MA 312 Commutative Algebra / January-April 2015

(Int PhD. and Ph. D. Programmes)
Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

| Tel : +91-(0)80-2293 3212/(CSA 2239) | E-mails : patil@math.iisc.ernet.in / dppatil@csa.iisc.ernet.in |
| :--- | :---: | :---: |
| Lectures : Monday and Thursday ; 11:00-12:30 | Venue: MA LH-3 (if LH-1 is not free)/LH-1 |
| Midterms : | Quizzes : (Wed-Lect) |
| Final Examination : | |

2. Modules and Submodules

Contents

§ 2 Modules and Submodules 1
2.A Modules 1
2.B Submodules 3

§ 2 Modules and Submodules

2.A Modules

Let A be a ring. Operations of A on abelian groups V which are compatible with the binary operations of A and V play an important roll. We begin with the following general definition :
2.A. 1 Definition An operation of an (arbitrary) set M on an (arbitrary) set X is a map $M \times X \rightarrow X$.
An operation $A \times V \rightarrow V$ of the ring A on an abelian group $(V,+)$ is written multiplicatively, i. e., in the form $(a, x) \mapsto a \cdot x=a x, a \in A, x \in V$, since the elements a and x are of different origin there is no confusion of this notation with the multiplication in A; similarly, the addition in A and in V both are denoted by + . Further, the zero element of A as well as in V is denoted by the same symbol 0 . Furthermore, as in ring theory we adopt the bracket-convention that the operation of A on V has the stronger binding that the addition in V. For $a, b \in A$ and $x, y \in V$ for example we write $a x+b y$ for $(a x)+(b y)$.
2.A.2 Definitions An abelian group $(V,+)$ together with a (multiplicatively written) operation of A on V is called an A-module if the following conditions holds for all $a, b \in A$ and for all $x, y \in V$:
(1) $1_{A} \cdot x=x$.
(2) $a(b x)=(a b) x$.
(3) $a(x+y)=a x+b y$.
(4) $(a+b) x=a x+b x$.

The operation of A on V is called the scalar multiplication of A on V and we say that it defines an A-module structure on the abelian group $(V,+)$. In any case without any doubt, to address the A-module structure on V it is common to use simply the term "of A-module V " or even simply "of module V ". Instead of A-module one can also write module over A. The ring A is called the scalar ring of V; the elements of A are called scalars. When modules over a fixed ring A are considered, then the ring A is called the ground ring or base ring.
Modules over a division ring K are called K-vector spaces. The elements of a K-vector space are called vectors. A vector space over the field \mathbb{R} of real numbers (respectively, the field \mathbb{C} of complex numbers) is called a real (respectively, complex) vector space.

From the special distributive laws (3) and (4) we can deduce the following rules :
2.A. 3 Rules of Scalar multiplication Let V be an A-module. For $a \in A$ and $x \in V$, we have:
(1) $a \cdot 0=0$ and $0 \cdot x=0$ for all $a \in A$ and all $x \in V$.
(2) $(-a) x=a(-x)=-a x$ for all $a \in A$ and all $x \in V$.
(3) $(-a)(-x)=-((-a) x)=-(-a x)=$ ax for all $a \in A$ and all $x \in V$.
(4) (General distributive law): For arbitrary families $a_{i} \in A, i \in I, x_{j} \in V, j \in J$, of elements such that $a_{i}=0$ for al most all $i \in I$ (resp. $x_{j}=0$ for al most all $j \in J$), we have :

$$
\left(\sum_{i \in I} a_{i}\right)\left(\sum_{j \in J} x_{j}\right)=\sum_{i, j) \in I \times J} a_{i} x_{j}
$$

Proof: (1) Immediate from $a \cdot 0=a(0+0)=a \cdot 0+a \cdot 0$ and $0 \cdot x=(0+0) \cdot x=0 \cdot x+0 \cdot x$. (2) is clear from the equations $0=0 \cdot x=(a+(-a)) x=a x+(-a) x$ and $0=a \cdot 0=a(x+(-x))=a x+a(-x)$. For the proof of (4) use (1), (2) and induction.
2.A. 4 Homothecies Let V be an A-module. Then for each $a \in A$, the map $\vartheta_{a}: V \rightarrow V$ defined by $x \mapsto a x$ is called the homothecy or stretching by a in V. Therefore we have the map

$$
\vartheta: A \rightarrow \operatorname{Maps}(V, V), \quad a \mapsto \vartheta_{a}: V \rightarrow V
$$

The condition (1) of the definition of an A-module structure says that $\vartheta_{1}=\mathrm{id}{ }_{V}$ i. e., the neutral element of the multiplicative monoid of A operates as the identity on V. (Some authors drop this postulation in the definition of an A-module and say that an A-module is unitary if it holds. However, we will consider only unitary modules.) The condition (3) of the definition of A-module mean that $\vartheta_{a}: V \rightarrow V$ is an endomorphism of the abelian group $(V,+)$, i. e., $\vartheta_{a} \in \operatorname{End}(V,+)$. Further, by the conditions (4), (2) and (1) it follows that the map

$$
\vartheta: A \rightarrow \operatorname{End}(V,+), \quad a \mapsto \vartheta_{a}: V \rightarrow V
$$

is a ring homomorphism, i. e., $\vartheta_{a+b}=\vartheta_{a}+\vartheta_{b}, \vartheta_{a b}=\vartheta_{a} \circ \vartheta_{b}$ and $\vartheta_{1}=\mathrm{id}_{V}$.
2.A. 5 Right Modules Let A be a ring. An A-module in the sense of above Definition 2.A.2 is precisely a left A-module. If the operation of A on V has the properties (1), (3) and (4) with
(2') $a(b x)=(b a) x$ for all $a b \in A$ and all $x \in V$,
then V is called a right A-module. In this case it is convenient to write the operation of A on V on the right side. Then $\left(2^{\prime}\right)$ takes the form : $(x b) a=x(b a)$. Left and right modules are interchangeable concepts. If A^{op} denote the opposite ring of A, then the right A-modules (respectively left A-modules) are identical with the left $A^{\text {op}}$-modules (respectively, right $A^{\text {op }}$-modules). Therefore one can restrict to study only one kind of modules. Over a commutative ring the difference between left and right modules is anyway pointless.
2.A.6 Bimodules Sometimes one need to consider many module structures on the same abelian group $(V,+)$. If these module structures are compatible with each other then one use the term multi-module, in particular, bimodule when one considers two compatible module structures.
Suppose that the abelian group $(V,+)$ has a left A-module structure and also a left B-module structure. Then V is called a (A, B)-bimodule if $a(b x)=b(a x)$ for all $a \in A, b \in B, x \in V$ and in this case we use the notation $V=_{A, B} V$.
Suppose that the abelian group $(V,+)$ has a left A-module structure and also a right B-module structure (see a) above). Then V is called a (A, B)-bimodule if $a(x b)=(a x) b$ for all $a \in A, b \in B, x \in V$ and in this case we use the notation $V={ }_{A} V_{B}$.
Analogously, one can define bimodules of the ty pe $V_{A, B}$. - A trivial example of an bimodule structure is supplied on an ordinary module V over a commutative ring A. With a same operation on V it is a (A, A)-bimodule of type ${ }_{A, A} V$.
2.A. 7 Examples Let A be a ring.
(1) The trivial group 0 is an A-module in an unique way. In fact the only scalar multiplication is $(a, 0) \mapsto 0$ for all $a \in A$. This A-module is called the zero module and is also denoted by 0 .
(2) Let G be an abelian group. For $x \in G$ and $m \in \mathbb{Z}$, we have $m x:=x+\cdots+x$ (m-times). Then the operation $\mathbb{Z} \times G \rightarrow G$ defines a \mathbb{Z}-module structure on G. Conversely, on every \mathbb{Z}-module V the scalar multiplication is given by $(m, x) \mapsto m x:=x+\cdots+x$ (m-times) in the abelian group $(V,+$). Therefore \mathbb{Z}-modules are precisely abelain groups.
(3) Let A be a ring. The left multiplication $\lambda_{a}: A \rightarrow A, x \mapsto a x$ by elements $a \in A$ defines an A-module structure on A (whereas the right multiplication $\rho_{a}: A \rightarrow A, x \mapsto x a$ defines a right A-module structure on A. Then with these operations A is a bimodiule ${ }_{A} A_{A}$).
(4) Let $R \subseteq A$ be a subring. The restriction of the multiplication $A \times A \rightarrow A$ in the ring A to the subring R, i. e., restriction to $R \times A$ (respectively, to $A \times R$) defines a left R-module (respectively, right R-module) structure on A. For example, the chain $\mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$ of fields define a natural \mathbb{R}-vector space structure on \mathbb{C} and natural \mathbb{Q}-vector space structures on \mathbb{R} and on \mathbb{C}. More generally, the restriction of the scalar multiplication $A \times V \rightarrow V$ of the A-module V to $R \times V$ defines an R-module structure on V. In future an A-module V will be considered as an k-module with this natural R-module structure, unless otherwise specified.
(5) (Direct products and Direct sums) Let $V_{i}, i \in I$, be a family of A-modules. On the abelian groups direct product $\prod_{I \in I} V_{i}$ and the direct sum $\oplus_{i \in I} V_{i}$ we define the scalar multiplication of an element $a \in A$ on the I-tuple $\left(x_{i}\right)_{i \in I}$ by $a\left(x_{i}\right)_{i \in I}:=\left(a x_{i}\right)_{i \in I}$ (componentwise scaler multiplication). These A-modules are called the direct product and the direct sum of the family $V_{i}, i \in I$. If all V_{i} are equal to the same A-module V, then the I-fold direct product of V is the set V^{I} of all maps from I into V. The common notation $V^{(I)}$ is used for the I-fold direct sum of V. If I is a finite set then $V^{I}=V^{(I)}$. Moreover, if $I=\{1, \ldots, n\}$, then we just denote $V^{I}=V^{(I)}$ by V^{n}. Note that $V^{\emptyset}=0$ is the zero module.

2.B Submodules

Let A be a ring and let V be an A-module. A subset $W \subseteq V$ is called an A-submodule of V (or simply a submodule of V) if W is a subgroup of the abelian group V and if the scalar multiplication $A \times V \rightarrow V$ of A on V restricts to a scalar multiplication $A \times W \rightarrow W$ on W, i. e., for all $a \in A$ and $x \in W$ we have $a x \in W$.
An A-submodule W of an A-module V is therefore closed under the multiplication of all scalars $a \in A$. The restriction of the A-module structure on V to W defines an A-module structure on W. In this sense every A-submodule itself is an A-module. In case of vector spaces over a division ring K, K-submodules are also called K-subvector spaces or just K-subspaces.
2.B.1 Examples Let A be a ring.
(1) In every A-module V, the zero module 0 and V itself are A-submodules of V; these are called trivial submodules of V.
(2) In an abelian group , the Z-modules are precisely the subgroups.
(3) In any ring A, the A-submodule of the left A-module A (respectively, the right A-module A) are precisely the left-deals (respectively, right-ideals) in A.
(4) Let $V_{i}, i \in I$ be a family of A-modules. Then the direct sum $\oplus_{i \in I} V_{i}$ is an A-submodule of the direct product $\prod_{i \in I} V_{i}$. In particular, the I-fold direct sum $V^{(I)}$ of V is an A-submodule of the I-fold direct product V^{I} of V. Moreover, if I is infinite then $V^{(I)}$ is a proper submodule of V^{I}.
2.B. 2 Criterion for submodule Let A be a ring and let V be an A-module. A subset $W \subseteq V$ is an A-submodule of V if and only if the following three conditions are satisfied: (1) $W \neq \emptyset$.
(2) For all $x \in W$ and all $y \in W$ we have $x+y \in W$. (3) For all $a \in A$ and all $x \in W$ we have $a x \in W$.

Proof:

We can combine the conditions (2) and (3) in the above criterion in the following condition : for all $a, b \in A$ and for all $x, y \in V, a x+b y \in W$.
2.B. 3 Example (Torsion modules) Let A be a commutative ring and let V be an A-module. An element $x \in V$ is called torsion if there exists a non-zero divisor $a \in A$ with $a x=0$. The zero element $0 \in V$ is a torsion element, since $1 \cdot 0=0$. If $x \in V$ is a torsion element and if $c \in A$ is arbitrary, then $c x$ is also torsion element (since $a x=0$ for some non-zero divisor in A, we also have $a(c x)=c(a x)=0$.). Further, if $y \in V$ is another torsion element, i. e., if $b y=0$ for some non-zero divisor in $b \in A$, then $a b$ is a non-zero divisor in A with $a b(x+y)=b a x+a b y=0$ and so $x+y$ is also a torsion element. Therefore by the above criterion the set of all torsion elements in $V \mathrm{t}(V)=\mathrm{t}_{A}(V)=\{x \in V \mid x$ is a torsion element $\}$ is an A-submodule of V. This submodule is called the torsion-submodule of V. An A-module V is called torsion-free if $\mathrm{t}(V)=0$. If every element of V is torsion, i.e., if $\mathfrak{t}(V)=V$ then V is called torsion-module.
(a) Direct sum of torsion-modules is again a torsion-module. A submodule of a torsion-module is a torsionmodule.
(b) Direct product of torsion-free modules is again a torsion-free module. A submodule of a torsion-free module is a torsion-free module.
(c) The A-module A is always torsion-free. In an abelian group (in any \mathbb{Z}-module) torsion-elements are precisely the set of elements of positive order. The \mathbb{Z}-module \mathbb{Q} is torsion-free. Every finite abelian group if a \mathbb{Z}-torsion module. For $n \in \mathbb{N}^{*}$, let Z_{n} denote a cyclic group of order n. Then the direct product $\prod_{n \in \mathbb{N}^{*}} Z_{n}$ of the \mathbb{Z}-torsion modules $\mathrm{Z}_{n}, \mid, n \in \mathbb{N}^{*}$, is not \mathbb{Z}-torsion module.
2.B. 4 Intersection of submodules Let A be a ring, V be an A-module and let $W_{i}, i \in I$, be a family of A-submodules of V. Then the intersection $\bigcap_{i \in I} W_{i}$ is also an A-submodule of V.
Proof: Follows immediately from2.B.2,
If $x_{i}, i \in I$, is a family of element in an A-module V, then by 2.B.4 there exists a smallest (with respect to the inclusion) submodule of V which contain all the elements $x_{i}, i \in I$, namely, the intersection of the family of all submodules which contain $x_{i}, i \in I$ and this family is non-empty, since V is one of them.
2.B.5 Definition Let A be a ring and let V be an A-module. For a family $x_{i}, i \in I$, of elements of V, the smallest A-submodule of V containing $x_{i}, i \in I$, is precisely the subset $\left\{\sum_{i \in I} a_{i} x_{i} \mid\right.$ $\left.\left(a_{i}\right)_{i \in I} \in A^{(I)}\right\}$ of V. Therefore this A-submodule is denoted by $\sum_{i \in I} A x_{i}$ and we say that it is the A-submodule of V generated by the family $x_{i}, i \in I$. If W is an A-submodule of V and if $W=\sum_{i \in I} A x_{i}$ for some family $x_{i}, i \in I$ in V, then we say that $x_{i}, i \in I$ is a generating system for W. If $X \subseteq V$, then A-submodule of V generated by X is denoted by $A X$.
For example, the zero A-submodule of V is generated by the $\emptyset \subseteq V$, but it is also generated by $\{0\} \subseteq V$. Every A-module has a generating system, for example the set of all of its elements. An A-submodule with generating system consisting of a single element x is called a cyclic A-submodule generated by x and is denoted by $A x$. Every element of $A x$ is of the form $a x$ with $a \in A$, but a need not be unique, i. e., $a x=b x$ for some $a, b \in A$, but $a \neq b$. - The cyclic \mathbb{Z}-modules are precisely the cyclic groups.
2.B. 6 Sum of submodules Let A be a ring, V be an A-module and let $W_{i} i \in I$ be a family of A-submodules of V. Then the A-submodule W of V generated by the union $\cup_{i \in I} W_{i}$ is precisely

$$
\left\{\sum_{i \in I} x_{i} \mid x_{i} \in W_{i} \text { for all } i \in I \text { and } x_{i}=0 \text { for almost all } i \in I\right\}
$$

Proof:

The A-submodule of V constructed in 2.B.6 is called the sum of submodules $W_{i}, i \in I$, and is denoted by $\sum_{i \in I} W_{i}$. For $I=\{1, \ldots, n\}$ it is also denoted by $W_{1}+\cdots+W_{n}$ or $\sum_{i=1}^{n} W_{i}$. It is

$$
W_{1}+\cdots+W_{n}=\left\{x_{1}+\cdots+x_{n} \mid x_{i} \in W_{i}, i=1, \ldots, n\right\}
$$

2.B.7 Definition An element $x \in V$ is called a linear combination of the family $x_{i} \in V$, $i \in I$ (with coefficients in A), if there is family $a_{i}, i \in I$, of elements in A, such that almost all a_{i} are zero, i. e., there exists an element $\left(a_{i}\right)_{i \in I} \in A^{(I)}$ such that $x=\sum_{i \in I} a_{i} x_{i}$; in this case the elements $a_{i}, i \in I$ are called the coefficients of the linear combination. In general these coefficients are not uniquely determined by the element x.
For calculation with linear combinations we note the two rules : two linear combinations can also be added by adding the coefficients and a linear combination can be multiplied by a scalar $a \in A$ by multiplying the coefficients by a, i. e, if $x_{i} \in V,\left(a_{i}\right)_{i \in I},\left(b_{i}\right)_{i \in I} \in A^{(I)}$ and $a \in A$, then :

$$
\sum_{i \in I} a_{i} x_{i}+\sum_{i \in I} b_{i} x_{i}=\sum_{i \in I}\left(a_{i}+b_{i}\right) x_{i} \quad \text { and } \quad a \sum_{i \in I} a_{i} x_{i}=\sum_{i \in I}\left(a a_{i}\right) x_{i} .
$$

With this definition : The A-submodule generated by the system $x_{i}, i \in I$ is precisely the set of all linear combinations of the family $x_{i}, i \in I$.
2.B. 8 Definition An A-module V is called finitely generated or a finite A-module if there is generating system for V consisting finitely many elements.
2.B. 9 Remark Note that a finite module V need not mean that V has only finitely many elements. For example, the Z-module \mathbb{Z} has infinitely many elements but it is a finite \mathbb{Z}-module, in fact a cyclic \mathbb{Z}-module (generated by the element 1). Note also the contrast: in group theory finite group mean group with finitely many elements. The abelian group \mathbb{Z} is not a finite group but it is a finite \mathbb{Z}-module.
2.B.10 Proposition Let A be a ring and let V be an A-module. If V is a finitely generated A-module, then every generating system of V contains a finite generating system.
Proof: Let $y_{1}, \ldots, y_{n} \in V$ be a given finite generating system for V, i. e., $V=A y_{1}+\cdots+A y_{n}$ and let x_{i}, $i \in I$ be a generating system for V. Then for each $j=1, \ldots, n, y_{j}=\sum_{i \in E(j)} a_{i j} x_{i}$ with $a_{i j} \in A$ and finite subsets $E(j) \subseteq I$. Then $E:=\cup_{j=1}^{n} E(j)$ is a finite subset of I and the submodule generated by $x_{i}, i \in E$ contain all the elements y_{1}, \ldots, y_{n} and hence $V=A y_{1}+\cdots+A y_{n} \subseteq \sum_{i \in E} A x_{i} \subseteq V$. Therefore $V=\sum_{i \in E} A x_{i}$, i. e., V is generated by the finite subfamily $x_{i}, i \in E$.
2.B.11 Definition Let A be a ring and let V be an A-module. A generating system X of an A-module V is called minimal generating system for V if it is minimal (with respect to the natural inclusion) in the set $\{Y \mid Y \subseteq$ is a generating system for $V\}$. - If V is finite A-module, then

$$
\mu_{A}(V):=\min \{|X| \mid X \subseteq V \text { is a generating system for } V\}
$$

is called the minimal number of generators for V.
By Proposition 2.B.10 every minimal generating system of a finite A-module is finite. More generally, a generating system $x_{i}, i \in I$ of an A-module V is called minimal if there is no proper subset $J \neq I$ of I such that $x_{j}, j \in J$, generate V.
For a minimal system of generators $x_{i}, i \in I$ of V, the index map $I \rightarrow V, i \mapsto x_{i}$, is injective. Therefore this definition is not essentially more general than the previous one. A minimal generating system never contains the zero element. If V is finitely generated, then by Proposition 2.B.10 every generating system contains a finite generating system and hence also contain a minimal generating system.
An arbitrary module need not have a minimal generating system. For example, the \mathbb{Z}-module \mathbb{Q} does not have minimal generating system, see Exercise 2.2.
2.B.12 Example A minimal generating system of a finite A-module V has at least $\mu_{A}(V)$ elements and need not have the cardinality $\mu_{A}(V)$. For example, $\{1\},\{2,3\},\{p, q \mid \operatorname{gcd}(p, q)=1\}$ are minimal generating systems for the \mathbb{Z}-module \mathbb{Z} and $\mu_{\mathbb{Z}}(\mathbb{Z})=1$. Moreover, for every natural number $m \in \mathbb{N}^{*}$, there is a minimal generating system for the \mathbb{Z}-module \mathbb{Z} with cardinality m, namely, x_{1}, \ldots, x_{m}, where $x_{i}:=\prod_{j=1, j \neq i}^{m} p_{j}$ and p_{1}, \ldots, p_{m} are distinct prime numbers.
2.B. 13 Theorem Let A be a ring, V be an A-module and let $Y \subseteq V$ be an infinite generating system for V. Then every generating system $x_{i}, i \in I$, of V contains a generating system $x_{j}, j \in J$, $J \subseteq I$ with $|J| \leq|Y|$.

Proof: For every $y \in Y$, there exists a finite subset $E(y)$ of I such that $y \in \sum_{i \in E(y)} A x_{i}$. Then $x_{j}, j \in$ $J:=\cup_{y \in Y} E(y)$ is a generating system for V, since $V=\sum_{y \in Y} A y \subseteq \sum_{j \in J} A x_{j} \subseteq V$. Note that since Y is infinite, for $I=Y$ and $E_{y}=E(y), y \in Y$, the assumptions in Corollary 2 below are satisfied and hence $|J|=\left|\cup_{y \in Y} E(y)\right| \leq|Y|$ by Corollary 2^{1}.
2.B.14 Corollary Let A be a ring and let V be an A-module If V has countable generating system, then every generating system of V contains a countable generating system.

Proof: If V is a finite A-module, then the assertion follows directly from Proposition 2.B. 10 and if V is not finite, then it follows from Theorem 2.B.13. Moreover, the cardinality argument in the proof of 2.B. 13 in this special case in simple: A countable union of countable sets is again countable.
2.B. 15 Let A be a ring, \mathfrak{a} be a left-ideal in A and let V be an A-module. The set of linear combinations of elements of V with coefficients from the ideal \mathfrak{a} form a submodule of V. This submodule is generated by $a x, a \in \mathfrak{a}, x \in V$ and is denoted by $\mathfrak{a} V$.

The following rules are easy to verify: For left-ideals $\mathfrak{a}, \mathfrak{b}$ in A and A-submodules W, U of V we have: (a) $(\mathfrak{a}+\mathfrak{b}) V=\mathfrak{a} V+\mathfrak{b} V . \quad$ (b) $\mathfrak{a}(\mathfrak{b} V)=(\mathfrak{a} \mathfrak{b}) V . \quad$ (c) $\mathfrak{a}(W+U)=\mathfrak{a} W+\mathfrak{a} U$.
2.B.16 Example For a left ideal \mathfrak{a} is a ring A and a natural number $n \in \mathbb{N}$ recursively define the powers of \mathfrak{a} by $: \mathfrak{a}^{0}:=\mathbb{A}, \mathfrak{a}^{n+1}:=\mathfrak{a} \mathfrak{a}^{n}$. Then we have a descending chain of left ideals in A :

$$
A=\mathfrak{a}^{0} \supseteq \mathfrak{a} \supseteq \mathfrak{a}^{2} \supseteq \cdots \supseteq \mathfrak{a}^{n} \supseteq \mathfrak{a}^{n+1} \supseteq \cdots
$$

— The elements of the power \mathfrak{a}^{n} of a left-ideal \mathfrak{a} are precisely the finite sums of products $a_{1} \cdots a_{n}$ with $a_{i} \in \mathfrak{a}, i=1, \ldots, n$. Further, $\mathfrak{a}^{m} \mathfrak{a}^{n}=\mathfrak{a}^{m+n}$ for all $m, n \in \mathbb{N}$.

A left-, right-, or two-sided ideal \mathfrak{a} is called nilpotent if there exists $m \in \mathbb{N}$ such that $\mathfrak{a}^{m}=0$. Clearly, if $\mathfrak{a}^{m}=0$, then $a_{1} \cdots a_{m}=0$ for all $a_{1}, \ldots, a_{m} \in \mathfrak{a}$. Moreover, we have the following very useful special case of Nakayama's lemma :
2.B. 17 Lemma Let A be a ring and let \mathfrak{a} be a nilpotent left-ideal in A. Let V be an A-module and let $W \subseteq V$ be an A-submodule of V. If $W+\mathfrak{a} V=V$, then $W=V$.

Proof: It is enough to prove that $W=W+\mathfrak{a}^{n} V$ for every $n \in \mathbb{N}$. We show this by induction on n. For $n=0$ the assertion is trivial. By induction hypothesis we have the equalities : $V=W+\mathfrak{a}^{n} V=W+\mathfrak{a}^{n}(W+\mathfrak{a} V)=$ $W+\mathfrak{a}^{n} W+\mathfrak{a}^{n}(\mathfrak{a} V)=W+\mathfrak{a}^{n+1} V$.

[^0]2.B.18 Maximal ideals Let A be a ring. The set of left-ideals in A is ordered by the natural inclusion \subseteq. Its biggest element if the unit ideal A. A maximal element in the set of left-ideal different from A is called a maximal left-ideal. Analogously one can define maximal right-ideals. In commutative ring one simply calls them maximal ideals. Therefore : A ring is a division ring if and only if its zero ideal is a maximal left-ideal.
2.B. 19 Example In the ring \mathbb{Z} every ideal is of the form $\mathbb{Z} a$ with a uniquely determined natural number $a \in \mathbb{N}$. For $a b \in \mathbb{N}$ the inclusion $\mathbb{Z} a \subseteq \mathbb{Z} b$ is equivalent with $a \in \mathbb{Z} b$ or with an existence of $c \in \mathbb{N}$ such that $a=c b$ and so with the divisibility condition " b divides a ". Therefore $\mathbb{Z} a$ is maximal ideal in \mathbb{Z} if and only if $a \neq 1$ and a has no divisors other than 1 and a. But this condition exactly characterize the prime numbers. Therefore it shows that: $\mathbb{Z} a$ for $a \in \mathbb{N}$ is a maximal ideal in the ring \mathbb{Z} if and only if a is a prime number. If $a \in \mathbb{N}, a \neq 1$, then a has a prime divisor.
In the zero ring there are no maximal ideals. On the contrary if $A \neq 0$, then it has enough maximal left- and right-ideals by Krull's theorem. Below we will prove more general result than this.
2.B.20 Maximal submodules Let V be an A-module. Then maximal elements (with respect to the natural inclusion) in the set $\mathscr{S}_{A}(V)$ of all A-submodules of V are called maximal A -submodules of V. Maximal A - submodules of the A-module A are precisely are maximal ideals in A. Let W be a maximal A-submodule of V and let $x \in V, x \notin W$. Then $W \neq W+A x$ and by the maximality of W, we have the equality $W+A x=V$. Therefore W is a cofinite A-submodule in the sense of the following definition.
2.B.21 Definition An A-submodule W of V is called cofinite if there exists finitely many elements $x_{1}, \ldots, x_{n} \in V$ such that $V=W+A x_{1}+\cdots+A x_{n}$. Equivalently, the quotient A-module V / W is finitely generated.
If W is a cofinite A-submodule of V, then every A-submodule W^{\prime} with $W \subseteq W^{\prime} \subseteq V$ is also cofinite. Every A-submodule of a finite A-module is cofinite.
Below we prove the converse of the above remark that in any A-module V cofinite A-submodules different from V exists if V has maximal submodules.
2.B.22 Theorem Let W be a cofinite A-submodule of an A-module V with $W \neq V$. Then there exists a maximal A-submodule of V which contain W. In particular, in a finite non-zero A-module V there are maximal A-submodules.

Proof: Let $V=W+A x_{1}+\cdots+A x_{n}$. Let r be the number such that $W_{r}:=W+A x_{1}+\cdots+A x_{r-1} \neq V$, but $W_{r}+A x_{r}=V$. Then it is enough to prove the theorem for W_{r} instead of W. We may therefore assume that $W \neq V$ and $W+A x=V$ for some $x \in V$. Let $\mathfrak{M}:=\left\{W^{\prime} \mid W^{\prime}\right.$ is a submodule of V with $\left.W \subseteq W^{\prime} \subseteq V\right\}$. Then $W \in \mathfrak{M}$ and \mathfrak{m} is a non-empty set ordered by the natural inclusion. We note that \mathfrak{M} is inductively ordered. For, if $\mathfrak{C} \subseteq \mathfrak{M}$ is a non-empty chain in \mathfrak{M}, then $U^{\prime}:=\cup_{U \in \mathfrak{C} U}$ is an upper bound of \mathfrak{C} in \mathfrak{M} : Clearly U^{\prime} is a submodule of $V, W \subseteq U^{\prime}$, since $\mathfrak{C} \neq \emptyset$. Further, since $x \neq U$ for all $U \in \mathfrak{C}$, we have $x \neq U^{\prime}$ and so $U^{\prime} \neq V$. Now by Zorn's Lemma there exists a maximal element in \mathfrak{M} and this is a maximal submodule of V which contain W.
2.B.23 Corollary In a finite module $\mid, V \neq 0$, there are maximal submodules.

By specializing the above corollary to the finite module $V=A=A \cdot 1$, we note the following:
2.B.24 Corollary (Krull's Theorem) Let A be a ring and let \mathfrak{a} be an ideal in A with $\mathfrak{a} \neq A$. Then there exists a maximal ideal \mathfrak{m} in A with $\mathfrak{a} \subseteq \mathfrak{m} \subsetneq A$. In particular, in every non-zero ring, there are maximal left-ideals.

[^0]: ${ }^{1}$ The Corollary 2 is an an easy consequence of the following theorem from set theory :
 Theorem For any infinite set Y, we have $|Y \times Y|=|Y|$. (For the proof of this one need to use Zorn's Lemma.) From this we deduce:
 Corollary 1 For any two non-empty sets I, Y with one of them infinite, we have $|I \times Y|=\sup \{|I|,|Y|\}$. (We may assume that $|I| \leq|Y|$. Then Y is infinite and $|Y| \leq|I \times Y| \leq|Y \times Y|=|Y|$ by the above theorem and hence $|I \times Y|=|Y|$ by Schröder-Berstein theorem.)
 Corollary 2 Let Y be an infinite set and let E_{i}, $i \in I$, be a family of sets with $|I| \leq|Y|$ and $\left|E_{i}\right| \leq|Y|$ for all $i \in I$. Then $\left|\cup_{i \in I} E_{i}\right| \leq|Y|$. (We may assume that $E_{i} \neq \emptyset$ for all $i \in I$. Since $\left|E_{i}\right| \leq|Y|$, there is a surjective map $g_{i}: Y \rightarrow E_{i}$ for each $i \in I$. Then the map $I \times Y \rightarrow \cup_{i \in I} E_{i}$ with $(i, y) \mapsto g_{i}(y)$ is also surjective and hence $\left|\cup_{i \in I} E_{i}\right| \leq|I \times Y|=\sup \{|I|,|Y|\}=|Y|$ by Corollary 1.)

