MA 313 Algebraic Number Theory / January-April 2016

(Int PhD. and Ph. D. Programmes)
Download from: http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel : +91-(0)80-2293 3212/(CSA 2239)		E-mails : patil@math.iisc.ernet.in / dppatil@csa.iisc.ernet.in				
Lectures : Monda	dnesday			: MA L	LH-1 / LH-3 (if	is not free)
Midterms : Thursday, Feb 18, 2016, 10:00-11:30			Seminars : Fri April 15, Sat April 16, 2016, 15:00-17:00			
Final Examination : Saturday, April 23, 2016, 14:00-17:00						
Evaluation Weightage : Seminar : 20%			Midterms : 30\%		Final Examination : 50\%	
Range of Marks for Grades (Total 100 Marks)						
	Grade S	Grade A	Grade B	Grade C	C	Grade F
Marks-Range	> 90	76-90	61-75	46-60	35-45	< 35
MID TERM						
Monday, February 18, 2016		10:00 to 11:30		Maximum Points : 30 Points		

MT. 1 Let A be a commutative ring.
(a) Let $f: V \rightarrow V$ be an endomorphism of a noetherian A-module V. Show that if f is surjective, then f is bijective.
(b) Suppose that A is a noetherian ring and $\mathfrak{a} \subseteq A$ is a non-zero ideal A. Show that the rings A and A / \mathfrak{a} are not isomorphic.
[5 points]

MT. 2 Let $A \subseteq B$ be an extension of rings.
(a) (Lemma of Gauss) If $f, g \in B[X]$ are monic polynomials with $f g \in A[X]$, then show that coefficients of f and g are integral over A.
[3 points]
(Hint : let C be a ring extension of B such that both f and g spilits into linear factors in $C[X]$. Then the zeros of f and g are integral over A (why?).)
(b) Suppose that A and B are integral domains with quotient fields K and L respectively. If A is integrally closed and if $x \in B$ is integral over A. Show that the minimal polynomial $\mu_{x, K}$ has coefficients in A and $\mu(x)=0$ is the minimal integral equation of x over A. Further, show that $A[x]$ is a free A-module of rank $\operatorname{deg} \mu_{x, K}=[K(x): K]$.
(Hint : Use part (a).) [7 points]
MT. 3 Let \mathbb{A} be the ring of algebraic integers in \mathbb{C}.
(a) Show that \mathbb{A} is not noetherian and there are no prime elements in \mathbb{A}.
[4 points]
(b) Let \mathbb{P} denote the set of prime numbers. Show that for every maximal ideal $\mathfrak{m} \in \operatorname{Spm} \mathbb{A}$, there is a unique prime number $p \in \mathbb{P}$ with $\mathfrak{m} \cap \mathbb{Z}=\mathbb{Z} p$. Further, show that the map $\varphi: \operatorname{Spm} \mathbb{A} \rightarrow \mathbb{P}$, $\mathfrak{m} \mapsto p$, is surjective. Is the map φ is injective?

