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§ 2 Modules and Submodules

2.A Modules

Let A be a ring. Operations of A on abelian groups V which are compatible with the binary
operations of A and V play an important roll. We begin with the following general definition :

2.A.1 Definition An operation of an (arbitrary) set M on an (arbitrary) set X is a map
MxX—X.

An operation A XV — V of the ring A on an abelian group (V,+) is written multiplicatively, i. e.,
in the form (a,x) — a-x = ax,a € A,x € V, since the elements a and x are of different origin there
is no confusion of this notation with the multiplication in A; similarly, the addition in A and in
V both are denoted by +. Further, the zero element of A as well as in V is denoted by the same
symbol 0. Furthermore, as in ring theory we adopt the bracket-convention that the operation
of A on V has the stronger binding that the addition in V. For a,b € A and x,y € V for example
we write ax+ by for (ax)+ (by).

2.A.2 Definitions An abelian group (V,+) together with a (multiplicatively written) operation
of A on V is called an A-module if the following conditions holds for all a,b € A and for all
x,yeV:

() 1g-x=x.  (2) a(bx)=(ab)x. (3) a(x+y)=ax+by. (@4 (a+b)x=ax+bx.

The operation of A on V is called the scalar multiplication of A on V and we say that it
defines an A-module structure on the abelian group (V,+). In any case without any doubt,
to address the A-module structure on V' it is common to use simply the term “of A-module V' or
even simply “of module V. Instead of A-module one can also write module over A. The ring
A is called the scalar ring of V; the elements of A are called scalars. When modules over a
fixed ring A are considered, then the ring A is called the ground ring or base ring.

Modules over a division ring K are called K-vector spaces. The elements of a K-vector space
are called vectors. A vector space over the field R of real numbers (respectively, the field C of
complex numbers) is called a real (respectively, complex) vector space.
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From the special distributive laws (3) and (4) we can deduce the following rules :

2.A.3 Rules of Scalar multiplication Ler V be an A-module. For a € A and x € V, we have:
(1) a-0=0and 0-x=0 forallac A andall xeV.

(2) (—a)x=a(—x)=—ax forallac A andall x€V.

3) (—a)(—x)=—((—a)x) = —(—ax) =ax forall a€ A and all x € V.

(4) (General distributive law): For arbitrary families a; € A;i€l, x;€V,je€J, of
elements such that a; =0 for al most all i € I (resp. x; =0 for al most all j € J), we have :

5)3)- 5.
icl jel i,j)Elx]

Proof: (1) Immediate from ¢-0=a(0+0)=a-0+a-0 and 0-x=(04+0)-x=0-x+0-x. (2) is clear
from the equations 0 =0-x = (a+ (—a))x =ax+ (—a)x and 0 =a-0 = a(x+ (—x)) = ax+ a(—x). For the
proof of (4) use (1), (2) and induction. L]

2.A.4 Homothecies Let V be an A-module. Then for each a € A, the map ¥, : V — V defined
by x — ax is called the homothecy or stretching by a in V. Therefore we have the map

% :A—Maps(V,V), a—0,:V V.

The condition (1) of the definition of an A-module structure says that ¥; = idy 1i. e., the neutral
element of the multiplicative monoid of A operates as the identity on V. (Some authors drop this
postulation in the definition of an A-module and say that an A-module is unitary if it holds. However,
we will consider only unitary modules.) The condition (3) of the definition of A-module mean that
¥, : V — V is an endomorphism of the abelian group (V,+), i. e., ¥, € End (V,+). Further, by the
conditions (4), (2) and (1) it follows that the map

%:A—End(V,+), a—9,:V =V

is a ring homomorphism, i. €., ¥, yp = Oy + Op, Uyp = V509, and ¥y =1idy.

2.A.5 Right Modules Let A be aring. An A-module in the sense of above Definition is precisely a
left A-module. If the operation of A on V has the properties (1), (3) and (4) with

(2") a(bx) = (ba)x forall ab € A and all x €V,

then V iscalleda right A-module. In this case it is convenient to write the operation of A on V on the
right side. Then (2') takes the form : (xb)a = x(ba). Left and right modules are interchangeable concepts. If
A°P denote the opposite ring of A, then the right A-modules (respectively left A-modules) are identical with
the left A°P-modules (respectively, right A°’-modules). Therefore one can restrict to study only one kind of
modules. Over a commutative ring the difference between left and right modules is anyway pointless.

2.A.6 Bimodules Sometimes one need to consider many module structures on the same abelian group
(V,+). If these module structures are compatible with each other then one use the term multi-module,
in particular, bimodule when one considers two compatible module structures.

Suppose that the abelian group (V,+) has a left A-module structure and also a left B-module structure. Then
V iscalled a (A,B)-bimodule if a(bx) =b(ax) forall a € A, b € B, x €V and in this case we use the
notation V =4 g V.

Suppose that the abelian group (V,+) has a left A-module structure and also a right B-module structure (see
a) above). Then V is called a (A,B)-bimodule if a(xb) = (ax)b forall a € A, b € B, x € V and in this
case we use the notation V =4 Vp.

Analogously, one can define bimodules of the type V4 . — A trivial example of an bimodule structure

is supplied on an ordinary module V over a commutative ring A. With a same operation on V itis a
(A,A)-bimodule of type 4 4V.
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2.A.7 Examples Let A be aring.

(1) The trivial group O is an A-module in an unique way. In fact the only scalar multiplication is (a,0) — 0
for all a € A. This A-module is called the zero module and is also denoted by 0.

(2) Let G be an abelian group. For x € G and m € Z, we have mx :=x+ ---+x (m-times). Then the
operation Z x G — G defines a Z-module structure on G. Conversely, on every Z-module V' the scalar
multiplication is given by (m,x) — mx := x4 ---+x (m-times) in the abelian group (V,+). Therefore
Z.-modules are precisely abelain groups.

(3) Let A be aring. The left multiplication A, : A — A, x — ax by elements a € A defines an A-module
structure on A (whereas the right multiplication p, : A — A, x — xa defines a right A-module structure on A.
Then with these operations A is a bimodiule 444).

(4) Let R C A be a subring. The restriction of the multiplication A X A — A in the ring A to the subring
R, 1. e., restriction to R X A (respectively, to A X R) defines a left R-module (respectively, right R-module)
structure on A. For example, the chain Q C R C C of fields define a natural IR-vector space structure
on C and natural Q-vector space structures on R and on C. More generally, the restriction of the scalar
multiplication A XV — V of the A-module V to R x V defines an R-module structure on V. In future
an A-module V will be considered as an k-module with this natural R-module structure, unless otherwise
specified.

(5) (Direct products and Direct sums) Let V;,i € I, be a family of A-modules. On the abelian
groups direct product [];c;V; and the direct sum ®;c;V; we define the scalar multiplication of an element
a € A on the I-tuple (x;)ic;r by a(x;)ier := (ax;)ie; (componentwise scaler multiplication). These A-modules
are called the direct product and the direct sum of the family V;,i € I. If all V; are equal to the
same A-module V, then the I-fold direct product of V is the set V! of all maps from I into V.
The common notation V! is used for the I-fold direct sum of V.If I is a finite set then V! = V),
Moreover, if I = {1,...,n}, then we just denote V! = V) by V. Note that V% = 0 is the zero module.

2.B Submodules

Let A be aring and let V be an A-module. A subset W CV is called an A-submodule of V
(or simply a submodule of V) if W is a subgroup of the abelian group V and if the scalar
multiplication A XV — V of A on V restricts to a scalar multiplication A X W — W on W, 1i.e.,
forall a € A and x € W we have ax c¢ W.

An A-submodule W of an A-module V is therefore closed under the multiplication of all scalars
a € A. The restriction of the A-module structure on V to W defines an A-module structure on W.
In this sense every A-submodule itself is an A-module. In case of vector spaces over a division ring
K, K-submodules are also called K-subvector spaces or just K-subspaces.

2.B.1 Examples Let A be aring.

(1) Inevery A-module V, the zero module 0 and V itself are A-submodules of V; these are called trivial
submodules of V.

(2) In an abelian group , the Z-modules are precisely the subgroups.

(3) Inanyring A, the A-submodule of the left A-module A (respectively, the right A-module A) are precisely
the left-deals (respectively, right-ideals) in A.
(4) Let V;,i € I be a family of A-modules. Then the direct sum @;c;V; is an A-submodule of the direct

product [];c; Vi. In particular, the /-fold direct sum V) of V is an A-submodule of the I-fold direct product
V! of V. Moreover, if [ is infinite then V! is a proper submodule of V/.

2.B.2 Criterion for submodule Let A be a ring and let V be an A-module. A subset W CV is
an A-submodule of V if and only if the following three conditions are satisfied: (1) W # 0.
(2) Forall xe W andall y e W we have x+y e W. (3) Forall ac A and all x € W we have
axeW.
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Proof: OJ

We can combine the conditions (2) and (3) in the above criterion in the following condition : for all
a,b € A and for all x,y €V, ax+by € W.

2.B.3 Example (Torsion modules) Let A be acommutative ring and let V be an A-module. An
element x € V is called torsion if there exists a non-zero divisor a € A with ax = 0.The zero element
0 € V is atorsion element, since 1-0=0.If x €V is a torsion element and if ¢ € A is arbitrary, then cx
is also torsion element (since ax = 0 for some non-zero divisor in A, we also have a(cx) = c(ax) = 0.).
Further, if y € V is another torsion element, i. e., if by = 0 for some non-zero divisor in b € A, then ab is
a non-zero divisor in A with ab(x+y) = bax+aby =0 and so x+y is also a torsion element. Therefore
by the above criterion the set of all torsion elements in V t(V) =t4(V) = {x €V | x is a torsion element }
is an A-submodule of V. This submodule is called the torsion-submodule of V. An A-module V
is called torsion-free if t(V) = 0. If every element of V is torsion, i.e., if t(V) =V then V is called
torsion-module.

(a) Direct sum of torsion-modules is again a torsion-module. A submodule of a torsion-module is a torsion-
module.

(b) Direct product of torsion-free modules is again a torsion-free module. A submodule of a torsion-free
module is a torsion-free module.

(c) The A-module A is always torsion-free. In an abelian group (in any Z-module) torsion-elements are
precisely the set of elements of positive order. The Z-module @ is torsion-free. Every finite abelian group if
a Z-torsion module. For n € IN*| let Z,, denote a cyclic group of order n. Then the direct product [],cn+Zn
of the Z-torsion modules Z,, |,n € IN*, is not Z-torsion module.

2.B.4 Intersection of submodules Let A be a ring, V be an A-module and let W;,i € I, be a
Sfamily of A-submodules of V. Then the intersection (\;c; W; is also an A-submodule of V.

Proof: Follows immediately from[2.B.2] O
If x;, i €1, is a family of element in an A-module V, then by [2.B.4]there exists a smallest (with
respect to the inclusion) submodule of V which contain all the elements x;, i € I, namely, the
intersection of the family of all submodules which contain x;, i € I and this family is non-empty,
since V is one of them.

2.B.5 Definition Let A be aring and let V be an A-module. For a family x;, i € I, of elements
of V, the smallest A-submodule of V containing x;, i € I, is precisely the subset {} ;c;a;x; |
(ai)ier € AD } of V. Therefore this A-submodule is denoted by Y ;c;Ax; and we say that it is the
A-submodule of V generated by the family x;, i€l If W is an A-submodule of V
and if W =Y ;;Ax; for some family x;, i € [ in V, then we say that x;, i €/isa generating
system for W. If X C V, then A-submodule of V generated by X is denoted by A X.

For example, the zero A-submodule of V is generated by the @ C V, but it is also generated by {0} C V.
Every A-module has a generating system, for example the set of all of its elements. An A-submodule with
generating system consisting of a single element x is called a cyclic A-submodule generated by x and is
denoted by Ax. Every element of Ax is of the form ax with a € A, but a need not be unique, i. e., ax = bx
for some a,b € A, but a # b. — The cyclic Z-modules are precisely the cyclic groups.

2.B.6 Sum of submodules Let A be a ring, V be an A-module and let W; i € I be a family of
A-submodules of V. Then the A-submodule W of V generated by the union \J;c;W; is precisely
{in |xi €W; forall i€l and x; =0 foralmostall i€}
icl
Proof: -
The A-submodule of V constructed in[2.B.6|is called the sum of submodules W, i€,
and is denoted by Y. ;c;W;. For I = {1,...,n} itis also denoted by W; +---+W, or ¥, W,. Itis
Wi+ +W,={xi++x, | x;eWs,i=1,...,n}
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2.B.7 Definition Anelement x €V iscalleda linear combination of the family x; €V,
iel (with coefficients in A), if there is family a;, i € I, of elements in A, such that almost
all a; are zero, i. e., there exists an element (a;);ec; € AW guch that x = Y ie7 aix;; in this case the
elements a;, i € I are called the coefficients of the linear combination. In general
these coefficients are not uniquely determined by the element x.

For calculation with linear combinations we note the two rules : two linear combinations can also
be added by adding the coefficients and a linear combination can be multiplied by a scalar a € A by
multiplying the coefficients by a, i. e, if x; € V, (a;)icr, (bi)icr € A" and a € A, then :
Za,-xi—l—Zbixi:Z(ai—i—bi)xi and aZaix,-:Z(aa,-)x,-.
icl icl icl icl icl
With this definition : The A-submodule generated by the system x;, i € I is precisely the set of all
linear combinations of the family x;, i € I.

2.B.8 Definition An A-module V iscalled finitely generated ora finite A-module if
there is generating system for V' consisting finitely many elements.

2.B.9 Remark Note that a finite module V need not mean that V has only finitely many elements. For
example, the Z-module Z has infinitely many elements but it is a finite Z-module, in fact a cyclic Z-module
(generated by the element 1). Note also the contrast: in group theory finite group mean group with finitely
many elements. The abelian group Z is not a finite group but it is a finite Z-module.

2.B.10 Proposition Let A be a ring and let V. be an A-module. If V is a finitely generated
A-module, then every generating system of V contains a finite generating system.

Proof: Let yi,...,y, € V be a given finite generating system for V, i.e., V = Ay, +--- 4+ Ay, and let x;,
i € I be a generating system for V. Then foreach j=1,...,n, y; =Y cp(; aijx; with a;; € A and finite
subsets E(j) C 1. Then E :=U}_,E(j) is a finite subset of / and the submodule generated by x;, i € E
contain all the elements y;,...,y, and hence V =Ay; +---+Ay, C Y ;cpAx; C V. Therefore V =Y ;g Ax;,
i. e., V is generated by the finite subfamily x;, i € E. O

2.B.11 Definition Let A be a ring and let V be an A-module. A generating system X of an
A-module V is called minimal generating system for V if it is minimal (with respect to
the natural inclusion) in the set {Y | Y C is a generating system for V'}. —If V is finite A-module,
then

ua(V) :=min{|X| | X CV is a generating system for V'}
is called the minimal number of generators for V.

By Proposition every minimal generating system of a finite A-module is finite. More
generally, a generating system x;, i € I of an A-module V is called minimal if there is no proper
subset J # I of I such that x;, j € J, generate V.

For a minimal system of generators x;, i € [ of V, the index map / — V', i — x;, is injective.
Therefore this definition is not essentially more general than the previous one. A minimal generating
system never contains the zero element. If V' is finitely generated, then by Proposition every
generating system contains a finite generating system and hence also contain a minimal generating
system.

An arbitrary module need not have a minimal generating system. For example, the Z-module ()
does not have minimal generating system, see Exercise 2.2.

2.B.12 Example A minimal generating system of a finite A-module V has at least us(V) elements and
need not have the cardinality (V). For example, {1},{2,3},{p,q | gcd(p,q) = 1} are minimal generating
systems for the Z-module Z and uz(Z) = 1. Moreover, for every natural number m € IN*, there is a minimal
generating system for the Z-module Z with cardinality m, namely, xi,...,x,, where x; := H;": 1, jipj and
P1,---,Pm are distinct prime numbers.
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2.B.13 Theorem Let A be aring, V be an A-module and let Y C 'V be an infinite generating
system for V. Then every generating system x;, i € I, of V contains a generating system x;, j € J,
J C I with [J| <Y

Proof: For every y € Y, there exists a finite subset E(y) of I such that y € ¥cg(,)Ax;. Then x;, j €
J := UyeyE(y) is a generating system for V, since V =Y, .y Ay C ¥ ;c;Ax; C V. Note that since Y is
infinite, for / =Y and E, = FE (y), y € Y, the assumptions in Corollary 2 below are satisfied and hence
7| = |Uyey E(y)| < Y| by Corollary 2[T] O

2.B.14 Corollary Let A be a ring and let V be an A-module If V has countable generating system,
then every generating system of V contains a countable generating system.

Proof: If V is a finite A-module, then the assertion follows directly from Proposition [2.B.10 and
if V is not finite, then it follows from Theorem Moreover, the cardinality argument in
the proof of in this special case in simple: A countable union of countable sets is again
countable. 0

2.B.15 Let A be aring, a be a left-ideal in A and let V be an A-module. The set of linear
combinations of elements of V with coefficients from the ideal a form a submodule of V. This
submodule is generated by ax, a € a,x € V and is denoted by aV.

The following rules are easy to verify : For left-ideals a,b in A and A-submodules W,U of V we
have: (a) (a+b)V=aV+bV. (b) a(bV)=(ab)V. (c) a(W+U)=aW +al.

2.B.16 Example For a left ideal a is aring A and a natural number n € IN recursively define the powers
of a by: a’:= A, a""! := aa”. Then we have a descending chain of left ideals in A:

A=a"DaDd?’D--Da"Da" ! D,

— The elements of the power a” of a left-ideal a are precisely the finite sums of products aj - --a, with
a;€a,i=1,...,n. Further, a”a" = o™ for all m,n € IN.

A left-, right-, or two-sided ideal a is called nilpotent if there exists m € IN such that a” = 0.
Clearly, if o =0, then a;---a,, =0 for all ay,...,a, € a. Moreover, we have the following very
useful special case of Nakayama’s lemma :

2.B.17 Lemma Let A be a ring and let a be a nilpotent left-ideal in A. Let V be an A-module
and let W CV be an A-submodule of V. If W +aV =V, then W =V.

Proof: Itis enough to prove that W =W + a"V for every n € IN. We show this by induction on n. For n =0
the assertion is trivial. By induction hypothesis we have the equalities: V=W +a"V =W +a"(W +aV) =
W4 a'"W +a*(aV) =W + a1V, O

! The Corollary 2 is an an easy consequence of the following theorem from set theory :

Theorem For any infinite set Y , we have |Y x Y| = |Y|. (For the proof of this one need to use Zorn’s Lemma.) From
this we deduce :

Corollary 1 For any two non-empty sets 1,Y with one of them infinite, we have |I x Y| =sup{|I|,|Y|}. (We may
assume that |I| <|Y|. Then Y isinfinite and |Y| < |I x Y| <|Y x Y| = |V| by the above theorem and hence |I X Y| =|Y]|
by Schréder-Berstein theorem.)

Corollary 2 Let Y be an infinite set and let E;, i € I, be a family of sets with |I| < |Y| and |E;| < |Y| for all
i€l Then |UiE;| <|Y|. (We may assume that E; # 0 for all i € I. Since |E;| < |Y|, there is a surjective
map g;: Y — E; for each i € I. Then the map I XY — U,g/E; with (i,y) — g;(y) is also surjective and hence
|Uier Ei] < |I x Y| =sup{|],|Y|} = |Y| by Corollary 1.)
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2.B.18 Maximal ideals Let A be aring. The set of left-ideals in A is ordered by the natural
inclusion C. Its biggest element if the unit ideal A. A maximal element in the set of left-ideal
different from A is called a maximal left-ideal. Analogously one can define maximal
right-ideals. In commutative ring one simply calls them maximal ideals. Therefore : A
ring is a division ring if and only if its zero ideal is a maximal left-ideal.

2.B.19 Example In the ring Z every ideal is of the form Za with a uniquely determined natural number
a € IN. For ab € N the inclusion Za C Zb is equivalent with a € Zb or with an existence of ¢ € IN such
that a = cb and so with the divisibility condition “b divides a”. Therefore Za is maximal ideal in Z if and
only if @ # 1 and a has no divisors other than 1 and a. But this condition exactly characterize the prime
numbers. Therefore it shows that : Za for a € IN is a maximal ideal in the ring Z. if and only if a is a prime
number. If a € N,a # 1, then a has a prime divisor.

In the zero ring there are no maximal ideals. On the contrary if A # 0, then it has enough maximal
left- and right-ideals by Krull’s theorem. Below we will prove more general result than this.

2.B.20 Maximal submodules Let V be an A-module. Then maximal elements (with respect
to the natural inclusion) in the set .4 (V) of all A—submodules of V are called maximal A
-submodules of V. Maximal A- submodules of the A-module A are precisely are maximal ideals
in A. Let W be a maximal A-submodule of V and let x € V,x ¢ W. Then W # W + Ax and by the
maximality of W, we have the equality W 4+ Ax = V. Therefore W is a cofinite A-submodule in the
sense of the following definition.

2.B.21 Definition An A- submodule W of V is called cofinite if there exists finitely many
elements xi,...,x, €V such that V. =W +Ax| + - - - + Ax,,. Equivalently, the quotient A-module
V /W is finitely generated.

If W is a cofinite A-submodule of V, then every A-submodule W' with W C W/ C V is also
cofinite. Every A-submodule of a finite A-module is cofinite.

Below we prove the converse of the above remark that in any A-module V' cofinite A-submodules
different from V exists if V. has maximal submodules.

2.B.22 Theorem Let W be a cofinite A-submodule of an A-module V with W # V. Then there
exists a maximal A-submodule of V which contain W. In particular, in a finite non-zero A-module
V there are maximal A-submodules.

Proof: Let V=W +Ax| +---+Ax,. Let r be the number such that W, :=W +Ax| +---+Ax,_| #V, but
W, +Ax, = V. Then it is enough to prove the theorem for W, instead of W. We may therefore assume that
W #V and W +Ax =V for some x € V. Let M :={W’' | W' is a submodule of V with W C W' CV}.
Then W € 9t and m is a non-empty set ordered by the natural inclusion. We note that 91 is inductively
ordered. For, if € C 901 is a non-empty chain in 90, then U’ := Uy eU is an upper bound of € in 9i: Clearly
U’ is a submodule of V, W C U’, since € # 0. Further, since x # U for all U € €, we have x # U’ and so
U’ # V. Now by Zorn’s Lemma there exists a maximal element in 90t and this is a maximal submodule of V
which contain W. O

2.B.23 Corollary In a finite module |,V # 0, there are maximal submodules.
By specializing the above corollary to the finite module V =A = A -1, we note the following:

2.B.24 Corollary (Krull’s Theorem) Let A be a ring and let a be an ideal in A with a # A.
Then there exists a maximal ideal m in A with a Cm C A. In particular, in every non-zero ring,
there are maximal left-ideals.
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