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2. Modules1 and Submodules

2.1 Let A be a ring and let V 6= 0 be an A-module. If V, does not have maximal submodules, then
V does not have a minimal generating system. ( Hint : If xi, i ∈ I is a minimal generating system for
V , then I 6= /0 . Let i0 ∈ I and W := ∑ i∈I\{ i0}Axi. Then W is a cofinite submodule of V and hence V has
maximal submodules. )

2.2 The Z–module Q does not have minimal generating system. ( Hint : In fact the additive group
(Q,+) does not have a subgroup of finite index 6= 1. This follows from the fact that the group (Q,+)

is divisible2 and hence every quotient group of (Q,+) is also divisible. Further, If H finitely generated
divisible abelian group, then H = 0. )

2.3 Let A be an integral domain. If the set of all non-zero ideals in A have a minimal element
(with respect to the inclusion). Show that A is a field. In particular, an integral domain such that the
set of all ideals is an artinian ordered set (with respect to inclusion), is a field. ( An ordered set (X ,≤)
is called a r t i n i a n if every non-empty subset of X has a minimal element. For example finite ordered
sets are artinian. An ordered set is w e l l o r d e r e d if it is totally ordered and artinian. The prototype of
the well ordered set is the set N of natural numbers with its natural order. )

2.4 Let A be a non-zero ring and let I be an infinite indexed set. For every i ∈ I, let e i be the
I-tuple (δ i j) j∈I ∈ AI with δ i j = 1 for j = i and δ i j = 0 for j 6= i.

(a) The family e i , i ∈ I, is a minimal generating system for the left-ideal A(I) in the ring AI . In
particular, A(I) is not finitely generated ideal. ( Remark : Submodules of finitely generated modules
need not be finitely generated! )
(b) There exists a generating system for A(I) as an AI–module that does not contain any minimal
generating system. ( Hint : First consider the case I =N and the tuples e0 + · · ·+ en, n ∈N. )

†2.5 Let Ki, i ∈ I, be a family of fields. For a = (a i)i∈I ∈A := ∏ i∈I Ki , let V(a) ⊆ I denote the
zero set { i ∈I |a i = 0} of a and D(a) := IrV(a) = { i ∈I |a i 6= 0} its complement. Furthermore,
set F(a) := {V(a) |a ∈ a} ⊆P(I ) for an ideal a⊆A . Then show that:

1The concept of a module seems to have made its first appearance in Algebra in Algebraic Number Theory– in
studying subsets of rings of algebraic integers. Modules first became an important tool in Algebra in late 1920’s
largely due to the insight of E m m y N o e t h e r, who was the first to realize the potential of the module concept.
In particular, she observed that this concept could be used to bridge the gap between two important developments in
Algebra that had been going on side by side and independently:the theory of representations (=homomorphisms) of
finite groups by matrices due to F r o b e n i u s , B u r n s i d e , S c h u r et al and the structure theory of algebras
due to M o l i e n , C a r t a n , W e d d e r b u r n et al.

2Divisible abelian groups. An abelian (additively written) group H is d i v i s i b l e if for every n ∈Z, the group
homomorphism λn : H→ H, defined by a 7→ na is surjective. For example, the group (Q,+) is divisible, the group
(Z,+) and finite groups are not divisible. Further, quotient of a divisible group is also divisible. Free abelian groups of
finite rank are not divisible.
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(a) For a ∈ A , Aa =AeD(a) and F(Aa) = {J ⊆ I |V(a) ⊆ J}. (eJ ∈A denotes the indicator
function of a subset J ⊆ I . )
(b) The map a 7→ F(a) is an isomorphism of the lattice3 of the ideals of A onto the lattice of the
filters4 defined on the set I.
(c) The ideal a is maximal if and only if F(a) is an ultra filter5 on I. Hence, the maximal spectrum
SpmA of A can be identified with the the set of ultra filters on the index set I.
(d) Deduce the following assertion from the Theorem of Krull: If X 6= /0, then the set of of filters
on X different from P(X) is inductively ordered with respect to the inclusion and that every filter
on X different from P(X) is contained in an ultra-filter on X .
(e) The principal ultra filters F(i) = {J ⊆ I | i ∈ J}, where i ∈ I is fixed, correspond to the principal
maximal ideals AeIr{i}, i ∈ I. If I is finite, then these are all maximal ideals, indeed, in this case A
is a principal ideal ring.
(f) If I is infinite, then there are non-principal maximal ideals. More precisely, the non-principal
maximal ideals of A are exactly the maximal ideals which contain the direct sum ideal s :=⊕

i∈ I Ki ⊆ A . Which filter is F(s) in case I is infinite? (It is the F r é c h e t f i l t e r on I. — For an
infinite set X , the complements of the finite subsets of X form a free filter 6=P(X) which is also known as
F r é c h e t f i l t e r on X .)

(g) The sum and the intersection of finitely many principal ideals in A is principal, too. More
precisely, AeL+AeM = AeL ∪M and AeL ∩AeM = AeL eM = AeL ∩M for arbitrary subsets L ,M⊆I .
(h) Every finitely generated ideal in A is a principal ideal.

Below one can see some Supplements / Test-Exercises to the results proved in the class.

3Lattice. A partially ordered set (X ,≤) is called a l a t t i c e if for every two elements x,y ∈ X , the supremum
sup{x,y} and the infimum inf{x,y} exist. For example, the set of all ideals in a ring form a lattice with respect to the
inclusion. What are sup{a,b} and inf{a,b} for ideals a,b in A?

4Filter on a set. Let X be any set and let P(X) denote the power st of X . A f i l t e r on X is a subset F of
P(X) such that : (1) F is closed under finite intersections, i.e. intersection of finitely many elements of F belongs to
F. (In particular, the empty intersection = X ∈ F ). (2) If Y ∈ F and Y ⊆ Z, then Z ∈ F. Note that F=P(X) if
and only if /0 ∈ F. A filter F on X is called f i x e d if the intersection ∩F∈FF 6= /0, otherwise it is called f r e e . For
a subset A⊂ X , the subset F(A) := {F ∈P(X) | A⊆ F} ⊆P(A) is a filter on X called the p r i n c i p a l f i l t e r
g e n e r a t e d by A .

5Ultra-filters on a set. The set of filters on a set X is ordered by inclusion and it forms a lattice. Maximal
elements in the set of filters on X different from P(X) are called u l t r a - f i l t e r s on X .
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Test-Exercises

T2.1 Let V be an A-module and let a ∈ A be a unit. Then the homothecy ϑa : V →V x 7→ ax is
bijective. Give an example of a non-zero A-module and a non-unit a ∈ A such that the homothecy
ϑa is bijective. ( Hint : Consider Z-modules — Finite abelain groups. )

T2.2 Let U , W , U ′ , W ′ be submodules of an A-module V . Then :
(a) ( M o d u l a r L a w ) If U ⊆W , then W ∩ (U +U ′) =U +(W ∩U ′) .
(b) If U ∩W =U ′∩W ′, then U is the intersection of U +(W ∩U ′) and U +(W ∩W ′) .

T2.3 Let A be a ring and let Vi , i ∈ I , be an infinite family of non-zero A-modules. Prove that
W :=

⊕
i∈I Vi is not a finite A-module.

T2.4 Let K be a field and let A be a subring of K such that every element of K can be expressed as
a quotient a/b with a,b ∈ A, b 6= 0. (i. e. K is the quotient field of A ). If K is a finite A -module,
then prove that A=K . In particular, Q is not a finite Z–module. ( Hint : Suppose K =Ax1+ · · ·+Axn

and b ∈ A, b 6= 0, with bxi ∈ A for i = 1, . . . ,n . Now, try to express 1/b2 as a linear combination of xi ,
i = 1, . . . ,n . )

T2.5 Let A be an integral domain with quotient field K. Then :
(a) If V is a torsion module over A , then HomA(V,A) = 0.
(b) HomA(K,A) 6= 0 if and only if A = K . In particular, HomZ(Q,Z) = 0. ( Hint : Every element
f ∈ HomA(K,A) is a homothecy of K by the element f (1) . )
(c) If K is finite module, then A = K . ( Hint : See Exercise T2.4. — Moreover, if K is a A-submodule
of a arbitrary direct sum of finite A-modules, then A = K . )

T2.6 Let K be a field and let V be a K-vector space. Suppose that V1, . . . ,Vn be distinct K-
subspaces of V . If K has at least n elements (in particular, if K is infinite), then V1∪·· ·∪Vn 6=V .
( Hint : By induction we may assume that Vn 6⊆ V1 ∪ ·· · ∪Vn−1. Then there exist an elements x ∈ Vn,
x /∈V1∪·· ·∪Vn−1 and y ∈V , y /∈Vn . Now, consider the linear combinations ax+ y, a ∈ K . )
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