χ f cannot be a prime
polynomial. Conversely, if χ f is not a prime polynomial and if P is a proper prime divisor of χ f , then by
11.A.12 there exists an f -invariant subspace U of V of dimension Dim KU = degP < deg χ f = Dim KV .)

S11.26 Let f :V →V be an operator on the finite dimensional K-vector space V . Show that
(a) If f is cyclic (see Exercise 10.8-(d)) with the characteristic polynomial χ := χ f , then V has
exactly

∏
π∈P(K[X ])

(vπ(χ)+1)
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f -invariant subspaces and restrictions of f to each one of these subspaces is again a cyclic operator,
where P(K[X ]) denote the set of all monic prime polynomials in K[X ] and vπ denote the π-
exponents.
(b) If K is infinite and if V has only finitely many f -invariant subspaces, then f is a cyclic operator.
( Hint : Use Exercise 2.2. )

S11.27 Let f :V → V be a cyclic operator (see Exercise 10.8-(d)) on the finite dimensional K-
vector space V of dimension n with the cyclic vector x ∈V . Then the dual operator f ∗ : V ∗→V ∗

is also a cyclic operator on the dual space V ∗ with a cyclic vector ( f n−1(x))∗, where ( f n−1(x))∗

belong to the dual basis of V ∗ with respect to the basis x, f (x), . . . , f n−1(x) of V .

S11.28 Let f :V →V be an operator on the finite dimensional K-vector space V .
(a) Let vi , i∈ I be a K-basis of V . Show that Tr f =∑i∈I v∗i ( f (vi)) . (Hint : Let Mv

v( f ) = (ai j)(i, j)∈I×I
be the matrix of f with respect to the basis v= {vi | i ∈ I}, i. e. f (v j) = ∑i∈I ai jvi. Therefore v∗j( f (v j)) =

v∗j(∑i∈I ai jvi) = ∑i∈I ai jv∗j(vi) = ∑i∈I ai jδi j = a j j and ∑ j∈I v∗j( f (v j)) = ∑ j∈I a j j = Tr( f ).)

(b) If Rank f ≤ 1, then show that f is nilpotent if and only if Tr f = 0. ( Hint : By Test-Exercise T10.9
the characteristic polynomial χ f = Xn−1(X−Tr( f )). )

S11.29 Let K be a field and let n ∈N∗ . Then
(a) Show that the c o m m u t a t o r s [A ,B] :=AB−BA , A,B ∈Mn(K) , generate a subspace
of codimension 1 in Mn(K) . This subspace is the kernel of the trace function Tr :Mn(K)→ K .
(b) Show that every K-linear form h : Mn (K)→ K with h(AB) = h(BA) for all A,B ∈Mn(K)
is a scalar multiple of the trace function on Mn(K) .

S11.30 Let n ∈N and let K be a field with k 1K 6= 0 for k = 1, . . . ,n .
(a) For every operator f :V →V with Tr f = 0 on a n-dimensional K-vector space V , show that
there exists a basis v1, . . . ,vn of V with v∗i ( f (vi)) = 0, i = 1, . . . ,n . (Hint: By induction on k show
that : there exist linearly independent vectors v1, . . . ,vk and a subspace Wk of V such that

Kv1⊕·· ·⊕Kvk⊕Wk =V and f (vi) ∈∑
j 6=i

Kv j +Wk .

Suppose that k = 1. If every element of V is an eigenvector of f , then by Exercise 10.3 f is the homothecy
aidV , a ∈ K and it follows that 0 = Tr f = n ·a. Therefore a = 0 and f = 0, in this case the assertion is trivial.
Otherwise, there exists a vector v1 ∈V with f (v1) 6∈Kv1. We extend v1, f (v1) to a basis v1, f (v1),w1, . . . ,wn−2
of V and take W1 the subspace of V generated by f (v1),w1, . . . ,wn−2. With this the required assertion holds.
For the inductive step rom k to k + 1, consider the map p ◦ f |Wk , where p projection onto Wk along
∑

k
j=1 Kv j . Extend v1, . . . ,vk to a basis v1, . . . ,vk,w1, . . . ,wn−k. Then removing the first k rows and first k

columns from the matrix of f with respect to this basis, we obtain the matrix of p◦ f |Wk with respect to
the basis w1, . . . ,wn−k. Since the first k digonal elements of the matrix of f are 0 by construction and since
Tr f = 0, it follows that Tr(p◦ f |Wk) = 0.
If every non-zero element of Wk is an eigenvector of p◦ f |Wk, then by Exercise 10.3 p◦ f |Wk is a homothecy
a · idWk , a∈K and it follows that 0 = Tr(p◦ f |Wk) = (n−k) ·a and hence a = 0 by hypothesis on K. Therefore
p◦ f |Wk = 0,i. e. f (Wk)⊆Kv1⊕·· ·⊕Kvk. We can take arbitrary non-zero vk+1 ∈Wk and Wk+1 a complement
of Kvk+1 in Wk.
Otherwise there exists vk+1 ∈Wk such that (p ◦ f |Wk)(vk+1) 6∈ Kvk+1 and so f (vk+1) 6∈ Kv1⊕·· ·⊕Kvk⊕
Kvk+1. We extend v1, . . . ,vk,vk+1, f (vk+1) to a basis v1, . . . ,vk,vk+1, f (vk+1),w1, . . . ,wn−k−1 of V and take
Wk+1 the subspace of Wk generated by f (vk+1),w1, . . . ,wn−k−1. With this the required assertion holds.
Now, in the case k = n, Wn = 0 and hence v1, . . . ,vn is a basis of V such that f (v j) = ∑ j 6=i ai jv j, i. e. the
diagonal elements of the matrix of f with respect to this basis are all 0.)

(b) Show that every matrix A ∈Mn(K) with TrA= 0 is a commutator, i.e. is of the form [B ,C] =
BC−CB . (Hint : By part (a) above the matrix A is similar to the matrix A′ whose diagonal entries are
all 0, i. e. there exists an invertible matrix D ∈Mn(K) such that A =DA′D−1. It is enough to show that
there are matrices B,C ∈Mn(K) such that [B,C] = A′. For, then A = DA′D−1 = D(BC−CB)D−1 =
(DBD−1)(DCD−1)− (DCD−1)(DBD−1) = [DBD−1 , DCD−1]. Therefore, without loss of generality
assume that all main-diagonal entries of A = (ai j) are 0 . Since #K > n by hypothesis on K, there exists
distinct elements b1, . . . ,bn ∈ K. Then for the diagonal matrix B= Diag(b1, . . . ,bn), and an arbitrary matrix
C= (ci j) ∈Mn(K), we have
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b1 0 · · · 0
0 b2 · · · 0
...

...
. . .

...
0 0 · · · 0

 ·


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn

−


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn

 ·


b1 0 · · · 0
0 b2 · · · 0
...

...
. . .

...
0 0 · · · 0



=


b1c11 b1c12 · · · b1c1n
b2c21 b2c22 · · · b2c2n

...
...

. . .
...

bncn1 bncn2 · · · bncnn

−


b1c11 b2c12 · · · bnc1n
b1c21 b2c22 · · · bnc2n

...
...

. . .
...

b1cn1 b2cn2 · · · bncnn



=


0 (b1−b2)c12 · · · (b1−bn)c1n

(b2−b1)c21 0 · · · (b2−bn)c2n
...

...
. . .

...
(bn−b1)cn1 bncn2 · · · 0

 .

Now, one can take ci j := ai j/(bi−b j) for i 6= j and cii = 0, so that the equation [B,C] = A holds.)

S11.31 Let V be a finite dimensional K-vector space.

(a) For a projection p of V , show that Tr p=Rank p(= (Rank p)1K) . ( Hint : Use Test-Exercise T8.9-
(a). )
(b) Suppose that m ·1K 6= 0 for 1≤ m≤ DimKV . Further, let p1, . . . , pr be projections of V with
p1 + · · ·+ pr = idV . Further, suppose that either CharK = 0 or ∑

r
i=1 Rank pi−Dim KV < CharK ,

if CharK > p. Then show that pi p j = δi j pi for 1≤ i, j≤ r and in particular, V is the direct sum of
the subspaces Im pi , i = 1, . . . ,r . (Hint: Since p1 + · · ·+ pr = idV , we have Im p1 + · · ·+ Im pr =V and
hence Dim KV = Tr(idV ) = Tr(p1)+ · · ·+Trpr == Rank p1 + · · ·+Rank pr. Therefore by the assumption
on the characteristic of K, the equality Dim KV = Rank p1 + · · ·+Rank pr also hold in N and hence the sum
V = Im 1⊕·· ·⊕ Im pr is direct. Therefore Im p j ⊆ Ker pi for all i 6= j and hence pi ◦ p j = 0 for all i, j, i 6= j.
Further, pi ◦ pi = pi, since pi is a projection, for all i = 1, . . . ,r. )

(c) Suppose that a finite group G operates on V as the group of K- automorphisms and that
|G| ·1K 6= 0 in K . Then show that :

1
|G| ∑

σ∈G
σ

is a projection of V onto FixGV (see also Example 6.E.10) and the equality (in K)

Dim KFixGV =
1
|G| ∑

σ∈G
Trσ .

(Hint : For a fixed τ ∈ G, note that G = {τσ | σ ∈ G}. Therefore for p := 1
#G ∑σ∈G σ , we have

p2 =
1

(#G)2 ∑
σ∈G

σ ∑
τ∈G

τσ =
#G

(#,G)2 ∑
σ∈G

σ =
1

#G ∑
σ∈G

σ = p .

Therefore p is a projection of V . For a x ∈ FixGV , σ(x) = x for all σ ∈ G and hence p(x) = 1
#G ∑σ∈G x = x.

Conversely, for y = p(x) ∈ Im p, it is immediate that τ(y) = 1
#G ∑σ∈G τσ(x) = 1

#G ∑σ∈G σ(x) = p(x) = y for
all τ ∈ G. Therefore Dim K FixGV = Dim K Im p = Rank p = Tr p = 1

#G ∑σ∈G Trσ .)

S11.32 ( J a c o b s o n - L e m m a ) Let f ,g be operators on the n-dimensional K-vector space
V with

[
f , [ f ,g]

]
= 0. Suppose that m ·1K 6= 0 for 1≤m≤DimKV . Then [ f ,g] nilpotent. (Hint :

The condition
[

f , [ f ,g]
]
= 0 is equivalent with f [ f ,g] = [ f ,g] f and so f commute with the powers [ f ,g]n,

n ∈N. It follows that [ f ,g]n = ( f g−g f )[ f ,g]n−1 = f g[ f ,g]n−1−g f [ f ,g]n−1 = f g[ f ,g]n−1−g[ f ,g]n−1 f =[
f ,g[ f ,g]n−1

]
. Now, since [ f ,g]n−1 are also commutators, they have trace 0 and hence [ f ,g] is nilpotent by

Exercise 10.5-(a).)

S11.33 Let A be a n× n-matrix over the field K . Suppose that the sum of elements of every
row of A is equal to λ ∈ K . Then show that λ is an eigenvalue of A with the eigenvector
t(1,1, . . . ,1) ∈ Kn. If all the column-sum of A are equal to λ , then λ is an eigenvalue of A .
(Hint : Clearly, A tr(1, . . . ,1) = tr(λ , . . . ,λ ) = λ tr(1, . . . ,1), i. e., λ is an eigenvalue of A. — Remark : An
eigenvector corresponding to this eigenvalue is, in general, no so easy to give explicitly.)
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S11.34 Let A ∈Mm,n(K) and B ∈Mn,m(K) , m ≥ n. Show that χAB = Xm−nχBA . (Hint: Fill

the matrices A and B with zeroes to get square m×m-matrices. (A 0)
(
B
0

)
= AB and

(
B
0

)
(A 0) =(

BA 0
0 0

)
. Therefore the characteristic polynomial χAB is equal to that of (A 0)

(
B
0

)
and hence the

characteristic polynomial of
(
B
0

)
(A 0) is equal to Det

(
XEn−BA 0

0 XEm−n

)
= Xm−nDet(XEn−BA) =

Xm−nχbA by Exercise 10.7-(b).)

S11.35 (a) Let V be a finite dimensional vector space over a field K and let f ∈ EndKV . Further, let
L f : EndKV → EndKV , g 7→ f g (respectively R f : EndKV → EndKV , g 7→ g f be the left-translation
by f . Show that

χL( f ) = χR( f ) =
(
χ f
)n

, TrL( f ) = TrR( f ) = n ·Tr f and DetL( f ) = DetR( f ) = (Det f )n .

(See also Example 11.A.27).

(b) Show that the characteristic polynomial of a complex number z as an element of the R-algebra
C is χz = (X− z)(X− z̄) . In particular, NCRz = zz̄ = |z|2 and TrCRz = z+ z̄ = 2Rez .

S11.36 Let f be an operator on a finite dimensional K-vector space and let P ∈ K[X ] be a
polynomial. Show that P( f ) is invertible if and only if P and µ f (or also P and χ f ) are relatively
prime. ( Hint : Let Q := gcd(P,µ f ). If Q = 1, then SP+T µ f = 1 for some polynomials S,T ∈ K[X ] and
hence id = S( f )P( f )+T ( f )µ f ( f ) = S( f )P( f ), i. e. P( f ) is invertible with inverse S( f ). Conversely, if
Q 6= 1, then µ f = R ·Q, P = P′ ·Q with R,P′ ∈ K[X ] and degR < deg µ f and hence R( f ) 6= 0 and Q( f ) 6= 0,
but 0 = µ f ( f ) = R( f )◦Q( f ) = Q( f )◦R( f ). Therefore Q( f ) is not injective and hence P( f ) = P′( f )◦Q( f )
is also not injective. In particular, P( f ) is not invertible. )

S11.37 Let K be a field.
(a) Let P and Q be monic polynomials over the field K . Suppose that degP = n , Q is a divisor
of P and moreover that P and Q have the same prime factors in K[X ]. Then show that on every
n-dimensional K-vector space V there exists an operator f ∈ EndKV with characteristic polynomial
χ f = P and minimal polynomial µ f = Q .
(b) Let S and S′ be subsets of K with S⊆ S′. Show that there exists a K-linear operator f : V →V
on a K-vector space V such that e-Spec f = S and Spec f = S′. ( Hint : For each a ∈ K, let ga =−λa

and ha := λX−a be operators on the K-vector space K[[X ]]. Then e-Specga = {a}= Specga, e-Specha = /0
and Specha = {a}, see Test-Exercise T10.19-(c). Let g := (⊕a∈Sga) : K(S)→ K(S) and h := (⊕a∈S′\Sha) :
K(S′\S)→ K(S′\S) be the direct sum of operators ga, a ∈ S and ha, a ∈ S′ \S respectively. Now it is easy to
check that the operator f := g⊕h have the required properties. See Test-Exercise T10.19 also. )

S11.38 Show that an operator f on a R-vector space has exactly one real eigenvalue if and only if
f 2 has an eigenvalue ≥ 0. ( Hint : f 2−a2id = ( f −a id)( f +a id) . )

S11.39 Let f be a C-linear operator on the finite dimensional C-vector space V , which we
consider as R-vector space. Then show that f is also R-linear and

χ f ,R = χ f ,C ·χ f ,C . (for a polynomial P = ∑aiX i ∈ C[X ] , we put P := ∑aiX i )

Further, for the minimal polynomials show that µ f ,R = LCM
(
µ f ,C , µ f ,C

)
.

S11.40 Let A= (ai j) ∈Mn(K) be a n×n-matrix over the field K. Then
(a) Let X1, . . . ,Xn be indeterminates over K. For 1≤ i1 < · · ·< ir ≤ n , show that the coefficient of
Xi1 · · ·Xir in the polynomial ∣∣∣∣∣∣∣

a11 +X1 · · · a1n
... . . . ...

an1 · · · ann +Xn

∣∣∣∣∣∣∣ ∈ K[X1, . . . ,Xn]

is equal to the diagonal minor of A obtained by removing the rows and columns numbered by
i1, . . . , ir . ( Hint : Expand the determinant successively using the rows i1, . . . , ir . )
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(b) For r = 1, . . . ,n , show that the coefficient ar of X r in the characteristic polynomial χA of A
is (−1)n−r-times the sum of the diagonal minors of the order n− r of A .

S11.41 Let K ⊆ L be a field extension and let A ∈Mn(K)⊆Mn(L) be a matrix with an eigenvalue
λ ∈ L−K . Then there exists an eigenvector x 6= 0 in Ln of A , i. e. Ax = λ x ; but there is no
eigenvector in Kn, i. e. Kn∩Ker ,(λEn−A) = 0.

S11.42 ( J a c o b i ’ s M a t r i x ) For k = 0, . . . ,n , let

Dk :=



a1 b1 0 · · · 0 0
c1 a2 b2 · · · 0 0
0 c2 a3 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · ak−1 bk−1
0 0 0 · · · ck−1 ak

 ∈Mk(K)

and let Dk := Det(Dk) (see exercise (13.30)). Put χk := χDk . Show that
(a) χ0 = 1 , χ1 = X−a1 , χk = (X−ak)χk−1−bk−1ck−1χk−2 for all k = 2, . . . ,n .
(b) If K =R and bkck > 0 for all k = 1, . . . ,n , then χn has n-distinct real roots and the number
of positive roots of χn is the number of changes in the sign of the sequence 1,−D1, . . . ,(−1)nDn .

S11.43 Let A= (ai j)1≤i, j≤n ∈Mn(K) . Show that

χA = Xn− s1Xn−1 + s2Xn−2−·· ·+(−1)nsn ,

where sk is the sum of
(n

k

)
minors Det (A(i1, i2, . . . , ik)) , 1≤ i1 < i2 < · · ·< ik ≤ n .

S11.44 Let a,b,c ∈ C with bc 6= 0 and let

Tn :=



a b 0 · · · 0 0
c a b · · · 0 0
0 c a · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · a b
0 0 0 · · · c a

 ∈Mk(K) , for k = 0, . . . ,n .

Show that :
(a) λk = a+2

√
bc cos

(
πk

n+1

)
, k = 1, . . . ,n are eigenvalues of Tn .

(b) For k = 1, . . . ,n , the vector with i-th components
(√ c

b

)i−1 sin
(

πk
n+1

)
i = 1, . . . ,n, is an eigen-

vector corresponding to the eigenvalue λk . ( Hint : We may assume that a = 0. Let µ ∈C with µ2 6= bc
and let Tn(µ) :=Det(µEn−Tn) . Then show that T0(µ)= 1,T1(µ)= µ and Tk+2(µ)= µTk+1(µ)−bcTk(µ)

for all k ≥ 0. Therefore by Test-Exercise T10.42 Tn(µ) =
(µn+1

1 −µ
n+1
2 )

(µ1−µ2)
where µ1 and µ2 are distinct

roots of the quadratic X2−µX +bc . Now, determine µ so that µ
n+1
1 = µ

n+1
2 . )

S11.45 Let V be a n-dimensional vector space over a field K and let f ∈ EndK(V ) .
(a) If Char(K) = p > 0 then, show that χ f p(X p) =

(
χ f
)p . In particular, Tr( f p) = (Tr( f ))p .

(Hint : For A ∈Mn(A) we have (XEn−A)p = X pEn−Ap . — This is a special case of the following more
general exercise in part (b) below.)

(b) For r ∈N+, prove that
χ f r(X r) = (−1)n(r−1)

r

∏
i=1

χ f (ζiX) ,

where ζi , i = 1, . . .r are the r-th roots of unity, i.e. X r−1 = ∏
r
i=1(X−ζi) . Deduce that χ f 2(X2) =

(−1)nχ f (X)χ f (−X) .

S11.46 Let A ∈Mn(K) and let χA = Xn +an−1Xn−1 + · · ·+a1X +a0 . Show that
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(a) Adj(A) = (−1)n+1(An−1 +an−1A
n−2 + · · ·+a1En).

(b) χAdj(A) = Xn +(−1)n
∑

n
i=1 ai (Det(A))i−1 Xn−i, where an := 1.

S11.47 Let I be a finite indexed set. Let R := K[Xi j | i, j ∈ I] (respectively, Q := K(Xi j | i, j ∈ I})
be a polynomial algebra (respectively the field of rational functions) over a field K and let A =(
Xi j
)
∈MI(Q). Then the characteristic polynomial χA ∈ R[X ] is a prime polynomial in R[X ].

S11.48 Let f ,g be operators on a finite dimensional K-vector space V such that χ f = χg. Then
show that χP( f ) = χP(g) for every polynomial P∈K[X ]. ( Hint : It is enough to show that: if A∈Mn(K)

and if B is the companion matric of the polynomial χA, then χP(A) = χP(B) for all P ∈ K[X ]. For this
we may take R := K[Xi j,Yk | i, j ∈ I,k = 0, . . . ,m] (respectively, Q := K(Xi j,Yk | i, j ∈ I,k = 0, . . . ,m}) the
polynomial algebra (respectively the field of rational functions) over K, A := (Xi j) ∈ MI(Q) and P =

Y0 +Y1X + · · ·+YmXm. Now A is similar to the companion matrix of A by Test-Exercises T10.?? and
T10.??. )

S11.49 Let A ∈Mn(K). Show that the following equality holds in the field of rational functions
K(X) over K :

Tr((XEn−A)) =
χ ′A
χA

, where χ
′
A =

d
dX

χA .
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