MA 313 Algebraic Number Theory / January-April 2016 (Int PhD. and Ph. D. Programmes)

(Int PhD. and Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel: +91-(0)80-2293 3212/(C	E-mails	E-mails: patil@math.iisc.ernet.in / dppatil@csa.iisc.ernet.in					
Midterms : Thursday, Feb 18, 2016, 10:00–11:			30 Seminars : Fri April 15, Sat April 16, 2016, 15:00–17:00				
Final Examination : Sat	urday, April 23	, 2016, 14:00–	17:00				
Evaluation Weightage : Seminar : 20%			Midterms: 30%		Final Examination : 50%		
	Ra	ange of Marks for	Grades (Total 100	Marks)			
	Grade S	Grade A	Grade B	Grade C	Grade D	Grade F	
Marks-Range	> 90	76–90	61–75	46-60	35-45	< 35	
		FINAL E	XAMINATI	ON			
Saturday, April 23, 2016		14:00	14:00 to 17:00		Maximum Points: 50 Points		
• Question F.6	is COMP	ULSARY.	. Attempt	ONLY	FIVE (Juestions.	

F.1 Let *A* be a Dedekind domain and $a \neq 0$ an ideal in *A*.

(a) Show that all ideals in A/\mathfrak{a} are principal ideals.

(**Hint**: Use the Chinese Remainder Theorem to assume that $\mathfrak{a} = \mathfrak{p}n$ with $\mathfrak{p} \in \operatorname{Spec} A$. Now, choose $a \in \mathfrak{p} \setminus \mathfrak{p}^2$, and prove $\mathfrak{p}^m = Aa^m + \mathfrak{p}^n$ for $1 \le m \le n$.) [5 Points]

(b) Show that the ideal \mathfrak{a} is generated by two elements. Moreover, for any element $a \in \mathfrak{a}$, $a \neq 0$, there is an element $b \in \mathfrak{a}$ with $\mathfrak{a} = Aa + Ab$. (Hint : Apply part (a) to A/Aa.) [5 Points]

F.2 (a) (Minkowski's Theorem on Linear Forms) Let $L \subseteq \mathbb{R}^n$ be a lattice and let $F_j := a_{1j}X_1 + \cdots + a_{nj}X_n \in \mathbb{R}[X]$, $j = 1, \dots, n$ be linear forms with Det $(a_{ij}) \neq 0$. Suppose that $c_1, \dots, c_n \in \mathbb{R}^+$ be positive real numbers with $c_1 \cdots c_n \ge |\text{Det}(a_{ij})| \cdot \text{Vol}L$. Show that there exists a non-zero $x = (x_1, \dots, x_n) \in L$ such that

$$|F_1(x_1,\ldots,x_n)| \le c_1 \quad \text{and} \quad |F_j(x_1,\ldots,x_n)| < c_j \quad \text{for all} \quad j=2,\ldots,n. \tag{6 Points}$$

(Hint: Use Minkowski's Convex Body Theorem¹ to the convex, bounded and symmetric subset.

 $S := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid |F_1(x_1, \dots, x_n)| \le c_1 + \varepsilon, \ 0 < \varepsilon < 1 \text{ and } |F_j(x_1, \dots, x_n)| < c_j, \ j = 2, \dots, n \}.$

— If $v_1, \ldots, v_n \in L$ is a \mathbb{Z} -basis of L, then $\mathcal{P}(v_1, \ldots, v_n) := \{\sum_{i=1}^n r_i v_i \mid r_i \in \mathbb{R}, 0 \le r_i \le 1, i = 1, \ldots, n\}$ is a fundamental domain of L. The volume $\operatorname{Vol}(\mathcal{P}(v_1, \ldots, v_n)) = |\operatorname{Det}(v_1, \ldots, v_n)|$ is independent of the basis v_1, \ldots, v_n which is called the volume of L and is denoted by VolL.)

(b) Let $r \in \mathbb{R}$ be a real number. For every natural number $m \in \mathbb{N}$, show that there exists a rational number $a/b \in \mathbb{Q}$, $a, b \in \mathbb{Z}$, $b \neq 0$, with gcd(a, b) = 1 such that

$$0 < b \le m$$
 and $\left| r - \frac{a}{b} \right| < \frac{1}{bm}$

(**Hint :** Apply the part (a) to the linear forms $F_1 = X_2$ vand $F_2 = -X_1 + rX_2$ with $c_1 = m, c_2 = 1/m$ and $L = \mathbb{Z}^2$. By setting $b := |x_2|$ and $a := \operatorname{sign}(x_2)x_1$, where $\operatorname{sign} x_2 = 1$ if $x_2 > 0$ and -1 if $x_2 < 0$.— This rational approximation of real numbers has implications in the theory of continued fractions and solutions of Pell's equation in elementary number theory.)

F.3 Let *K* be a number field and *A* be the ring of algebraic integers in *K*. For ideals \mathfrak{a} , \mathfrak{b} in *A*, define $gcd(\mathfrak{a},\mathfrak{b}) := \mathfrak{a} + \mathfrak{b}$. We say that \mathfrak{a} and \mathfrak{b} are $\mathfrak{r} \mathfrak{e} \mathfrak{l} \mathfrak{a} \mathfrak{t} \mathfrak{i} \mathfrak{v} \mathfrak{e} \mathfrak{l} \mathfrak{y}$ prime if $gcd(\mathfrak{a},\mathfrak{b}) = A$. (This is a generalization of the concept gcd of elements in \mathbb{Z} to gcd of ideals in *A*).

¹**Theorem** (Minikowski's Convex Body Theorem) Let L be a lattice in \mathbb{R}^n with volume $\operatorname{Vol} L := \operatorname{Vol}(\mathcal{P}(v_1, \ldots, v_n))$. If $S \subseteq \mathbb{R}^n$ is a symmetric, convex subset with volume $\lambda^n(S) > 2^n \cdot \operatorname{Vol} L$, then there exists a non-zero element $x \in S \cap L$.

[3 Points]

Let \mathfrak{a} be a non-zero ideal in A.

(a) Show that

 $\{\overline{a} \in A/\mathfrak{a} \mid Aa \text{ and } \mathfrak{a} \text{ are relatively prime }\}$

is a subgroup of the multiplicative group of A/\mathfrak{a} of order

$$\Phi(\mathfrak{a}) = \mathcal{N}(\mathfrak{a}) \prod_{\mathfrak{p}|\mathfrak{a}} \left(1 - \frac{1}{\mathcal{N}(\mathfrak{p})} \right) \,,$$

where the product runs over all distinct prime divisors of \mathfrak{a} and N(-) denotes the norm. (Note that for $a, b \in A$ with $\overline{a} = \overline{b}$ in A/\mathfrak{a} , $gcd(Aa, \mathfrak{a}) = gcd(Ab, \mathfrak{a})$. Therefore having the same gcd with \mathfrak{a} is an invariant of the residue class $\overline{a} \in A/\mathfrak{a}$.— **Hint :** Since the norm N(-) is multiplicative, one may assume that $\mathfrak{a} = \mathfrak{p}^m$ is a power of prime.)

Deduce that $\Phi(-)$ is multiplicative, i. e., if \mathfrak{a} and \mathfrak{b} are two relatively prime ideals in A, then $\Phi(\mathfrak{a}\mathfrak{b}) = \Phi(\mathfrak{a})\Phi(\mathfrak{b})$.

(If $K = \mathbb{Q}$, then Φ is the ordinary Euler's totient function.) [5 Points] (b) (Euler's Theorem for ideals) If $a \neq 0$ and $a \in A$ be relatively prime to a, then $a^{\Phi(a)} \equiv 1 \pmod{a}$.

In particular, (Fermat's Little Theorem for ideals): if $\mathfrak{a} = \mathfrak{p}$ is a prime ideal in A, then $a^{N(\mathfrak{p})-1} \equiv 1 \pmod{\mathfrak{p}}$. [3 Points]

(c) Let $\mathfrak{p} \neq 0$ be a prime ideal in A and $a \in A$. Show that there exists an integer $z \in \mathbb{Z}$ such that $a \equiv z \pmod{\mathfrak{p}}$ if and only if $a^p \equiv a \pmod{\mathfrak{p}}$,

where $p \in \mathbb{P}$ is a prime number with $\mathbb{Z} p = \mathfrak{p} \cap \mathbb{Z}$.

F.4 (a) Let A_{-5} be the ring of algebraic integers in the quadratic number field $\mathbb{Q}[\sqrt{-5}]$. Show that $A_{-5} = \mathbb{Z}[\sqrt{-5}]$ and that it is not factorial. Further, show that the class group of $\mathbb{Q}[\sqrt{-5}]$ is cyclic of order 2. [5 Points]

(b) Show that the equation $X^2 + 5 = Y^3$ has no solutions in \mathbb{Z}^2 . (Hint : Use part (a).) [5 Points]

F.5 Let *K* be a number field and let *A* be the ring of integers in *K*. Let $p \in \mathbb{P}$ be a prime number, $V(p) := \{ \mathfrak{p} \in \text{Spec}A \mid p \in \mathfrak{p} \}$ be the set of prime divisors in *A* and $Ap = \prod_{\mathfrak{p} \in V(p)} \mathfrak{p}^{e_{\mathfrak{p}}}$ be the prime

factorization of the ideal Ap in A. Show that

(a) For each $\mathfrak{p} \in V(p)$, the norm $N(\mathfrak{p}) = p^{f_\mathfrak{p}}$ with $f_\mathfrak{p} \in \mathbb{N}^*$ and $\sum_{\mathfrak{p} \in V(p)} e_\mathfrak{p} f_\mathfrak{p} = [K : \mathbb{Q}].$ [4 Points]

(b) The natural map $\operatorname{Gal}(K|Q) \times \operatorname{Spm}A \to \operatorname{Spm}A$, $(\sigma, \mathfrak{p}) \mapsto \sigma(\mathfrak{p})$, defines a natural operation of $\operatorname{Gal}(K|\mathbb{Q})$ on the maximal spectrum $\operatorname{Spm}A$ of A. Show that the orbits of this operation are precisely the subsets $\operatorname{V}(p)$, $p \in \mathbb{P}$ and that $e_{\mathfrak{p}} = e_{\mathfrak{q}}$ and $f_{\mathfrak{p}} = f_{\mathfrak{q}}$ for all $\mathfrak{p}, \mathfrak{q} \in \operatorname{V}(p)$. What is the cardinality $|G_{\mathfrak{p}}|$ of the isotropy at $\mathfrak{p} \in \operatorname{Spm}A$?

***F.6** Let *K* be a number field with $[K : \mathbb{Q}] = n = r_1 + 2r_2$, where r_1 and r_2 is the number of real and non-real complex \mathbb{Q} -embeddings of *K* in \mathbb{C} , respectively and $M_K = \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^{r_2} \sqrt{|\text{Disc }K|}$ be the Minkowski's bound for the norm of ideals in *A*.

(a) Show that the class group of K is generated by $\bigcup_{p \in \mathbb{P}, p \le M_K} V(p)$. (See Question F.5 for notation. Use F.5, (a).) [5 Points]

(b) Compute the class group of the quadratic number field $K = \mathbb{Q}(\sqrt{-14})$. (Hint : Use part (a) and factorize the minimal polynomial $\mu_{\sqrt{-14},\mathbb{Q}} = X^2 + 14$ modulo primes 2 and 3.) [6 Points]

GOOD LUCK