MA 312 Commutative Algebra / January-April 2015

(Int PhD. and Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel : +91-(0)80-2293 3212/(CSA 2239)		E-mails : patil@math.iisc.ernet.in/dppatil@csa.iisc.ernet.in				
Lectures : Monday and Thursday ; 11:00-12:30				Venue: MA LH-3 (if LH-1 is not free) / LH-1		
Midterms : Monday, Feb 16, 2015, 2PM-5PM						
Final Examination :						
Evaluation Weightage : Exercises : 10\%		Seminar : 10\%		Midterms : 30\%	Final Examination : 50\%	
Range of Marks for Grades (Total 100 Marks)						
	Grade S	Grade A	Grade B	Grade C	Grade D	Grade
Marks-Range	> 90	76-90	61-75	46-60	35-45	<35
3. Free Modules						

3.1 Every \mathbb{Q}-vector space $V \neq 0$ is not free over the subring \mathbb{Z} of \mathbb{Q}.
3.2 Let V be a free module over a ring A and let $a \in A$ be an element which is not a left zero-divisor in A. Then the homothecy $\vartheta_{a}: V \rightarrow V, x \mapsto a x$ by a is injective.
3.3 Let B be a ring and A be a subring of B such that B is a free A-module. Then :
(a) An element $a \in A$ is not a left zero-divisor in A if and only if a is not a left zero-divisor in B.
(b) $(\mathfrak{a} B) \cap A=\mathfrak{a}$ for every left-ideal $\mathfrak{a} \subseteq A$.
(c) $A^{\times}=A \cap B^{\times}$. Moreover, if B is a field, then so is A. (Hint : If $a \in A \cap B^{\times}$, then $B=a B$.)
3.4 Let U and W be free A-submodules of an arbitrary A-module V with bases $x_{i} i \in I$ and y_{j}, $j \in J$, respectively. Show that $x_{i}, y_{j}, i \in I, j \in J$, together form a basis of $U+W$ if and only if $U \cap W=0$.
3.5 Let A be a non-zero commutative ring. Show that A is a principal ideal domain if and only if every ideal in A is a free A-submodule of A.
3.6 Let K be a division ring and let A be a commutative subring of K such that K is a finite A-module. Show that A itself is a field. (Hint : This is a generalisation of the Exercise T2.4. Note that K contains a quotient field $\mathrm{Q}(A)$ of A. Let x_{1}, \ldots, x_{m} be a A-generating system of K and let y_{1}, \ldots, y_{n} be a $\mathrm{Q}(A)$-basis of K with $y_{1}=1$. Then $y_{1}^{*}\left(x_{1}\right), \ldots, y_{1}^{*}\left(x_{m}\right)$ is an A-generating system of $\mathrm{Q}(A)$, where y_{1}^{*} is the first coordinate function with respect to the basis y_{1}, \ldots, y_{n}. Now use the Exercise T2.4.)
3.7 Let $x_{i}, i \in I$, be a family of n-tuples from \mathbb{Z}^{n}. For a prime number p, let $\mathbf{F}_{p}(=\mathbb{Z} / \mathbb{Z} p$ denote the prime field of characteristic p. Show that the following statements are equivalent:
(i) The $x_{i}, i \in I$, are linearly independent over \mathbb{Z}.
(ii) The images of $x_{i}, i \in I$, in \mathbb{Q}^{n}, are linearly independent over \mathbb{Q}.
(iii) There exists a prime number p such that the images of $x_{i}, i \in I$, in \mathbf{F}_{p}^{n}, are linearly independent over \mathbf{F}_{p}.
(iv) For almost all prime numbers p, the images of $x_{i}, i \in I$, in \mathbf{F}_{p}^{n}, are linearly independent over \mathbf{F}_{p}.
Moreover, if $|I|=n$, then the above statements are further equivalent to the following statement:
(v) There exists a non-zero integer m such that $m \mathbb{Z}^{n} \subseteq \sum_{i \in I} \mathbb{Z} x_{i}$.
3.8 Let $x_{i}, i \in I$, be a family of n-tuples from \mathbb{Z}^{n}. For every prime number p let \mathbf{F}_{p} denote a field with p elements. Show that the following statements are equivalent:
(i) The $x_{i}, i \in I$, generate (the \mathbb{Z}-module) \mathbb{Z}^{n}. (ii) For every prime number p, the images of $x_{i}, i \in I$, in \mathbf{F}_{p}^{n}, generate the \mathbf{F}_{p}-vector space \mathbf{F}_{p}^{n}. (Hint : ((ii) \Rightarrow (i): Let $U:=\sum_{i \in I} \mathbb{Z} x_{i}$. Note that by Exercise 3.7, there exists a non-zero integer m with $m \mathbb{Z}^{n} \subseteq U$. Further: to every prime number p and every
$x \in \mathbb{Z}^{n}$ there exist $x^{\prime} \in U, y \in \mathbb{Z}^{n}$ such that $x=x^{\prime}+p y$, i.e. $\mathbb{Z}^{n} \subseteq U+p \mathbb{Z}^{n}$ for every prime number p. From this deduce that $U=\mathbb{Z}^{n}$.)
3.9 Let K be a field and let b_{0}, \ldots, b_{m} be elements of K, all of which are not equal to 0 . Then there exist atmost m distinct elements $x \in K$, which satisfy the equation

$$
0=b_{0} \cdot 1+b_{1} x+\cdots+b_{m} x^{m}
$$

(Hint : If x_{1}, \ldots, x_{m+1} are distinct elements in K, then by Exercise T3.2 and Exercise T3.6, the elements $h_{j}:=\left(x_{1}^{j}, \ldots, x_{m+1}^{j}\right), 0 \leq j \leq m$, are linearly independent over K. - Remark : The same result is also true for integral domains, since every integral domain is contained in a field, for example, in its quotient field. With the help of concept of polynomials the above assertion can be formulated as : A non-zero polynomial of degree $\leq m$ over a field (or an integral domain) K has at most m zeros in K.)
3.10 Let A be an integral domain and let Q be a field which contains A. Show that:
(a) Every subgroup U of the unit group A^{\times}of A with a positive ex ponent ${ }^{1}$ is cyclic (and finite). In particular, every finite subgroup of A^{\times}is cyclic.
(b) The unit group of every finite field is cyclic.) (Hint : The equation $x^{m}=1$ has at most m solutions in A by Exercise 3.9. Now use the following Exercise on groups: Let G be a finite group with neutral elements e. Suppose that for every divisor $d \in \mathbb{N}^{*}$ of the order $\operatorname{Ord} G$ there are at most d elements $x \in G$ such that $x^{d}=e$. Then G is a cyclic group.))

Below one can see some Supplements / Test-Exercises to the results proved in the class.

[^0]
Supplements/ Test-Exercises

T3.1 An element a in a ring A is a basis of the $A-$ module A, if and only if a is a unit in A.
T3.2 (a) The elements $1, a \in \mathbb{R}$ are linearly independent over \mathbb{Q}, if and only if a is irrational (i.e. not rational). (Remark : Two real numbers b, c, which are linearly independent over \mathbb{Q} are called incommensurable. Classical example: the length of the side and the length of the diagonal of a square are incommensurable, since the real number $\sqrt{2} \in \mathbb{R}$ is irrational.)
(b) Let \mathbb{P} be the set of all prime numbers $p \in \mathbb{N}^{*}$. Show that the family $(\log p)_{p \in \mathbb{P}}$ is linearly independent over \mathbb{Q}.
T3.3 Let $a, b \in \mathbb{N}^{*}$ and $d:=\operatorname{gcd}(a, b)$. Then the relation submodule $\operatorname{Rel}_{\mathbb{Z}}(a, b)$ of \mathbb{Z}^{2} is generated by $\left(b d^{-1},-a d^{-1}\right) \in \mathbb{Z}^{2}$.
T3.4 In the subspace U of the \mathbb{R}-vector space $\mathbb{R}^{\mathbb{R}}$ of all functions from \mathbb{R} into itself, generated by the functions $x \mapsto \sin (x+a), a \in \mathbb{R}$, show that the two functions $x \mapsto \sin x, x \mapsto \cos x(=\sin (x+\pi / 2))$ form a basis of U.

T3.5 Let $x_{1}, \ldots, x_{n+1}, n \in \mathbb{N}$, be linearly independent elements of a vector space V over the division ring K. Suppose that n elements among x_{1}, \ldots, x_{n+1} are linearly independent over K. Then show that $\operatorname{Dim}_{K}\left(\operatorname{Rel}_{K}\left(x_{1}, \ldots, x_{n+1}\right)\right)=1$.
T3.6 Let K be a divison ring, V be a finite dimensional K-vector space and let $V_{i}, i \in I$, be a family of subspaces of V. Then there exists a finite subset J of I such that $\bigcap_{i \in I} V_{i}=\bigcap_{i \in J} V_{i}$ and $\sum_{i \in I} V_{i}=\sum_{i \in J} V_{i}$.
T3.7 Let K be a division ring and let V be not finite dimensional K-vector space. Construct an infinite sequences $U_{0} \subset U_{1} \subset \cdots \subset U_{i} \subset \cdots$ and $W_{0} \supset W_{1} \supset \cdots \supset W_{i} \supset \cdots$ of subspaces of V.
T3.8 Let I be a non-empty open interval in \mathbb{R} and let $\mathrm{C}_{\mathbb{R}}^{0}(I)$ be the \mathbb{R}-vector space of all continuous real-valued functions on I. Show that $\left|C_{\mathbb{R}}^{0}(I)\right|=|\mathbb{R}|$. (Hint : The map $C_{\mathbb{R}}^{0}(I) \rightarrow \mathbb{R}^{\mathbb{Q}}$ defined by $f \mapsto f \mid \mathbb{Q}$ is injective.)
T3.9 Let K be a divison ring and let M be a maximal K-linear independent subset in the set of $0-1$-sequences from $K^{\mathbb{N}}$. Show that : M has the cardinality of the continuum. (Hint : We may assume that K is the quotient field of its prime ring $\mathbb{Z} \cdot 1_{K}$. Using cardinality arguments show that the dimension of the subspace generated by the $0-1$-sequences in $K^{\mathbb{N}}$ is the cardinality of the continuum.)
T3.10 Let I be a non-empty open interval in \mathbb{R} and let $\mathrm{C}_{\mathbb{R}}^{\omega}(I)$ (respectively, $\mathrm{C}_{\mathbb{R}}^{0}(I)$) be the \mathbb{R} vector space of all real-analytic ${ }^{2}$ (respectively, continuous) real-valued functions on I. Then $\mathrm{C}_{\mathbb{R}}^{\omega}(I) \subseteq \mathrm{C}_{\mathbb{R}}^{0}(I)$ and if U is a \mathbb{R}-subspace of $\mathrm{C}_{\mathbb{R}}^{0}(I)$ with $\mathrm{C}_{\mathbb{R}}^{\omega}(I) \subseteq U$, then show that $\mathrm{Dim}_{\mathbb{R}} U$ has the cardinality of the continuum. (Hint : Without loss of generality let $I=]-1,1\left[\right.$. Let $\left(a_{i j}\right)_{i \in \mathbb{N}}, j \in J$, be a linearly independent family of $0-1$-sequences in $\mathbb{R}^{\mathbb{N}}$, where $|J|=\aleph:=|\mathbb{R}|$, see T 3.11 . Then the functions $t \mapsto \sum_{i \geq 0} a_{i j} t^{i}, j \in J$, in $\mathrm{C}_{\mathbb{R}}^{\omega}(I)$ are linearly independent over \mathbb{R}. Alternative hint : the family of the functions $t \mapsto \exp (a t), a \in \mathbb{R}$, on I is linearly independent. Similarly, the rational functions $t \mapsto 1 /(t-a), a \in \mathbb{R},|a| \geq$ 1 , are linearly independent in $\mathrm{C}_{\mathbb{R}}^{\omega}(]-1,1[)$.) Prove the analogous results for the complex vector space $\mathrm{H}(U)$ of holomorphic functions defined on a domain $U \subseteq \mathbb{C}$.
T3.11 For a given $n \in \mathbb{N}$, let $a_{1}, \ldots, a_{n} \in K$ be n distinct elements in a field K. Then the sequences $g_{i}:=\left(a_{i}^{v}\right)_{v \in \mathbb{N}} \in K^{\mathbb{N}}, i=1, \ldots, n$, are linearly independent over K. (Hint : Suppose that the g_{i} are linearly dependent. Without loss of generality we may assume that $\operatorname{Dim}_{K}\left(\operatorname{Rel}_{K}\left(g_{1}, \ldots, g_{n}\right)\right)=1$, see T3.4. Let $\left(b_{1}, \ldots, b_{n}\right)$ be a basis element of relations. Then the element $\left(b_{1} a_{1}, \ldots, b_{n} a_{n}\right)$ is also a relation of the g_{i}. This is a contradiction.)
T3.12 Let K be a field and let I be an infinite set. Then $\operatorname{Dim}_{K}\left(K^{I}\right)=\left|K^{I}\right|$. (Hint : In view of ${ }^{3}$, it is

[^1]enough to prove that $|K| \leq \operatorname{Dim}_{K} K^{I}$. Let $\sigma: \mathbb{N} \rightarrow I$ be injective and for $a \in K$, let g_{a} denote the I-tuple with $\left(g_{a}\right)_{\sigma(v)}:=a^{v}$ for $v \in \mathbb{N}$ and $\left(g_{a}\right)_{i}:=0$ for $i \in I \backslash \operatorname{im} \sigma$. Then by T3.11, $\left(g_{a}\right)_{a \in K}$ are linearly independent.) Deduce that $\operatorname{Dim}_{K} K^{I}>\operatorname{Dim}_{K} K^{(I)}$. - Remark : This dimension formula for K^{I} is also valid for division rings K. Proof!.)

T3.13 Let K be a division ring. Further, let $x_{i}=\left(a_{i 1}, \ldots, a_{i n}\right) \in K^{n}, i=1, \ldots, n$. With the j-th components of this n-tuple we form the new n-tuples $y_{j}:=\left(a_{1 j}, \ldots, a_{n j}\right), j=1, \ldots, n$. Show that the elements x_{1}, \ldots, x_{n} of the $K-L e f t$-vector space K^{n} are linearly independent if and only if the elements y_{1}, \ldots, y_{n} of the K-right-vector space K^{n} are linearly independent. (Hint : Suppose that x_{1}, \ldots, x_{n} are linearly independent and $y_{1} b_{1}+\cdots+y_{n} b_{n}=0, b_{j} \in K$. Then $x_{1}, \ldots, x_{n} \in \operatorname{Rel}_{K}\left(b_{1}, \ldots, b_{n}\right)$, and a dimension argument shows that $\operatorname{Rel}_{K}\left(b_{1}, \ldots, b_{n}\right)=K^{n}$, this means $b_{1}=\cdots=b_{n}=0$.)
T3.14 Let K be a division ring, I be a set and let $f_{1}, \ldots, f_{n} \in K^{I}, n \in \mathbb{N}$. The following statements are equivalent:
(i) The f_{1}, \ldots, f_{n} are linearly independent over K.
(ii) There exists a subset $J \subseteq I$ such that $|J|=n$ and that the restrictions $f_{1}\left|J, \ldots, f_{n}\right| J \in K^{J}$ are linearly independent (and hence form a basis of K^{J}).
(iii) The value n-tuples $\left(f_{1}(i), \ldots, f_{n}(i)\right) \in K^{n}, i \in I$, generate K^{n} as a K-right-vector space. (Hint : The implication (i) \Rightarrow (ii) can be proved by induction on n : Suppose that there exists a subset $J^{\prime} \subseteq I$ with $(n-1)$-elements is found for f_{1}, \ldots, f_{n-1} such that $f_{1}\left|J^{\prime}, \ldots, f_{n-1}\right| J^{\prime}$ are linearly independent over K and so form a basis of $K^{J^{\prime}}$. Then $f_{n} \mid J^{\prime}=a_{1}\left(f_{1} \mid J^{\prime}\right)+\cdots+a_{n-1}\left(f_{n-1} \mid J^{\prime}\right)$ with $a_{1}, \ldots, a_{n-1} \in K$. Now, by (i) there exists an element $j \in I \backslash J^{\prime}$ such that $f_{n}(j) \neq a_{1} f_{1}(j)+\cdots+a_{n-1} f_{n-1}(j)$. Now, choose $J:=J^{\prime} \cup\{j\}$. - For the equivalence (ii) \Leftrightarrow (iii) use T3.13.)
T3.15 Let K be a division ring and let $a_{1}, \ldots, a_{n} \in K$. Let $g_{i}:=\left(a_{i}^{v}\right)_{v \in \mathbb{N}} \in K^{\mathbb{N}}$ and $f_{i}:=\left(1, a_{i}, \ldots, a_{i}^{n-1}\right) \in$ $K^{n}, i=1, \ldots, n$. Then g_{1}, \ldots, g_{n} are linearly independent over K if and only if f_{1}, \ldots, f_{n} are linearly independent over K. (Hint : Let $h_{j}:=\left(a_{1}^{j}, \ldots, a_{n}^{j}\right) \in K^{n}, j \in \mathbb{N}$. Note that $f_{i}=g_{i} \mid\{0, \ldots, n-1\}$ and $\left(f_{1}(j), \ldots, f_{n}(j)\right)=\left(g_{1}(j), \ldots, g_{n}(j)\right)=h_{j}$ for all $j=1, \ldots, n$. Therefore by T3.14, g_{1}, \ldots, g_{n} are linearly independent if and only if $h_{j}, j=1, \ldots, n$ generates the right-vector space K^{n}. Suppose that the elements $h_{0}, \ldots h_{m}$ are linearly independent in the K-right-vector space K^{n}, but the elements h_{0}, \ldots, h_{m+1} are not linearly independent, so h_{m+1} and hence h_{j} for every $j \geq m+1$ is a linear combination of h_{0}, \ldots, h_{m}. Now again use T3.14.)
T3.16 Let A be a ring $\neq 0$ with finitely many elements and let V be an A-module with a generating system of n elements, $n \in \mathbb{N}$. Show directly (without using the theorem) that every $n+1$ elements of V are linearly dependent. (Hint : Proceed as in the Example given in the class which uses only cardinality argument.)
T3.17 What is the rank of \mathbb{Q} as an abelian group?
T3.18 Let K be a field, I be a set and let $g \in K^{I}$ be a function on I into K, such that the image $\operatorname{im}(g)$ is an infinite subset of K. Then the powers $g^{v}, v \in \mathbb{N}$ of g are linearly independent over K. (For example from this it follows that: the functions $t \mapsto \cos ^{v} t, v \in \mathbb{N}$, from \mathbb{R} to itself are linearly independent; similarly, the functions $x \mapsto x^{v}, v \in \mathbb{N}$, from K to itself for an arbitrary infinite field K, are linearly independent.)

T3.19 Let L be a division ring, K be a subdivision ring of L and I be a set. For an arbitrary family $\left(f_{j}\right)_{j \in J}$ of functions $f_{j} \in K^{I}$ show that: the $f_{j}, j \in J$, are linearly independent over K if and only if they are linearly independent over L as a family of functions in L^{I}. (Use the exercise 6 and and exercise 4.11(a).)
${ }^{\dagger}$ T3.20 Let A be a ring and let J be an indexed set with cardinality of the continuum. Then there exists a family $x_{j}, j \in J$, of A-linearly independent $0-1$-sequences in $A^{\mathbb{N}}$. (Hint : (H. Brenner) Let \mathbb{P} be the set of prime numbers. For a subset $R \subseteq \mathbb{P}$, let $\mathrm{N}(R)$ be the set of those positive natural numbers whose prime divisors belong to R, i.e. $\mathrm{N}(R)=\left\{n \in \mathbb{N}^{*} \mid\right.$ prime divisors of $\left.n \subseteq R\right\}$. Then the family $x_{R}, R \in \mathfrak{P}(\mathbb{P})$, is linearly independent, where x_{R} denote the indicator function of $\mathrm{N}(R)$.)

[^0]: ${ }^{1}$ Exponent of a group. Let G be a group with neutral element e. Then the set of integers n with $a^{n}=e$ for all $a \in G$ forms a subgroup U_{G} of the additive group of \mathbb{Z}, i.e. $U_{G}:=\left\{n \in \mathbb{Z} \mid a^{n}=e\right.$ for all $\left.a \in G\right\}$ and hence there is a unique $m \in \mathbb{N}$ such that $U_{G}=\mathbb{Z} m$. This natural number m is called the exponent of G and usually denoted by $\operatorname{Exp} G$. For example, if G is a finite cyclic group, then $\operatorname{Exp} G=\operatorname{Ord} G ; \operatorname{Exp} \mathfrak{S}_{3}=\operatorname{Ord} \mathfrak{S}_{3}$; In general : $\operatorname{Exp} G$ and Ord G have the same prime divisors. (proof!).

[^1]: ${ }^{2}$ A function $f: I \rightarrow \mathbb{R}$ is called real-analytic at $a \in I$, if there exist a open neighbourhood U of a and a convergent power series $\sum_{i=0}^{\infty} a_{i}(x-a)^{i}$ such that $f(x)=\sum_{i=0}^{\infty} a_{i}(x-a)^{i}$ for all $x \in U \cap I$. A function $f: I \rightarrow \mathbb{R}$ is called real-analytic if it is real-analytic at every $a \in I$.
 ${ }^{3}$ Let A be a ring and let V be a free A-module of infinite rank. Then $|V|=|A| \cdot \operatorname{rank}_{A} V=\operatorname{Sup}\left\{|A|, \operatorname{rank}_{A} V\right\}$.

