MA 313 Algebraic Number Theory / January-April 2016

(Int PhD. and Ph. D. Programmes)
Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...
Tel : +91-(0)80-2293 3212/(CSA 2239)
E-mails : patil@math.iisc.ernet.in / dppatil@csa.iisc.ernet.in
Lectures : Monday and Wednesday ; 15:30-17:00
Venue: MA LH-1 / LH-3 (if LH-1 is not free)
Midterms : Thursday, Feb 18, 2016, 10:00-11:30
Seminars : Fri April 15, Sat April 16, 2016, 15:00-17:00
Final Examination : Saturday, April 23, 2016, 14:00-17:00
Evaluation Weightage : Seminar : 20\% Midterms : 30\% Final Examination : 50\%

Range of Marks for Grades (Total 100 Marks)							
	Grade \mathbf{G}	Grade \mathbf{A}	Grade \mathbf{B}	Grade \mathbf{C}	Grade \mathbf{D}	Grade \mathbf{F}	
Marks-Range	>90	$76-90$	$61-75$	$46-60$	$35-45$	<35	

FINAL EXAMINATION

Saturday, April 23, 2016
14:00 to 17:00
Maximum Points : 50 Points

- Question F. 6 is COMPULSARY. Attempt O N LY F I V E Questions.
F. 1 Let A be a Dedekind domain and $\mathfrak{a} \neq 0$ an ideal in A.
(a) Show that all ideals in A / \mathfrak{a} are principal ideals.
(Hint : Use the Chinese Remainder Theorem to assume that $\mathfrak{a}=\mathfrak{p} n$ with $\mathfrak{p} \in \operatorname{Spec} A$. Now, choose $a \in \mathfrak{p} \backslash \mathfrak{p}^{2}$, and prove $\mathfrak{p}^{m}=A a^{m}+\mathfrak{p}^{n}$ for $1 \leq m \leq n$.)
(b) Show that the ideal \mathfrak{a} is generated by two elements. Moreover, for any element $a \in \mathfrak{a}, a \neq 0$, there is an element $b \in \mathfrak{a}$ with $\mathfrak{a}=A a+A b$. (Hint : Apply part (a) to $A / A a$.)
[5 Points]
F. 2 (a) (Minkowski's Theorem on Linear Forms) Let $L \subseteq \mathbb{R}^{n}$ be a lattice and let $F_{j}:=a_{1 j} X_{1}+\cdots+a_{n j} X_{n} \in \mathbb{R}[X], j=1, \ldots, n$ be linear forms with Det $\left(a_{i j}\right) \neq 0$. Suppose that $c_{1}, \ldots, c_{n} \in \mathbb{R}^{+}$be positive real numbers with $c_{1} \cdots c_{n} \geq\left|\operatorname{Det}\left(a_{i j}\right)\right| \cdot \operatorname{Vol} L$. Show that there exists a non-zero $x=\left(x_{1}, \ldots, x_{n}\right) \in L$ such that

$$
\left|F_{1}\left(x_{1}, \ldots, x_{n}\right)\right| \leq c_{1} \quad \text { and } \quad\left|F_{j}\left(x_{1}, \ldots, x_{n}\right)\right|<c_{j} \quad \text { for all } \quad j=2, \ldots, n
$$

(Hint : Use Minkowski's Convex Body Theorem ${ }^{1}$ to the convex, bounded and symmetric subset.
$S:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}|\quad| F_{1}\left(x_{1}, \ldots, x_{n}\right) \mid \leq c_{1}+\varepsilon, 0<\varepsilon<1 \quad\right.$ and $\left.\quad\left|F_{j}\left(x_{1}, \ldots, x_{n}\right)\right|<c_{j}, j=2, \ldots, n\right\}$.
-If $v_{1}, \ldots, v_{n} \in L$ is a \mathbb{Z}-basis of L, then $\mathcal{P}\left(v_{1}, \ldots, v_{n}\right):=\left\{\sum_{i=1}^{n} r_{i} v_{i} \mid r_{i} \in \mathbb{R}, 0 \leq r_{i} \leq 1, i=1, \ldots, n\right\}$ is a fundamental domain of L. The volume $\operatorname{Vol}\left(\mathcal{P}\left(v_{1}, \ldots, v_{n}\right)\right)=\left|\operatorname{Det}\left(v_{1}, \ldots, v_{n}\right)\right|$ is independent of the basis v_{1}, \ldots, v_{n} which is called the volume of L and is denoted by $\left.\operatorname{Vol} L.\right)$
(b) Let $r \in \mathbb{R}$ be a real number. For every natural number $m \in \mathbb{N}$, show that there exists a rational number $a / b \in \mathbb{Q}, a, b \in \mathbb{Z}, b \neq 0$, with $\operatorname{gcd}(a, b)=1$ such that

$$
0<b \leq m \quad \text { and } \quad\left|r-\frac{a}{b}\right|<\frac{1}{b m}
$$

(Hint : Apply the part (a) to the linear forms $F_{1}=X_{2}$ vand $F_{2}=-X_{1}+r X_{2}$ with $c_{1}=m, c_{2}=1 / m$ and $L=\mathbb{Z}^{2}$. By setting $b:=\left|x_{2}\right|$ and $a:=\operatorname{sign}\left(x_{2}\right) x_{1}$, where $\operatorname{sign} x_{2}=1$ if $x_{2}>0$ and -1 if $x_{2}<0$.-This rational approximation of real numbers has implications in the theory of continued fractions and solutions of Pell's equation in elementary number theory.)
F. 3 Let K be a number field and A be the ring of algebraic integers in K. For ideals $\mathfrak{a}, \mathfrak{b}$ in A, define $\operatorname{gcd}(\mathfrak{a}, \mathfrak{b}):=\mathfrak{a}+\mathfrak{b}$. We say that \mathfrak{a} and \mathfrak{b} are relatively prime if $\operatorname{gcd}(\mathfrak{a}, \mathfrak{b})=A$. (This is a generalization of the concept gcd of elements in \mathbb{Z} to gcd of ideals in A).

[^0]Let \mathfrak{a} be a non-zero ideal in A.
(a) Show that

$$
\{\bar{a} \in A / \mathfrak{a} \mid A a \text { and } \mathfrak{a} \text { are relatively prime }\}
$$

is a subgroup of the multiplicative group of A / \mathfrak{a} of order

$$
\Phi(\mathfrak{a})=\mathrm{N}(\mathfrak{a}) \prod_{\mathfrak{p} \mid \mathfrak{a}}\left(1-\frac{1}{\mathrm{~N}(\mathfrak{p})}\right)
$$

where the product runs over all distinct prime divisors of \mathfrak{a} and $\mathrm{N}(-)$ denotes the norm.
(Note that for $a, b \in A$ with $\bar{a}=\bar{b}$ in $A / \mathfrak{a}, \operatorname{gcd}(A a, \mathfrak{a})=\operatorname{gcd}(A b, \mathfrak{a})$. Therefore having the same gcd with \mathfrak{a} is an invariant of the residue class $\bar{a} \in A / \mathfrak{a}$.-Hint : Since the norm $\mathrm{N}(-)$ is multiplicative, one may assume that $\mathfrak{a}=\mathfrak{p}^{m}$ is a power of prime.)
Deduce that $\Phi(-)$ is multiplicative, i. e., if \mathfrak{a} and \mathfrak{b} are two relatively prime ideals in A, then

$$
\Phi(\mathfrak{a b})=\Phi(\mathfrak{a}) \Phi(\mathfrak{b})
$$

(If $K=\mathbb{Q}$, then Φ is the ordinary Euler's totient function.)
[5 Points]
(b) (Euler's Theorem for ideals) If $\mathfrak{a} \neq 0$ and $a \in A$ be relatively prime to \mathfrak{a}, then

$$
a^{\Phi(\mathfrak{a})} \equiv 1(\bmod \mathfrak{a})
$$

In particular, (Fermat's Little Theorem for ideals): if $\mathfrak{a}=\mathfrak{p}$ is a prime ideal in A, then $a^{\mathrm{N}(\mathfrak{p})-1} \equiv 1(\bmod \mathfrak{p})$.
[3 Points]
(c) Let $\mathfrak{p} \neq 0$ be a prime ideal in A and $a \in A$. Show that there exists an integer $z \in \mathbb{Z}$ such that

$$
a \equiv z(\bmod \mathfrak{p}) \quad \text { if and only if } \quad a^{p} \equiv a(\bmod \mathfrak{p}),
$$

where $p \in \mathbb{P}$ is a prime number with $\mathbb{Z} p=\mathfrak{p} \cap \mathbb{Z}$.
[3 Points]
F. 4 (a) Let A_{-5} be the ring of algebaric integers in the quadratic number field $\mathbb{Q}[\sqrt{-5}]$. Show that $A_{-5}=\mathbb{Z}[\sqrt{-5}]$ and that it is not factorial. Further, show that the class group of $\mathbb{Q}[\sqrt{-5}]$ is cyclic of order 2 .
[5 Points]
(b) Show that the equation $X^{2}+5=Y^{3}$ has no solutions in \mathbb{Z}^{2}. (Hint : Use part (a).)
[5 Points]
F. 5 Let K be a number field and let A be the ring of integers in K. Let $p \in \mathbb{P}$ be a prime number, $\mathrm{V}(p):=\{\mathfrak{p} \in \operatorname{Spec} A \mid p \in \mathfrak{p}\}$ be the set of prime divisors in A and $A p=\prod_{\mathfrak{p} \in \mathrm{V}(p)} \mathfrak{p}^{\mathcal{e}_{\mathfrak{p}}}$ be the prime factorization of the ideal $A p$ in A. Show that
(a) For each $\mathfrak{p} \in \mathrm{V}(p)$, the norm $\mathrm{N}(\mathfrak{p})=p^{f_{\mathfrak{p}}}$ with $f_{\mathfrak{p}} \in \mathbb{N}^{*}$ and $\sum_{\mathfrak{p} \in \mathrm{V}(p)} e_{\mathfrak{p}} f_{\mathfrak{p}}=[K: \mathbb{Q}]$. [4 Points]
(b) The natural map $\operatorname{Gal}(K \mid Q) \times \operatorname{Spm} A \rightarrow \operatorname{Spm} A, \quad(\sigma, \mathfrak{p}) \mapsto \sigma(\mathfrak{p})$, defines a natural operation of $\operatorname{Gal}(K \mid \mathbb{Q})$ on the maximal spectrum $\operatorname{Spm} A$ of A. Show that the orbits of this operation are precisely the subsets $\mathrm{V}(p), p \in \mathbb{P}$ and that $e_{\mathfrak{p}}=e_{\mathfrak{q}}$ and $f_{\mathfrak{p}}=f_{\mathfrak{q}}$ for all $\mathfrak{p}, \mathfrak{q} \in \mathrm{V}(p)$. What is the cardinality $\left|G_{\mathfrak{p}}\right|$ of the isotropy at $\mathfrak{p} \in \operatorname{Spm} A$?
[6 Points]
*F. 6 Let K be a number field with $[K: \mathbb{Q}]=n=r_{1}+2 r_{2}$, where r_{1} and r_{2} is the number of real and non-real complex \mathbb{Q}-embeddings of K in \mathbb{C}, respectively and $M_{K}=\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{r_{2}} \sqrt{|\operatorname{Disc} K|}$ be the Minkowski's bound for the norm of ideals in A.
(a) Show that the class group of K is generated by $\cup_{p \in \mathbb{P}, p \leq M_{K}} \mathrm{~V}(p)$. (See Question F. 5 for notation. Use F.5, (a).)
[5 Points]
(b) Compute the class group of the quadratic number field $K=\mathbb{Q}(\sqrt{-14})$. (Hint : Use part (a) and factorize the minimal polynomial $\mu_{\sqrt{-14}, \mathrm{Q}}=X^{2}+14$ modulo primes 2 and 3.)
[6 Points]

G O O D L U C K

[^0]: ${ }^{1}$ Theorem (Minikowski's Convex Body Theorem) Let L be a lattice in \mathbb{R}^{n} with volume $\operatorname{Vol} L:=\operatorname{Vol}\left(\mathcal{P}\left(v_{1}, \ldots, v_{n}\right)\right)$. If $S \subseteq \mathbb{R}^{n}$ is a symmetric, convex subset with volume $\lambda^{n}(S)>2^{n} \cdot \operatorname{Vol} L$, then there exists a non-zero element $x \in S \cap L$.

