MA 312 Commutative Algebra / January-April 2015

(Int PhD. and Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel: +91-(0)80-2293 3212/(CSA 2239)	E-mails: patil@math.iisc.ernet.in / dppatil@csa.iisc.ernet.in
Lectures : Monday and Thursday ; 11:00–12	30 Venue: MA LH-3 (if LH-1 is not free)/LH-1
Midterms :	Ouizzes : (Wed-Lect)

Final Examination :

Uuizzes: (Wed-Lect)

2. Modules and Submodules

Contents

§2	Modules and Submodules	1
	2.A Modules	1
	2.B Submodules	3

§2 Modules and Submodules

2.A Modules

Let A be a ring. Operations of A on abelian groups V which are compatible with the binary operations of A and V play an important roll. We begin with the following general definition :

2.A.1 Definition An operation of an (arbitrary) set M on an (arbitrary) set X is a map $M \times X \to X.$

An operation $A \times V \to V$ of the ring A on an abelian group (V, +) is written multiplicatively, i. e., in the form $(a, x) \mapsto a \cdot x = ax, a \in A, x \in V$, since the elements a and x are of different origin there is no confusion of this notation with the multiplication in A; similarly, the addition in A and in V both are denoted by +. Further, the zero element of A as well as in V is denoted by the same symbol 0. Furthermore, as in ring theory we adopt the bracket-convention that the operation of A on V has the stronger binding that the addition in V. For $a, b \in A$ and $x, y \in V$ for example we write ax + by for (ax) + (by).

2.A.2 Definitions An abelian group (V, +) together with a (multiplicatively written) operation of A on V is called an A-module if the following conditions holds for all $a, b \in A$ and for all $x, y \in V$:

 $(3) \quad a(x+y) = ax+by.$ (1) $1_A \cdot x = x$. (2) a(bx) = (ab)x. (4) (a+b)x = ax+bx.

The operation of A on V is called the scalar multiplication of A on V and we say that it defines an A-module structure on the abelian group (V, +). In any case without any doubt, to address the A-module structure on V it is common to use simply the term "of A-module V" or even simply "of module V". Instead of A-module one can also write module over A. The ring A is called the scalar ring of V; the elements of A are called scalars. When modules over a fixed ring A are considered, then the ring A is called the ground ring or base ring.

Modules over a division ring K are called K-vector spaces. The elements of a K-vector space are called vectors. A vector space over the field \mathbb{R} of real numbers (respectively, the field \mathbb{C} of complex numbers) is called a real (respectively, complex) vector space.

From the special distributive laws (3) and (4) we can deduce the following rules :

2.A.3 Rules of Scalar multiplication *Let V be an A-module. For* $a \in A$ *and* $x \in V$ *, we have:*

- (1) $a \cdot 0 = 0$ and $0 \cdot x = 0$ for all $a \in A$ and all $x \in V$.
- (2) (-a)x = a(-x) = -ax for all $a \in A$ and all $x \in V$.
- (3) (-a)(-x) = -((-a)x) = -(-ax) = ax for all $a \in A$ and all $x \in V$.

(4) (General distributive law): For arbitrary families $a_i \in A, i \in I, x_j \in V, j \in J$, of elements such that $a_i = 0$ for al most all $i \in I$ (resp. $x_j = 0$ for al most all $j \in J$), we have :

$$\left(\sum_{i\in I}a_i\right)\left(\sum_{j\in J}x_j\right) = \sum_{i,j)\in I\times J}a_ix_j$$

Proof: (1) Immediate from $a \cdot 0 = a(0+0) = a \cdot 0 + a \cdot 0$ and $0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x$. (2) is clear from the equations $0 = 0 \cdot x = (a + (-a))x = ax + (-a)x$ and $0 = a \cdot 0 = a(x + (-x)) = ax + a(-x)$. For the proof of (4) use (1), (2) and induction.

2.A.4 Homothecies Let V be an A-module. Then for each $a \in A$, the map $\vartheta_a : V \to V$ defined by $x \mapsto ax$ is called the homothecy or stretching by a in V. Therefore we have the map

$$\vartheta: A \to \operatorname{Maps}(V, V), \quad a \mapsto \vartheta_a: V \to V.$$

The condition (1) of the definition of an A-module structure says that $\vartheta_1 = id_V$ i. e., the neutral element of the multiplicative monoid of A operates as the identity on V. (Some authors drop this postulation in the definition of an A-module and say that an A-module is unitary if it holds. However, we will consider only unitary modules.) The condition (3) of the definition of A-module mean that $\vartheta_a : V \to V$ is an endomorphism of the abelian group (V, +), i. e., $\vartheta_a \in \text{End}(V, +)$. Further, by the conditions (4), (2) and (1) it follows that the map

$$\vartheta: A \to \operatorname{End}(V, +), \quad a \mapsto \vartheta_a: V \to V$$

is a ring homomorphism, i. e., $\vartheta_{a+b} = \vartheta_a + \vartheta_b$, $\vartheta_{ab} = \vartheta_a \circ \vartheta_b$ and $\vartheta_1 = id_V$.

2.A.5 Right Modules Let A be a ring. An A-module in the sense of above Definition 2.A.2 is precisely a left A-module. If the operation of A on V has the properties (1), (3) and (4) with

(2') a(bx) = (ba)x for all $ab \in A$ and all $x \in V$,

then V is called a right A-module. In this case it is convenient to write the operation of A on V on the right side. Then (2') takes the form : (xb)a = x(ba). Left and right modules are interchangeable concepts. If A^{op} denote the opposite ring of A, then the right A-modules (respectively left A-modules) are identical with the left A^{op} -modules (respectively, right A^{op} -modules). Therefore one can restrict to study only one kind of modules. Over a commutative ring the difference between left and right modules is anyway pointless.

2.A.6 Bimodules Sometimes one need to consider many module structures on the same abelian group (V, +). If these module structures are compatible with each other then one use the term multi-module, in particular, bimodule when one considers two compatible module structures.

Suppose that the abelian group (V, +) has a left *A*-module structure and also a left *B*-module structure. Then *V* is called a (A,B)-bimodule if a(bx) = b(ax) for all $a \in A$, $b \in B$, $x \in V$ and in this case we use the notation $V =_{A,B} V$.

Suppose that the abelian group (V, +) has a left *A*-module structure and also a right *B*-module structure (see a) above). Then *V* is called a (A,B)-bimodule if a(xb) = (ax)b for all $a \in A$, $b \in B$, $x \in V$ and in this case we use the notation $V =_A V_B$.

Analogously, one can define bimodules of the type $V_{A,B}$. — A trivial example of an bimodule structure is supplied on an ordinary module V over a *commutative* ring A. With a same operation on V it is a (A,A)-bimodule of type $_{A,A}V$.

2.A.7 Examples Let *A* be a ring.

(1) The trivial group 0 is an A-module in an unique way. In fact the only scalar multiplication is $(a, 0) \mapsto 0$ for all $a \in A$. This A-module is called the zero module and is also denoted by 0.

(2) Let *G* be an abelian group. For $x \in G$ and $m \in \mathbb{Z}$, we have $mx := x + \cdots + x$ (*m*-times). Then the operation $\mathbb{Z} \times G \to G$ defines a \mathbb{Z} -module structure on *G*. Conversely, on every \mathbb{Z} -module *V* the scalar multiplication is given by $(m,x) \mapsto mx := x + \cdots + x$ (*m*-times) in the abelian group (V,+). Therefore \mathbb{Z} -modules are precisely abelain groups.

(3) Let *A* be a ring. The left multiplication $\lambda_a : A \to A$, $x \mapsto ax$ by elements $a \in A$ defines an *A*-module structure on *A* (whereas the right multiplication $\rho_a : A \to A$, $x \mapsto xa$ defines a right *A*-module structure on *A*. Then with these operations *A* is a bimodule $_AA_A$).

(4) Let $R \subseteq A$ be a subring. The restriction of the multiplication $A \times A \to A$ in the ring A to the subring R, i. e., restriction to $R \times A$ (respectively, to $A \times R$) defines a left *R*-module (respectively, right *R*-module) structure on A. For example, the chain $\mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$ of fields define a natural \mathbb{R} -vector space structure on \mathbb{C} and natural \mathbb{Q} -vector space structures on \mathbb{R} and on \mathbb{C} . More generally, the restriction of the scalar multiplication $A \times V \to V$ of the A-module V to $R \times V$ defines an *R*-module structure on V. In future an A-module V will be considered as an k-module with this natural *R*-module structure, unless otherwise specified.

(5) (Direct products and Direct sums) Let $V_i, i \in I$, be a family of A-modules. On the abelian groups direct product $\prod_{I \in I} V_i$ and the direct sum $\bigoplus_{i \in I} V_i$ we define the scalar multiplication of an element $a \in A$ on the *I*-tuple $(x_i)_{i \in I}$ by $a(x_i)_{i \in I} := (ax_i)_{i \in I}$ (componentwise scalar multiplication). These A-modules are called the direct product and the direct sum of the family $V_i, i \in I$. If all V_i are equal to the same A-module V, then the *I*-fold direct product of V is the set V^I of all maps from I into V. The common notation $V^{(I)}$ is used for the *I*-fold direct sum of V. If I is a finite set then $V^I = V^{(I)}$. Moreover, if $I = \{1, \ldots, n\}$, then we just denote $V^I = V^{(I)}$ by V^n . Note that $V^{\emptyset} = 0$ is the zero module.

2.B Submodules

Let *A* be a ring and let *V* be an *A*-module. A subset $W \subseteq V$ is called an *A*-submodule of *V* (or simply a submodule of *V*) if *W* is a subgroup of the abelian group *V* and if the scalar multiplication $A \times V \to V$ of *A* on *V* restricts to a scalar multiplication $A \times W \to W$ on *W*, i. e., for all $a \in A$ and $x \in W$ we have $ax \in W$.

An A-submodule W of an A-module V is therefore closed under the multiplication of all scalars $a \in A$. The restriction of the A-module structure on V to W defines an A-module structure on W. In this sense every A-submodule itself is an A-module. In case of vector spaces over a division ring K, K-submodules are also called K-subvector spaces or just K-subspaces.

2.B.1 Examples Let *A* be a ring.

(1) In every A-module V, the zero module 0 and V itself are A-submodules of V; these are called trivial submodules of V.

(2) In an abelian group, the Z-modules are precisely the subgroups.

(3) In any ring A, the A-submodule of the left A-module A (respectively, the right A-module A) are precisely the left-deals (respectively, right-ideals) in A.

(4) Let $V_i, i \in I$ be a family of A-modules. Then the direct sum $\bigoplus_{i \in I} V_i$ is an A-submodule of the direct product $\prod_{i \in I} V_i$. In particular, the *I*-fold direct sum $V^{(I)}$ of *V* is an A-submodule of the *I*-fold direct product V^I of *V*. Moreover, if *I* is infinite then $V^{(I)}$ is a proper submodule of V^I .

2.B.2 Criterion for submodule Let A be a ring and let V be an A-module. A subset $W \subseteq V$ is an A-submodule of V if and only if the following three conditions are satisfied: (1) $W \neq \emptyset$. (2) For all $x \in W$ and all $y \in W$ we have $x + y \in W$. (3) For all $a \in A$ and all $x \in W$ we have $ax \in W$.

Proof:

We can combine the conditions (2) and (3) in the above criterion in the following condition : for all $a, b \in A$ and for all $x, y \in V$, $ax + by \in W$.

2.B.3 Example (Torsion modules) Let A be a commutative ring and let V be an A-module. An element $x \in V$ is called torsion if there exists a non-zero divisor $a \in A$ with ax = 0. The zero element $0 \in V$ is a torsion element, since $1 \cdot 0 = 0$. If $x \in V$ is a torsion element and if $c \in A$ is arbitrary, then cx is also torsion element (since ax = 0 for some non-zero divisor in A, we also have a(cx) = c(ax) = 0.). Further, if $y \in V$ is another torsion element, i. e., if by = 0 for some non-zero divisor in $b \in A$, then ab is a non-zero divisor in A with ab(x+y) = bax + aby = 0 and so x+y is also a torsion element. Therefore by the above criterion the set of all torsion elements in V $t(V) = t_A(V) = \{x \in V \mid x \text{ is a torsion element}\}$ is an A-submodule of V. This submodule is called the torsion - submodule of V. An A-module V is called torsion - free if t(V) = 0. If every element of V is torsion, i.e., if t(V) = V then V is called torsion - module.

(a) Direct sum of torsion-modules is again a torsion-module. A submodule of a torsion-module is a torsion-module.

(b) Direct product of torsion-free modules is again a torsion-free module. A submodule of a torsion-free module is a torsion-free module.

(c) The A-module A is always torsion-free. In an abelian group (in any Z-module) torsion-elements are precisely the set of elements of positive order. The Z-module Q is torsion-free. Every finite abelian group if a Z-torsion module. For $n \in \mathbb{N}^*$, let Z_n denote a cyclic group of order n. Then the direct product $\prod_{n \in \mathbb{N}^*} Z_n$ of the Z-torsion modules Z_n , $|, n \in \mathbb{N}^*$, is not Z-torsion module.

2.B.4 Intersection of submodules Let A be a ring, V be an A-module and let W_i , $i \in I$, be a family of A-submodules of V. Then the intersection $\bigcap_{i \in I} W_i$ is also an A-submodule of V.

Proof: Follows immediately from 2.B.2.

If x_i , $i \in I$, is a family of element in an A-module V, then by 2.B.4 there exists a smallest (with respect to the inclusion) submodule of V which contain all the elements x_i , $i \in I$, namely, the intersection of the family of all submodules which contain x_i , $i \in I$ and this family is non-empty, since V is one of them.

2.B.5 Definition Let A be a ring and let V be an A-module. For a family x_i , $i \in I$, of elements of V, the smallest A-submodule of V containing x_i , $i \in I$, is precisely the subset $\{\sum_{i \in I} a_i x_i | (a_i)_{i \in I} \in A^{(I)}\}$ of V. Therefore this A-submodule is denoted by $\sum_{i \in I} Ax_i$ and we say that it is the A-submodule of V generated by the family x_i , $i \in I$. If W is an A-submodule of V and if $W = \sum_{i \in I} Ax_i$ for some family x_i , $i \in I$ in V, then we say that x_i , $i \in I$ is a generating system for W. If $X \subseteq V$, then A-submodule of V generated by X is denoted by AX.

For example, the zero A-submodule of V is generated by the $\emptyset \subseteq V$, but it is also generated by $\{0\} \subseteq V$. Every A-module has a generating system, for example the set of all of its elements. An A-submodule with generating system consisting of a single element x is called a cyclic A-submodule generated by x and is denoted by Ax. Every element of Ax is of the form ax with $a \in A$, but a need not be unique, i. e., ax = bx for some $a, b \in A$, but $a \neq b$. — The cyclic \mathbb{Z} -modules are precisely the cyclic groups.

2.B.6 Sum of submodules Let A be a ring, V be an A-module and let W_i $i \in I$ be a family of A-submodules of V. Then the A-submodule W of V generated by the union $\bigcup_{i \in I} W_i$ is precisely

$$\{\sum_{i\in I} x_i \mid x_i \in W_i \text{ for all } i \in I \text{ and } x_i = 0 \text{ for almost all } i \in I\}$$

Proof:

The A-submodule of V constructed in 2.B.6 is called the sum of submodules W_i , $i \in I$, and is denoted by $\sum_{i \in I} W_i$. For $I = \{1, ..., n\}$ it is also denoted by $W_1 + \cdots + W_n$ or $\sum_{i=1}^n W_i$. It is

$$W_1 + \dots + W_n = \{x_1 + \dots + x_n \mid x_i \in W_i, i = 1, \dots, n\}$$

2.B.7 Definition An element $x \in V$ is called a linear combination of the family $x_i \in V$, $i \in I$ (with coefficients in A), if there is family a_i , $i \in I$, of elements in A, such that almost all a_i are zero, i. e., there exists an element $(a_i)_{i \in I} \in A^{(I)}$ such that $x = \sum_{i \in I} a_i x_i$; in this case the elements a_i , $i \in I$ are called the coefficients of the linear combination. In general these coefficients are not uniquely determined by the element x.

For calculation with linear combinations we note the two rules : two linear combinations can also be added by adding the coefficients and a linear combination can be multiplied by a scalar $a \in A$ by multiplying the coefficients by a, i. e, if $x_i \in V$, $(a_i)_{i \in I}$, $(b_i)_{i \in I} \in A^{(I)}$ and $a \in A$, then :

$$\sum_{i\in I}a_ix_i + \sum_{i\in I}b_ix_i = \sum_{i\in I}(a_i+b_i)x_i \quad \text{and} \quad a\sum_{i\in I}a_ix_i = \sum_{i\in I}(aa_i)x_i.$$

With this definition : The A-submodule generated by the system x_i , $i \in I$ is precisely the set of all linear combinations of the family x_i , $i \in I$.

2.B.8 Definition An A-module V is called finitely generated or a finite A-module if there is generating system for V consisting finitely many elements.

2.B.9 Remark Note that a finite module V need not mean that V has only finitely many elements. For example, the Z-module \mathbb{Z} has infinitely many elements but it is a finite \mathbb{Z} -module, in fact a cyclic \mathbb{Z} -module (generated by the element 1). Note also the contrast: in group theory finite group mean group with finitely many elements. The abelian group \mathbb{Z} is not a finite group but it is a finite \mathbb{Z} -module.

2.B.10 Proposition Let A be a ring and let V be an A-module. If V is a finitely generated A-module, then every generating system of V contains a finite generating system.

Proof: Let $y_1, \ldots, y_n \in V$ be a given finite generating system for V, i. e., $V = Ay_1 + \cdots + Ay_n$ and let x_i , $i \in I$ be a generating system for V. Then for each $j = 1, \ldots, n$, $y_j = \sum_{i \in E(j)} a_{ij} x_i$ with $a_{ij} \in A$ and finite subsets $E(j) \subseteq I$. Then $E := \bigcup_{j=1}^n E(j)$ is a finite subset of I and the submodule generated by x_i , $i \in E$ contain all the elements y_1, \ldots, y_n and hence $V = Ay_1 + \cdots + Ay_n \subseteq \sum_{i \in E} Ax_i \subseteq V$. Therefore $V = \sum_{i \in E} Ax_i$, i. e., V is generated by the finite subfamily x_i , $i \in E$.

2.B.11 Definition Let A be a ring and let V be an A-module. A generating system X of an A-module V is called minimal generating system for V if it is minimal (with respect to the natural inclusion) in the set $\{Y \mid Y \subseteq is$ a generating system for V $\}$. — If V is finite A-module, then

 $\mu_A(V) := \min\{|X| \mid X \subseteq V \text{ is a generating system for } V\}$

is called the minimal number of generators for V.

By Proposition 2.B.10 every minimal generating system of a finite A-module is finite. More generally, a generating system x_i , $i \in I$ of an A-module V is called minimal if there is no proper subset $J \neq I$ of I such that x_j , $j \in J$, generate V.

For a minimal system of generators x_i , $i \in I$ of V, the index map $I \to V$, $i \mapsto x_i$, is injective. Therefore this definition is not essentially more general than the previous one. A minimal generating system never contains the zero element. If V is finitely generated, then by Proposition 2.B.10 every generating system contains a finite generating system and hence also contain a minimal generating system.

An arbitrary module need not have a minimal generating system. For example, the \mathbb{Z} -module \mathbb{Q} does not have minimal generating system, see Exercise 2.2.

2.B.12 Example A minimal generating system of a finite *A*-module *V* has at least $\mu_A(V)$ elements and need not have the cardinality $\mu_A(V)$. For example, $\{1\}, \{2,3\}, \{p,q \mid \text{gcd}(p,q) = 1\}$ are minimal generating systems for the \mathbb{Z} -module \mathbb{Z} and $\mu_{\mathbb{Z}}(\mathbb{Z}) = 1$. Moreover, for every natural number $m \in \mathbb{N}^*$, there is a minimal generating system for the \mathbb{Z} -module \mathbb{Z} with cardinality *m*, namely, x_1, \ldots, x_m , where $x_i := \prod_{j=1, j \neq i}^m p_j$ and p_1, \ldots, p_m are distinct prime numbers.

§ 2 Modules and Submodules

Proof: For every $y \in Y$, there exists a finite subset E(y) of I such that $y \in \sum_{i \in E(y)} Ax_i$. Then x_j , $j \in J := \bigcup_{y \in Y} E(y)$ is a generating system for V, since $V = \sum_{y \in Y} Ay \subseteq \sum_{j \in J} Ax_j \subseteq V$. Note that since Y is infinite, for I = Y and $E_y = E(y)$, $y \in Y$, the assumptions in Corollary 2 below are satisfied and hence $|J| = |\bigcup_{y \in Y} E(y)| \le |Y|$ by Corollary 2¹.

2.B.14 Corollary Let A be a ring and let V be an A-module If V has countable generating system, then every generating system of V contains a countable generating system.

Proof: If *V* is a finite *A*-module, then the assertion follows directly from Proposition 2.B.10 and if *V* is not finite, then it follows from Theorem 2.B.13. Moreover, the cardinality argument in the proof of 2.B.13 in this special case in simple: A countable union of countable sets is again countable.

2.B.15 Let *A* be a ring, a be a left-ideal in *A* and let *V* be an *A*-module. The set of linear combinations of elements of *V* with coefficients from the ideal a form a submodule of *V*. This submodule is generated by ax, $a \in a$, $x \in V$ and is denoted by aV.

The following rules are easy to verify : For left-ideals $\mathfrak{a}, \mathfrak{b}$ in A and A-submodules W, U of V we have : (a) $(\mathfrak{a} + \mathfrak{b})V = \mathfrak{a}V + \mathfrak{b}V$. (b) $\mathfrak{a}(\mathfrak{b}V) = (\mathfrak{a}\mathfrak{b})V$. (c) $\mathfrak{a}(W + U) = \mathfrak{a}W + \mathfrak{a}U$.

2.B.16 Example For a left ideal \mathfrak{a} is a ring A and a natural number $n \in \mathbb{N}$ recursively define the powers of \mathfrak{a} by : $\mathfrak{a}^0 := \mathbb{A}, \mathfrak{a}^{n+1} := \mathfrak{a}\mathfrak{a}^n$. Then we have a descending chain of left ideals in A:

$$\mathbf{A} = \mathbf{a}^0 \supseteq \mathbf{a} \supseteq \mathbf{a}^2 \supseteq \cdots \supseteq \mathbf{a}^n \supseteq \mathbf{a}^{n+1} \supseteq \cdots.$$

— The elements of the power \mathfrak{a}^n of a left-ideal \mathfrak{a} are precisely the finite sums of products $a_1 \cdots a_n$ with $a_i \in \mathfrak{a}, i = 1, \dots, n$. Further, $\mathfrak{a}^m \mathfrak{a}^n = \mathfrak{a}^{m+n}$ for all $m, n \in \mathbb{N}$.

A left-, right-, or two-sided ideal \mathfrak{a} is called nilpotent if there exists $m \in \mathbb{N}$ such that $\mathfrak{a}^m = 0$. Clearly, if $\mathfrak{a}^m = 0$, then $a_1 \cdots a_m = 0$ for all $a_1, \ldots, a_m \in \mathfrak{a}$. Moreover, we have the following very useful special case of Nakayama's lemma :

2.B.17 Lemma Let A be a ring and let \mathfrak{a} be a nilpotent left-ideal in A. Let V be an A-module and let $W \subseteq V$ be an A-submodule of V. If $W + \mathfrak{a}V = V$, then W = V.

Proof: It is enough to prove that $W = W + \mathfrak{a}^n V$ for every $n \in \mathbb{N}$. We show this by induction on n. For n = 0 the assertion is trivial. By induction hypothesis we have the equalities : $V = W + \mathfrak{a}^n V = W + \mathfrak{a}^n (W + \mathfrak{a} V) = W + \mathfrak{a}^n (\mathfrak{a} V) = W + \mathfrak{a}^{n+1} V$.

¹ The Corollary 2 is an an easy consequence of the following theorem from set theory :

Theorem For any infinite set *Y*, we have $|Y \times Y| = |Y|$. (For the proof of this one need to use Zorn's Lemma.) From this we deduce :

Corollary 1 For any two non-empty sets I, Y with one of them infinite, we have $|I \times Y| = \sup\{|I|, |Y|\}$. (We may assume that $|I| \le |Y|$. Then Y is infinite and $|Y| \le |I \times Y| \le |Y \times Y| = |Y|$ by the above theorem and hence $|I \times Y| = |Y|$ by Schröder-Berstein theorem.)

Corollary 2 Let Y be an infinite set and let E_i , $i \in I$, be a family of sets with $|I| \leq |Y|$ and $|E_i| \leq |Y|$ for all $i \in I$. Then $|\bigcup_{i \in I} E_i| \leq |Y|$. (We may assume that $E_i \neq \emptyset$ for all $i \in I$. Since $|E_i| \leq |Y|$, there is a surjective map $g_i : Y \rightarrow E_i$ for each $i \in I$. Then the map $I \times Y \rightarrow \bigcup_{i \in I} E_i$ with $(i, y) \mapsto g_i(y)$ is also surjective and hence $|\bigcup_{i \in I} E_i| \leq |I \times Y| = \sup\{|I|, |Y|\} = |Y|$ by Corollary 1.)

L.2/7

2.B.18 Maximal ideals Let A be a ring. The set of left-ideals in A is ordered by the natural inclusion \subseteq . Its biggest element if the unit ideal A. A maximal element in the set of left-ideal different from A is called a maximal left-ideal. Analogously one can define maximal right-ideals. In commutative ring one simply calls them maximal ideals. Therefore : A ring is a division ring if and only if its zero ideal is a maximal left-ideal.

2.B.19 Example In the ring \mathbb{Z} every ideal is of the form $\mathbb{Z}a$ with a uniquely determined natural number $a \in \mathbb{N}$. For $ab \in \mathbb{N}$ the inclusion $\mathbb{Z}a \subseteq \mathbb{Z}b$ is equivalent with $a \in \mathbb{Z}b$ or with an existence of $c \in \mathbb{N}$ such that a = cb and so with the divisibility condition "*b* divides *a*". Therefore $\mathbb{Z}a$ is maximal ideal in \mathbb{Z} if and only if $a \neq 1$ and *a* has no divisors other than 1 and *a*. But this condition exactly characterize the prime numbers. Therefore it shows that : $\mathbb{Z}a$ for $a \in \mathbb{N}$ is a maximal ideal in the ring \mathbb{Z} if and only if *a* is a prime number. If $a \in \mathbb{N}, a \neq 1$, then *a* has a prime divisor.

In the zero ring there are no maximal ideals. On the contrary if $A \neq 0$, then it has enough maximal left- and right-ideals by Krull's theorem. Below we will prove more general result than this.

2.B.20 Maximal submodules Let V be an A-module. Then maximal elements (with respect to the natural inclusion) in the set $\mathscr{S}_A(V)$ of all A-submodules of V are called maximal A - submodules of V. Maximal A- submodules of the A-module A are precisely are maximal ideals in A. Let W be a maximal A-submodule of V and let $x \in V, x \notin W$. Then $W \neq W + Ax$ and by the maximality of W, we have the equality W + Ax = V. Therefore W is a cofinite A-submodule in the sense of the following definition.

2.B.21 Definition An *A*- submodule *W* of *V* is called c of inite if there exists finitely many elements $x_1, \ldots, x_n \in V$ such that $V = W + Ax_1 + \cdots + Ax_n$. Equivalently, the quotient *A*-module V/W is finitely generated.

If W is a cofinite A-submodule of V, then every A-submodule W' with $W \subseteq W' \subseteq V$ is also cofinite. Every A-submodule of a finite A-module is cofinite.

Below we prove the converse of the above remark that *in any A-module V cofinite A-submodules* different from V exists if V has maximal submodules.

2.B.22 Theorem Let W be a cofinite A-submodule of an A-module V with $W \neq V$. Then there exists a maximal A-submodule of V which contain W. In particular, in a finite non-zero A-module V there are maximal A-submodules.

Proof: Let $V = W + Ax_1 + \dots + Ax_n$. Let *r* be the number such that $W_r := W + Ax_1 + \dots + Ax_{r-1} \neq V$, but $W_r + Ax_r = V$. Then it is enough to prove the theorem for W_r instead of *W*. We may therefore assume that $W \neq V$ and W + Ax = V for some $x \in V$. Let $\mathfrak{M} := \{W' \mid W' \text{ is a submodule of } V \text{ with } W \subseteq W' \subseteq V\}$. Then $W \in \mathfrak{M}$ and m is a non-empty set ordered by the natural inclusion. We note that \mathfrak{M} is inductively ordered. For, if $\mathfrak{C} \subseteq \mathfrak{M}$ is a non-empty chain in \mathfrak{M} , then $U' := \bigcup_{U \in \mathfrak{C}} U$ is an upper bound of \mathfrak{C} in \mathfrak{M} : Clearly U' is a submodule of V, $W \subseteq U'$, since $\mathfrak{C} \neq \emptyset$. Further, since $x \neq U$ for all $U \in \mathfrak{C}$, we have $x \neq U'$ and so $U' \neq V$. Now by Zorn's Lemma there exists a maximal element in \mathfrak{M} and this is a maximal submodule of V which contain W.

2.B.23 Corollary In a finite module $|, V \neq 0$, there are maximal submodules.

By specializing the above corollary to the finite module $V = A = A \cdot 1$, we note the following:

2.B.24 Corollary (Krull's Theorem) Let A be a ring and let \mathfrak{a} be an ideal in A with $\mathfrak{a} \neq A$. Then there exists a maximal ideal \mathfrak{m} in A with $\mathfrak{a} \subseteq \mathfrak{m} \subsetneq A$. In particular, in every non-zero ring, there are maximal left-ideals.