MA 312 Commutative Algebra / January-April 2015

(Int PhD. and Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel: +91-(0)80-2293 3212/(CS	E-mails :	E-mails: patil@math.iisc.ernet.in / dppatil@csa.iisc.ernet.in				
Lectures : Monday and Thursday ; 11:00–12:30			Venue: MA LH-3 (if LH-1 is not free)/LH-1			
Midterms : Monday, Feb 16, 2015, 2PM–5PM						
Final Examination :						
Evaluation Weightage :	% Semina	r: 10%	Midterms: 30% Final Examination: 50%			
Range of Marks for Grades (Total 100 Marks)						
	Grade S	Grade A	Grade B	Grade C	Grade D	Grade F
Marks-Range	> 90	76–90	61–75	46-60	35–45	< 35
3. Free Modules						

3.1 Every Q-vector space $V \neq 0$ is not free over the subring Z of Q.

3.2 Let *V* be a free module over a ring *A* and let $a \in A$ be an element which is not a left zero-divisor in *A*. Then the homothecy $\vartheta_a : V \to V$, $x \mapsto ax$ by *a* is injective.

3.3 Let B be a ring and A be a subring of B such that B is a free A-module. Then :

(a) An element $a \in A$ is not a left zero-divisor in A if and only if a is not a left zero-divisor in B.

(b) $(\mathfrak{a}B) \cap A = \mathfrak{a}$ for every left-ideal $\mathfrak{a} \subseteq A$.

(c) $A^{\times} = A \cap B^{\times}$. Moreover, if *B* is a field, then so is *A*. (Hint : If $a \in A \cap B^{\times}$, then B = aB.)

3.4 Let *U* and *W* be free *A*-submodules of an arbitrary *A*-module *V* with bases x_i $i \in I$ and y_j , $j \in J$, respectively. Show that x_i , y_j , $i \in I$, $j \in J$, together form a basis of U + W if and only if $U \cap W = 0$.

3.5 Let A be a non-zero commutative ring. Show that A is a principal ideal domain if and only if every ideal in A is a free A-submodule of A.

3.6 Let *K* be a division ring and let *A* be a commutative subring of *K* such that *K* is a finite *A*-module. Show that *A* itself is a field. (**Hint :** This is a generalisation of the Exercise T2.4. Note that *K* contains a quotient field Q(A) of *A*. Let x_1, \ldots, x_m be a *A*-generating system of *K* and let y_1, \ldots, y_n be a Q(A)-basis of *K* with $y_1 = 1$. Then $y_1^*(x_1), \ldots, y_1^*(x_m)$ is an *A*-generating system of Q(A), where y_1^* is the first coordinate function with respect to the basis y_1, \ldots, y_n . Now use the Exercise T2.4.)

3.7 Let x_i , $i \in I$, be a family of *n*-tuples from \mathbb{Z}^n . For a prime number *p*, let $\mathbf{F}_p (= \mathbb{Z}/\mathbb{Z}p$ denote the prime field of characteristic *p*. Show that the following statements are equivalent:

(i) The x_i , $i \in I$, are linearly independent over \mathbb{Z} .

(ii) The images of x_i , $i \in I$, in \mathbb{Q}^n , are linearly independent over \mathbb{Q} .

(iii) There exists a prime number p such that the images of x_i , $i \in I$, in \mathbf{F}_p^n , are linearly independent over \mathbf{F}_p .

(iv) For almost all prime numbers p, the images of x_i , $i \in I$, in \mathbf{F}_p^n , are linearly independent over \mathbf{F}_p .

Moreover, if |I| = n, then the above statements are further equivalent to the following statement:

(v) There exists a non-zero integer *m* such that $m\mathbb{Z}^n \subseteq \sum_{i \in I} \mathbb{Z}x_i$.

3.8 Let x_i , $i \in I$, be a family of *n*-tuples from \mathbb{Z}^n . For every prime number *p* let \mathbf{F}_p denote a field with *p* elements. Show that the following statements are equivalent:

(i) The x_i , $i \in I$, generate (the \mathbb{Z} -module) \mathbb{Z}^n . (ii) For every prime number p, the images of x_i , $i \in I$, in \mathbb{F}_p^n , generate the \mathbb{F}_p -vector space \mathbb{F}_p^n . (Hint : ((ii) \Rightarrow (i): Let $U := \sum_{i \in I} \mathbb{Z} x_i$. Note that by Exercise 3.7, there exists a non-zero integer m with $m\mathbb{Z}^n \subseteq U$. Further: to every prime number p and every

 $x \in \mathbb{Z}^n$ there exist $x' \in U$, $y \in \mathbb{Z}^n$ such that x = x' + py, i.e. $\mathbb{Z}^n \subseteq U + p\mathbb{Z}^n$ for every prime number p. From this deduce that $U = \mathbb{Z}^n$.)

3.9 Let *K* be a field and let b_0, \ldots, b_m be elements of *K*, all of which are not equal to 0. Then there exist atmost *m* distinct elements $x \in K$, which satisfy the equation

$$0 = b_0 \cdot 1 + b_1 x + \dots + b_m x^m.$$

(**Hint :** If $x_1, ..., x_{m+1}$ are distinct elements in *K*, then by Exercise T3.2 and Exercise T3.6, the elements $h_j := (x_1^j, ..., x_{m+1}^j), 0 \le j \le m$, are linearly independent over *K*. — **Remark :** The same result is also true for integral domains, since every integral domain is contained in a field, for example, in its quotient field. With the help of concept of polynomials the above assertion can be formulated as : *A non-zero polynomial of degree* $\le m$ over a field (or an integral domain) *K* has at most *m* zeros in *K*.)

3.10 Let *A* be an integral domain and let Q be a field which contains *A*. Show that:

(a) Every subgroup U of the unit group A^{\times} of A with a positive $exponent^{1}$ is cyclic (and finite). In particular, every finite subgroup of A^{\times} is cyclic.

(b) The unit group of every finite field is cyclic.) (Hint : The equation $x^m = 1$ has at most *m* solutions in *A* by Exercise 3.9. Now use the following Exercise on groups : Let *G* be a finite group with neutral elements *e*. Suppose that for every divisor $d \in \mathbb{N}^*$ of the order Ord*G* there are at most *d* elements $x \in G$ such that $x^d = e$. Then *G* is a cyclic group.)

Below one can see some Supplements / Test-Exercises to the results proved in the class.

¹ **Exponent of a group.** Let *G* be a group with neutral element *e*. Then the set of integers *n* with $a^n = e$ for all $a \in G$ forms a subgroup U_G of the additive group of \mathbb{Z} , i.e. $U_G := \{n \in \mathbb{Z} \mid a^n = e \text{ for all } a \in G\}$ and hence there is a unique $m \in \mathbb{N}$ such that $U_G = \mathbb{Z}m$. This natural number *m* is called the exponent of *G* and usually denoted by Exp*G*. For example, if *G* is a finite cyclic group, then ExpG = OrdG; Exp $\mathfrak{S}_3 = \text{Ord}\mathfrak{S}_3$; In general : Exp*G* and Ord*G* have the same prime divisors. (proof!).

Supplements / Test-Exercises

T3.1 An element *a* in a ring *A* is a basis of the *A*-module *A*, if and only if *a* is a unit in *A*.

T3.2 (a) The elements 1, $a \in \mathbb{R}$ are linearly independent over \mathbb{Q} , if and only if *a* is irrational (i.e. not rational). (**Remark :** Two real numbers *b*, *c*, which are linearly independent over \mathbb{Q} are called in c o m m e n s u r a b l e. Classical example: the length of the side and the length of the diagonal of a square are incommensurable, since the real number $\sqrt{2} \in \mathbb{R}$ is irrational.)

(b) Let \mathbb{P} be the set of all prime numbers $p \in \mathbb{N}^*$. Show that the family $(\log p)_{p \in \mathbb{P}}$ is linearly independent over \mathbb{Q} .

T3.3 Let $a, b \in \mathbb{N}^*$ and d := gcd(a, b). Then the relation submodule $\text{Rel}_{\mathbb{Z}}(a, b)$ of \mathbb{Z}^2 is generated by $(bd^{-1}, -ad^{-1}) \in \mathbb{Z}^2$.

T3.4 In the subspace U of the \mathbb{R} -vector space $\mathbb{R}^{\mathbb{R}}$ of all functions from \mathbb{R} into itself, generated by the functions $x \mapsto \sin(x+a)$, $a \in \mathbb{R}$, show that the two functions $x \mapsto \sin x$, $x \mapsto \cos x (= \sin(x+\pi/2))$ form a basis of U.

T3.5 Let $x_1, \ldots, x_{n+1}, n \in \mathbb{N}$, be linearly independent elements of a vector space *V* over the division ring *K*. Suppose that *n* elements among x_1, \ldots, x_{n+1} are linearly independent over *K*. Then show that $\text{Dim}_K(\text{Rel}_K(x_1, \ldots, x_{n+1})) = 1$.

T3.6 Let *K* be a divison ring, *V* be a finite dimensional *K*-vector space and let V_i , $i \in I$, be a family of subspaces of *V*. Then there exists a finite subset *J* of *I* such that $\bigcap_{i \in I} V_i = \bigcap_{i \in J} V_i$ and $\sum_{i \in I} V_i = \sum_{i \in J} V_i$.

T3.7 Let *K* be a division ring and let *V* be not finite dimensional *K*-vector space. Construct an infinite sequences $U_0 \subset U_1 \subset \cdots \subset U_i \subset \cdots$ and $W_0 \supset W_1 \supset \cdots \supset W_i \supset \cdots$ of subspaces of *V*.

T3.8 Let *I* be a non-empty open interval in \mathbb{R} and let $C^0_{\mathbb{R}}(I)$ be the \mathbb{R} -vector space of all continuous real-valued functions on *I*. Show that $|C^0_{\mathbb{R}}(I)| = |\mathbb{R}|$. (Hint : The map $C^0_{\mathbb{R}}(I) \to \mathbb{R}^{\mathbb{Q}}$ defined by $f \mapsto f|\mathbb{Q}$ is injective.)

T3.9 Let *K* be a divison ring and let *M* be a maximal *K*-linear independent subset in the set of 0-1-sequences from $K^{\mathbb{N}}$. Show that : *M* has the cardinality of the continuum. (**Hint :** We may assume that *K* is the quotient field of its prime ring $\mathbb{Z} \cdot 1_K$. Using cardinality arguments show that the dimension of the subspace generated by the 0-1-sequences in $K^{\mathbb{N}}$ is the cardinality of the continuum.)

T3.10 Let *I* be a non-empty open interval in \mathbb{R} and let $C^{\omega}_{\mathbb{R}}(I)$ (respectively, $C^{0}_{\mathbb{R}}(I)$) be the \mathbb{R} -vector space of all real-analytic² (respectively, continuous) real-valued functions on *I*. Then $C^{\omega}_{\mathbb{R}}(I) \subseteq C^{0}_{\mathbb{R}}(I)$ and if *U* is a \mathbb{R} -subspace of $C^{0}_{\mathbb{R}}(I)$ with $C^{\omega}_{\mathbb{R}}(I) \subseteq U$, then show that $\text{Dim}_{\mathbb{R}}U$ has the cardinality of the continuum. (**Hint**: Without loss of generality let I =]-1, 1[. Let $(a_{ij})_{i \in \mathbb{N}}, j \in J$, be a linearly independent family of 0-1-sequences in $\mathbb{R}^{\mathbb{N}}$, where $|J| = \aleph := |\mathbb{R}|$, see T3.11. Then the functions $t \mapsto \sum_{i\geq 0} a_{ij}t^{i}, j \in J$, in $C^{\omega}_{\mathbb{R}}(I)$ are linearly independent over \mathbb{R} . Alternative hint : the family of the functions $t \mapsto \exp(at), a \in \mathbb{R}$, on *I* is linearly independent. Similarly, the rational functions $t \mapsto 1/(t-a), a \in \mathbb{R}, |a| \ge 1$, are linearly independent in $C^{\omega}_{\mathbb{R}}(]-1,1[)$.) Prove the analogous results for the complex vector space H(U) of holomorphic functions defined on a domain $U \subseteq \mathbb{C}$.

T3.11 For a given $n \in \mathbb{N}$, let $a_1, \ldots, a_n \in K$ be *n* distinct elements in a field *K*. Then the sequences $g_i := (a_i^v)_{v \in \mathbb{N}} \in K^{\mathbb{N}}$, $i = 1, \ldots, n$, are linearly independent over *K*. (**Hint :** Suppose that the g_i are linearly dependent. Without loss of generality we may assume that $\text{Dim}_K(\text{Rel}_K(g_1, \ldots, g_n)) = 1$, see T3.4. Let (b_1, \ldots, b_n) be a basis element of relations. Then the element (b_1a_1, \ldots, b_na_n) is also a relation of the g_i . This is a contradiction.)

T3.12 Let K be a field and let I be an infinite set. Then $\text{Dim}_K(K^I) = |K^I|$. (Hint: In view of³, it is

³Let A be a ring and let V be a free A-module of infinite rank. Then $|V| = |A| \cdot \operatorname{rank}_A V = \operatorname{Sup}\{|A|, \operatorname{rank}_A V\}$.

² A function $f: I \to \mathbb{R}$ is called real-analytic at $a \in I$, if there exist a open neighbourhood U of a and a convergent power series $\sum_{i=0}^{\infty} a_i (x-a)^i$ such that $f(x) = \sum_{i=0}^{\infty} a_i (x-a)^i$ for all $x \in U \cap I$. A function $f: I \to \mathbb{R}$ is called real-analytic if it is real-analytic at every $a \in I$.

enough to prove that $|K| \leq \text{Dim}_K K^I$. Let $\sigma : \mathbb{N} \to I$ be injective and for $a \in K$, let g_a denote the *I*-tuple with $(g_a)_{\sigma(v)} := a^v$ for $v \in \mathbb{N}$ and $(g_a)_i := 0$ for $i \in I \setminus \text{im } \sigma$. Then by T3.11, $(g_a)_{a \in K}$ are linearly independent.) Deduce that $\text{Dim}_K K^I > \text{Dim}_K K^{(I)}$. – **Remark** : This dimension formula for K^I is also valid for division rings *K*. Proof!.)

T3.13 Let *K* be a division ring. Further, let $x_i = (a_{i1}, ..., a_{in}) \in K^n$, i = 1, ..., n. With the *j*-th components of this *n*-tuple we form the new *n*-tuples $y_j := (a_{1j}, ..., a_{nj})$, j = 1, ..., n. Show that the elements $x_1, ..., x_n$ of the *K*-*Left*-vector space K^n are linearly independent if and only if the elements $y_1, ..., y_n$ of the *K*-*right*-vector space K^n are linearly independent. (**Hint :** Suppose that $x_1, ..., x_n$ are linearly independent and $y_1b_1 + \cdots + y_nb_n = 0$, $b_j \in K$. Then $x_1, ..., x_n \in \text{Rel}_K(b_1, ..., b_n)$, and a dimension argument shows that $\text{Rel}_K(b_1, ..., b_n) = K^n$, this means $b_1 = \cdots = b_n = 0$.)

T3.14 Let *K* be a division ring, *I* be a set and let $f_1, \ldots, f_n \in K^I$, $n \in \mathbb{N}$. The following statements are equivalent:

(i) The f_1, \ldots, f_n are linearly independent over *K*.

(ii) There exists a subset $J \subseteq I$ such that |J| = n and that the restrictions $f_1|J, \ldots, f_n|J \in K^J$ are linearly independent (and hence form a basis of K^J).

(iii) The value *n*-tuples $(f_1(i), \ldots, f_n(i)) \in K^n$, $i \in I$, generate K^n as a *K*-right-vector space. (**Hint :** The implication (i) \Rightarrow (ii) can be proved by induction on *n*: Suppose that there exists a subset $J' \subseteq I$ with (n-1)-elements is found for f_1, \ldots, f_{n-1} such that $f_1|J', \ldots, f_{n-1}|J'$ are linearly independent over *K* and so form a basis of $K^{J'}$. Then $f_n|J' = a_1(f_1|J') + \cdots + a_{n-1}(f_{n-1}|J')$ with $a_1, \ldots, a_{n-1} \in K$. Now, by (i) there exists an element $j \in I \setminus J'$ such that $f_n(j) \neq a_1f_1(j) + \cdots + a_{n-1}f_{n-1}(j)$. Now, choose $J := J' \cup \{j\}$. — For the equivalence (ii) \Leftrightarrow (iii) use T3.13.)

T3.15 Let *K* be a division ring and let $a_1, \ldots, a_n \in K$. Let $g_i := (a_i^V)_{V \in \mathbb{N}} \in K^{\mathbb{N}}$ and $f_i := (1, a_i, \ldots, a_i^{n-1}) \in K^n$, $i = 1, \ldots, n$. Then g_1, \ldots, g_n are linearly independent over *K* if and only if f_1, \ldots, f_n are linearly independent over *K*. (**Hint :** Let $h_j := (a_1^j, \ldots, a_n^j) \in K^n$, $j \in \mathbb{N}$. Note that $f_i = g_i | \{0, \ldots, n-1\}$ and $(f_1(j), \ldots, f_n(j)) = (g_1(j), \ldots, g_n(j)) = h_j$ for all $j = 1, \ldots, n$. Therefore by T3.14, g_1, \ldots, g_n are linearly independent if and only if h_j , $j = 1, \ldots, n$ generates the *right*-vector space K^n . Suppose that the elements h_0, \ldots, h_m are linearly independent in the *K*-*right*-vector space K^n , but the elements h_0, \ldots, h_{m+1} are not linearly independent, so h_{m+1} and hence h_j for every $j \ge m+1$ is a linear combination of h_0, \ldots, h_m . Now again use T3.14.)

T3.16 Let *A* be a ring $\neq 0$ with finitely many elements and let *V* be an *A*-module with a generating system of *n* elements, $n \in \mathbb{N}$. Show directly (without using the theorem) that every n + 1 elements of *V* are linearly dependent. (**Hint :** Proceed as in the Example given in the class which uses only cardinality argument.)

T3.17 What is the rank of \mathbb{Q} as an abelian group?

T3.18 Let *K* be a field, *I* be a set and let $g \in K^I$ be a function on *I* into *K*, such that the image $\operatorname{im}(g)$ is an infinite subset of *K*. Then the powers g^v , $v \in \mathbb{N}$ of *g* are linearly independent over *K*. (For example from this it follows that: the functions $t \mapsto \cos^v t$, $v \in \mathbb{N}$, from \mathbb{R} to itself are linearly independent; similarly, the functions $x \mapsto x^v$, $v \in \mathbb{N}$, from *K* to itself for an arbitrary infinite field *K*, are linearly independent.)

T3.19 Let *L* be a division ring, *K* be a subdivision ring of *L* and *I* be a set. For an arbitrary family $(f_j)_{j \in J}$ of functions $f_j \in K^I$ show that: the f_j , $j \in J$, are linearly independent over *K* if and only if they are linearly independent over *L* as a family of functions in L^I . (Use the exercise 6 and and exercise 4.11(a).)

[†]**T3.20** Let *A* be a ring and let *J* be an indexed set with cardinality of the continuum. Then there exists a family x_j , $j \in J$, of *A*-linearly independent 0-1-sequences in $A^{\mathbb{N}}$. (**Hint**: (H. Brenner) Let \mathbb{P} be the set of prime numbers. For a subset $R \subseteq \mathbb{P}$, let N(R) be the set of those positive natural numbers whose prime divisors belong to *R*, i.e. $N(R) = \{n \in \mathbb{N}^* \mid \text{ prime divisors of } n \subseteq R\}$. Then the family $x_R, R \in \mathfrak{P}(\mathbb{P})$, is linearly independent, where x_R denote the indicator function of N(R).)