MA 313 Algebraic Number Theory / January-April 2016

(Int PhD. and Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel: +91-(0)80-2293 3212/(CSA 2239)E-mails: patil@math.iisc.ernet.in / dppatil@csa.iisc.ernet.Lectures: Monday and Wednesday; 15:30–17:00Venue: MA LH-1 / LH-3 (if LH-1 is not free							
Midterms : Thursday, Feb 18, 2016, 10:00–11:30			Seminars : Fri April 15, Sat April 16, 2016, 15:00–17:00				
Final Examination : Saturday, April 23, 2016, 14:00–17:00							
Evaluation Weightage : Seminar : 20%			Midterms: 30% Final Examination: 50%				
Range of Marks for Grades (Total 100 Marks)							
	Grade S	Grade A	Grade B	Grade C	Grade D	Grade F	
Marks-Range	> 90	76–90	61–75	46–60	35–45	< 35	
MID TERM							
Monday, February 18, 2016 10		10:00	:00 to 11:30		Maximum Points: 30 Points		

MT.1 Let *A* be a commutative ring.

(a) Let $f: V \to V$ be an endomorphism of a noetherian A-module V. Show that if f is surjective, then f is bijective. [5 points]

(b) Suppose that A is a noetherian ring and $\mathfrak{a} \subseteq A$ is a non-zero ideal A. Show that the rings A and A/\mathfrak{a} are not isomorphic. [5 points]

MT.2 Let $A \subseteq B$ be an extension of rings.

(a) (Lemma of Gauss) If $f, g \in B[X]$ are monic polynomials with $fg \in A[X]$, then show that coefficients of f and g are integral over A. [3 points]

(**Hint**: let *C* be a ring extension of *B* such that both *f* and *g* spilits into linear factors in C[X]. Then the zeros of *f* and *g* are integral over A(why?).)

(b) Suppose that *A* and *B* are integral domains with quotient fields *K* and *L* respectively. If *A* is integrally closed and if $x \in B$ is integral over *A*. Show that the minimal polynomial $\mu_{x,K}$ has coefficients in *A* and $\mu(x) = 0$ is the minimal integral equation of *x* over *A*. Further, show that A[x] is a free *A*-module of rank deg $\mu_{x,K} = [K(x) : K]$. (Hint : Use part (a).) [7 points]

MT.3 Let \mathbb{A} be the ring of algebraic integers in \mathbb{C} .

(a) Show that A is not noetherian and there are no prime elements in A. [4 points]

(b) Let \mathbb{P} denote the set of prime numbers. Show that for every maximal ideal $\mathfrak{m} \in \text{Spm} \mathbb{A}$, there is a unique prime number $p \in \mathbb{P}$ with $\mathfrak{m} \cap \mathbb{Z} = \mathbb{Z} p$. Further, show that the map $\varphi : \text{Spm} \mathbb{A} \to \mathbb{P}$, $\mathfrak{m} \mapsto p$, is surjective. Is the map φ is injective? [6 points]

Good Luck