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§ 2 Modules and Submodules

2.A Modules
Let A be a ring. Operations of A on abelian groups V which are compatible with the binary
operations of A and V play an important roll. We begin with the following general definition :

2.A.1 Definition An o p e r a t i o n of an (arbitrary) set M on an (arbitrary) set X is a map
M×X → X .
An operation A×V →V of the ring A on an abelian group (V,+) is written multiplicatively, i. e.,
in the form (a,x) 7→ a ·x = ax,a ∈ A,x ∈V, since the elements a and x are of different origin there
is no confusion of this notation with the multiplication in A ; similarly, the addition in A and in
V both are denoted by +. Further, the zero element of A as well as in V is denoted by the same
symbol 0. Furthermore, as in ring theory we adopt the b r a c k e t - c o n v e n t i o n that the operation
of A on V has the stronger binding that the addition in V. For a,b ∈ A and x,y ∈V for example
we write ax+by for (ax)+(by).

2.A.2 Definitions An abelian group (V,+) together with a (multiplicatively written) operation
of A on V is called an A- m o d u l e if the following conditions holds for all a,b ∈ A and for all
x,y ∈V :
(1) 1A · x = x. (2) a(bx) = (ab)x. (3) a(x+ y) = ax+by. (4) (a+b)x = ax+bx.

The operation of A on V is called the s c a l a r m u l t i p l i c a t i o n of A on V and we say that it
defines an A- m o d u l e s t r u c t u r e on the abelian group (V,+). In any case without any doubt,
to address the A-module structure on V it is common to use simply the term “of A-module V ” or
even simply “of module V ”. Instead of A-module one can also write m o d u l e o v e r A. The ring
A is called the s c a l a r r i n g of V ; the elements of A are called s c a l a r s . When modules over a
fixed ring A are considered, then the ring A is called the g r o u n d r i n g or b a s e r i n g .
Modules over a division ring K are called K- v e c t o r s p a c e s . The elements of a K-vector space
are called v e c t o r s . A vector space over the field R of real numbers (respectively, the field C of
complex numbers) is called a r e a l (respectively, c o m p l e x ) v e c t o r s p a c e .
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L.2/2 MA 312 Commutative Algebra / January-April 2015 § 2 Modules and Submodules

From the special distributive laws (3) and (4) we can deduce the following rules :

2.A.3 Rules of Scalar multiplication Let V be an A-module. For a ∈ A and x ∈V , we have:
(1) a ·0 = 0 and 0 · x = 0 for all a ∈ A and all x ∈V .
(2) (−a)x = a(−x) =−ax for all a ∈ A and all x ∈V .
(3) (−a)(−x) =−((−a)x) =−(−ax) = ax for all a ∈ A and all x ∈V .
(4) ( G e n e r a l d i s t r i b u t i v e l a w ) : For arbitrary families ai ∈ A, i ∈ I, x j ∈ V, j ∈ J, of
elements such that ai = 0 for al most all i ∈ I (resp. x j = 0 for al most all j ∈ J ), we have :(

∑
i∈I

ai

)(
∑
j∈J

x j

)
= ∑

i, j)∈I×J
aix j

Proof: (1) Immediate from a · 0 = a(0+ 0) = a · 0+ a · 0 and 0 · x = (0+ 0) · x = 0 · x+ 0 · x. (2) is clear
from the equations 0 = 0 ·x = (a+(−a))x = ax+(−a)x and 0 = a ·0 = a(x+(−x)) = ax+a(−x). For the
proof of (4) use (1), (2) and induction.

2.A.4 Homothecies Let V be an A-module. Then for each a ∈ A, the map ϑa : V →V defined
by x 7→ ax is called the h o m o t h e c y or s t r e t c h i n g by a in V . Therefore we have the map

ϑ : A→Maps(V,V ), a 7→ ϑa : V →V .

The condition (1) of the definition of an A-module structure says that ϑ1 = idV i. e., the neutral
element of the multiplicative monoid of A operates as the identity on V . (Some authors drop this
postulation in the definition of an A-module and say that an A-module is u n i t a r y if it holds. However,
we will consider only unitary modules.) The condition (3) of the definition of A-module mean that
ϑa : V →V is an endomorphism of the abelian group (V,+), i. e., ϑa ∈ End(V,+). Further, by the
conditions (4), (2) and (1) it follows that the map

ϑ : A→ End(V,+), a 7→ ϑa : V →V

is a ring homomorphism, i. e., ϑa+b = ϑa +ϑb, ϑab = ϑa ◦ϑb and ϑ1 = idV .

2.A.5 Right Modules Let A be a ring. An A-module in the sense of above Definition 2.A.2 is precisely a
l e f t A- m o d u l e . If the operation of A on V has the properties (1), (3) and (4) with
(2′) a(bx) = (ba)x for all ab ∈ A and all x ∈V ,
then V is called a r i g h t A- m o d u l e . In this case it is convenient to write the operation of A on V on the
right side. Then (2′) takes the form : (xb)a = x(ba). Left and right modules are interchangeable concepts. If
Aop denote the opposite ring of A, then the right A-modules (respectively left A-modules) are identical with
the left Aop-modules (respectively, right Aop-modules). Therefore one can restrict to study only one kind of
modules. Over a commutative ring the difference between left and right modules is anyway pointless.

2.A.6 Bimodules Sometimes one need to consider many module structures on the same abelian group
(V,+). If these module structures are compatible with each other then one use the term m u l t i - m o d u l e ,
in particular, b i m o d u l e when one considers two compatible module structures.
Suppose that the abelian group (V,+) has a left A-module structure and also a left B-module structure. Then
V is called a (A,B)- b i m o d u l e if a(bx) = b(ax) for all a ∈ A, b ∈ B, x ∈V and in this case we use the
notation V =A,BV .
Suppose that the abelian group (V,+) has a left A-module structure and also a right B-module structure (see
a) above). Then V is called a (A,B)- b i m o d u l e if a(xb) = (ax)b for all a ∈ A, b ∈ B, x ∈V and in this
case we use the notation V =AVB.
Analogously, one can define bimodules of the t y p e VA,B. — A trivial example of an bimodule structure
is supplied on an ordinary module V over a commutative ring A. With a same operation on V it is a
(A,A)-bimodule of type A,AV .
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2.A.7 Examples Let A be a ring.
(1) The trivial group 0 is an A-module in an unique way. In fact the only scalar multiplication is (a,0) 7→ 0
for all a ∈ A. This A-module is called the z e r o m o d u l e and is also denoted by 0.
(2) Let G be an abelian group. For x ∈ G and m ∈ Z, we have mx := x+ · · ·+ x (m-times). Then the
operation Z×G→ G defines a Z-module structure on G. Conversely, on every Z-module V the scalar
multiplication is given by (m,x) 7→ mx := x+ · · ·+ x (m-times) in the abelian group (V,+). Therefore
Z-modules are precisely abelain groups.
(3) Let A be a ring. The left multiplication λa : A→ A, x 7→ ax by elements a ∈ A defines an A-module
structure on A (whereas the right multiplication ρa : A→ A, x 7→ xa defines a right A-module structure on A.
Then with these operations A is a bimodiule AAA).
(4) Let R ⊆ A be a subring. The restriction of the multiplication A×A→ A in the ring A to the subring
R , i. e., restriction to R×A (respectively, to A×R ) defines a left R-module (respectively, right R-module)
structure on A. For example, the chain Q ⊆ R ⊆ C of fields define a natural R-vector space structure
on C and natural Q-vector space structures on R and on C. More generally, the restriction of the scalar
multiplication A×V → V of the A-module V to R×V defines an R-module structure on V . In future
an A-module V will be considered as an k-module with this natural R-module structure, unless otherwise
specified.
(5) ( D i r e c t p r o d u c t s a n d D i r e c t s u m s ) Let Vi, i ∈ I, be a family of A-modules. On the abelian
groups direct product ∏I∈I Vi and the direct sum ⊕i∈IVi we define the scalar multiplication of an element
a∈ A on the I-tuple (xi)i∈I by a(xi)i∈I := (axi)i∈I (componentwise scaler multiplication). These A-modules
are called the d i r e c t p r o d u c t and the d i r e c t s u m of the family Vi, i ∈ I. If all Vi are equal to the
same A-module V , then the I- f o l d d i r e c t p r o d u c t o f V is the set V I of all maps from I into V .
The common notation V (I) is used for the I- f o l d d i r e c t s u m o f V . If I is a finite set then V I =V (I).
Moreover, if I = {1, . . . ,n} , then we just denote V I =V (I) by V n. Note that V /0 = 0 is the zero module.

2.B Submodules
Let A be a ring and let V be an A-module. A subset W ⊆V is called an A- s u b m o d u l e o f V
(or simply a s u b m o d u l e o f V ) if W is a subgroup of the abelian group V and if the scalar
multiplication A×V →V of A on V restricts to a scalar multiplication A×W →W on W, i. e.,
for all a ∈ A and x ∈W we have ax ∈W.

An A-submodule W of an A-module V is therefore closed under the multiplication of all scalars
a ∈ A. The restriction of the A-module structure on V to W defines an A-module structure on W.
In this sense every A-submodule itself is an A-module. In case of vector spaces over a division ring
K, K-submodules are also called K- s u b v e c t o r s p a c e s or just K- s u b s p a c e s .

2.B.1 Examples Let A be a ring.
(1) In every A-module V, the zero module 0 and V itself are A-submodules of V ; these are called t r i v i a l
s u b m o d u l e s of V.
(2) In an abelian group , the Z-modules are precisely the subgroups.
(3) In any ring A, the A-submodule of the left A-module A (respectively, the right A-module A ) are precisely
the left-deals (respectively, right-ideals) in A.
(4) Let Vi, i ∈ I be a family of A-modules. Then the direct sum ⊕i∈IVi is an A-submodule of the direct
product ∏i∈I Vi. In particular, the I-fold direct sum V (I) of V is an A-submodule of the I-fold direct product
V I of V. Moreover, if I is infinite then V (I) is a proper submodule of V I.

2.B.2 Criterion for submodule Let A be a ring and let V be an A-module. A subset W ⊆V is
an A-submodule of V if and only if the following three conditions are satisfied: (1) W 6= /0.
(2) For all x ∈W and all y ∈W we have x+ y ∈W. (3) For all a ∈ A and all x ∈W we have
ax ∈W.
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Proof:

We can combine the conditions (2) and (3) in the above criterion in the following condition : for all
a,b ∈ A and for all x,y ∈V, ax+by ∈W.

2.B.3 Example ( T o r s i o n m o d u l e s ) Let A be a commutative ring and let V be an A-module. An
element x ∈ V is called t o r s i o n if there exists a non-zero divisor a ∈ A with ax = 0.The zero element
0 ∈V is a torsion element, since 1 ·0 = 0 . If x ∈V is a torsion element and if c ∈ A is arbitrary, then cx
is also torsion element (since ax = 0 for some non-zero divisor in A , we also have a(cx) = c(ax) = 0.).
Further, if y ∈V is another torsion element, i. e., if by = 0 for some non-zero divisor in b ∈ A, then ab is
a non-zero divisor in A with ab(x+ y) = bax+aby = 0 and so x+ y is also a torsion element. Therefore
by the above criterion the set of all torsion elements in V t(V ) = tA(V ) = {x ∈V | x is a torsion element}
is an A-submodule of V. This submodule is called the t o r s i o n - s u b m o d u l e of V. An A-module V
is called t o r s i o n - f r e e if t(V ) = 0. If every element of V is torsion, i.e., if t(V ) =V then V is called
t o r s i o n - m o d u l e .
(a) Direct sum of torsion-modules is again a torsion-module. A submodule of a torsion-module is a torsion-
module.
(b) Direct product of torsion-free modules is again a torsion-free module. A submodule of a torsion-free
module is a torsion-free module.
(c) The A-module A is always torsion-free. In an abelian group (in any Z-module) torsion-elements are
precisely the set of elements of positive order. The Z-module Q is torsion-free. Every finite abelian group if
a Z-torsion module. For n ∈N∗, let Zn denote a cyclic group of order n . Then the direct product ∏n∈N∗ Zn
of the Z-torsion modules Zn , |,n ∈N∗, is not Z-torsion module.

2.B.4 Intersection of submodules Let A be a ring, V be an A-module and let Wi, i ∈ I, be a
family of A-submodules of V . Then the intersection

⋂
i∈I Wi is also an A-submodule of V .

Proof: Follows immediately from 2.B.2.
If x i , i ∈ I, is a family of element in an A-module V, then by 2.B.4 there exists a smallest (with
respect to the inclusion) submodule of V which contain all the elements x i , i ∈ I, namely, the
intersection of the family of all submodules which contain x i , i ∈ I and this family is non-empty,
since V is one of them.

2.B.5 Definition Let A be a ring and let V be an A-module. For a family x i , i ∈ I, of elements
of V, the smallest A-submodule of V containing x i , i ∈ I, is precisely the subset {∑ i∈I a ix i |
(a i) i∈I ∈ A(I) } of V . Therefore this A-submodule is denoted by ∑ i∈I Ax i and we say that it is the
A- s u b m o d u l e o f V g e n e r a t e d b y t h e f a m i l y x i , i ∈ I. If W is an A-submodule of V
and if W = ∑ i∈I Ax i for some family x i , i ∈ I in V , then we say that x i , i ∈ I is a g e n e r a t i n g
s y s t e m for W . If X ⊆V, then A-submodule of V generated by X is denoted by AX .
For example, the zero A-submodule of V is generated by the /0 ⊆ V, but it is also generated by {0} ⊆ V.
Every A-module has a generating system, for example the set of all of its elements. An A-submodule with
generating system consisting of a single element x is called a c y c l i c A-submodule generated by x and is
denoted by Ax . Every element of Ax is of the form ax with a ∈ A, but a need not be unique, i. e., ax = bx
for some a,b ∈ A, but a 6= b. — The cyclic Z-modules are precisely the cyclic groups.

2.B.6 Sum of submodules Let A be a ring , V be an A-module and let Wi i ∈ I be a family of
A-submodules of V . Then the A-submodule W of V generated by the union

⋃
i∈I Wi is precisely

{∑
i∈I

xi | xi ∈Wi for all i ∈ I and xi = 0 for almost all i ∈ I }

Proof:
The A-submodule of V constructed in 2.B.6 is called the s u m o f s u b m o d u l e s Wi, i ∈ I,
and is denoted by ∑ i∈I Wi. For I = {1, . . . ,n} it is also denoted by W1 + · · ·+Wn or ∑

n
i=1Wi. It is

W1 + · · ·+Wn = {x1 + · · ·+ xn | xi ∈Wi , i = 1, . . . ,n}
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2.B.7 Definition An element x ∈V is called a l i n e a r c o m b i n a t i o n o f t h e f a m i l y x i ∈V ,
i ∈ I ( w i t h c o e f f i c i e n t s i n A), if there is family a i, i ∈ I, of elements in A, such that almost
all a i are zero, i. e., there exists an element (a i) i∈I ∈ A(I) such that x = ∑ i∈I a ix i ; in this case the
elements a i, i ∈ I are called the c o e f f i c i e n t s o f t h e l i n e a r c o m b i n a t i o n . In general
these coefficients are not uniquely determined by the element x.
For calculation with linear combinations we note the two rules : two linear combinations can also
be added by adding the coefficients and a linear combination can be multiplied by a scalar a ∈ A by
multiplying the coefficients by a, i. e, if x i ∈V , (a i) i∈I , (b i) i∈I ∈ A(I) and a ∈ A, then :

∑
i∈I

a ix i +∑
i∈I

b ix i = ∑
i∈I
(a i +b i)x i and a ∑

i∈I
a ix i = ∑

i∈I
(aa i)x i .

With this definition : The A-submodule generated by the system x i, i ∈ I is precisely the set of all
linear combinations of the family x i, i ∈ I.

2.B.8 Definition An A-module V is called f i n i t e l y g e n e r a t e d or a f i n i t e A- m o d u l e if
there is generating system for V consisting finitely many elements.

2.B.9 Remark Note that a finite module V need not mean that V has only finitely many elements. For
example, the Z-module Z has infinitely many elements but it is a finite Z-module, in fact a cyclic Z-module
(generated by the element 1). Note also the contrast: in group theory finite group mean group with finitely
many elements. The abelian group Z is not a finite group but it is a finite Z-module.

2.B.10 Proposition Let A be a ring and let V be an A-module. If V is a finitely generated
A-module, then every generating system of V contains a finite generating system.

Proof: Let y1, . . . ,yn ∈ V be a given finite generating system for V , i. e., V = Ay1 + · · ·+Ayn and let x i,
i ∈ I be a generating system for V . Then for each j = 1, . . . ,n, y j = ∑ i∈E( j) a i j x i with a i j ∈ A and finite
subsets E( j) ⊆ I. Then E := ∪n

j=1E( j) is a finite subset of I and the submodule generated by x i , i ∈ E
contain all the elements y1, . . . ,yn and hence V = Ay1 + · · ·+Ayn ⊆ ∑ i∈E Ax i ⊆V . Therefore V = ∑i∈E Ax i ,
i. e., V is generated by the finite subfamily x i , i ∈ E.

2.B.11 Definition Let A be a ring and let V be an A-module. A generating system X of an
A–module V is called m i n i m a l g e n e r a t i n g s y s t e m for V if it is minimal (with respect to
the natural inclusion) in the set {Y |Y ⊆ is a generating system for V}. — If V is finite A-module,
then

µA(V ) := min{|X | | X ⊆V is a generating system for V}
is called the m i n i m a l n u m b e r o f g e n e r a t o r s f o r V .

By Proposition 2.B.10 every minimal generating system of a finite A-module is finite. More
generally, a generating system x i , i ∈ I of an A-module V is called m i n i m a l if there is no proper
subset J 6= I of I such that x j , j ∈ J , generate V .
For a minimal system of generators x i , i ∈ I of V , the index map I → V , i 7→ x i , is injective.
Therefore this definition is not essentially more general than the previous one. A minimal generating
system never contains the zero element. If V is finitely generated, then by Proposition 2.B.10 every
generating system contains a finite generating system and hence also contain a minimal generating
system.
An arbitrary module need not have a minimal generating system. For example, the Z-module Q
does not have minimal generating system, see Exercise 2.2.
2.B.12 Example A minimal generating system of a finite A-module V has at least µA(V ) elements and
need not have the cardinality µA(V ). For example, {1},{2,3},{p,q | gcd(p,q) = 1} are minimal generating
systems for the Z-module Z and µZ(Z) = 1. Moreover, for every natural number m∈N∗, there is a minimal
generating system for the Z-module Z with cardinality m, namely, x1, . . . ,xm, where x i := ∏

m
j=1, j 6=i p j and

p1, . . . , pm are distinct prime numbers.
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2.B.13 Theorem Let A be a ring, V be an A-module and let Y ⊆ V be an infinite generating
system for V . Then every generating system x i , i ∈ I, of V contains a generating system x j , j ∈ J,
J ⊆ I with |J| ≤ |Y |.

Proof: For every y ∈ Y , there exists a finite subset E(y) of I such that y ∈ ∑i∈E(y) Axi. Then x j , j ∈
J := ∪y∈Y E(y) is a generating system for V, since V = ∑y∈Y Ay ⊆ ∑ j∈J Ax j ⊆ V. Note that since Y is
infinite, for I = Y and Ey = E(y) , y ∈ Y , the assumptions in Corollary 2 below are satisfied and hence
|J|= |∪y∈Y E(y)| ≤ |Y | by Corollary 21.

2.B.14 Corollary Let A be a ring and let V be an A-module If V has countable generating system,
then every generating system of V contains a countable generating system.

Proof: If V is a finite A-module, then the assertion follows directly from Proposition 2.B.10 and
if V is not finite, then it follows from Theorem 2.B.13. Moreover, the cardinality argument in
the proof of 2.B.13 in this special case in simple: A countable union of countable sets is again
countable.

2.B.15 Let A be a ring, a be a left-ideal in A and let V be an A-module. The set of linear
combinations of elements of V with coefficients from the ideal a form a submodule of V . This
submodule is generated by ax, a ∈ a,x ∈V and is denoted by aV .

The following rules are easy to verify : For left-ideals a,b in A and A-submodules W,U of V we
have : (a) (a+b)V = aV +bV . (b) a(bV ) = (ab)V . (c) a(W +U) = aW +aU.

2.B.16 Example For a left ideal a is a ring A and a natural number n ∈N recursively define the powers
of a by : a0 :=A,an+1 := aan. Then we have a descending chain of left ideals in A :

A = a0 ⊇ a⊇ a2 ⊇ ·· · ⊇ an ⊇ an+1 ⊇ ·· · .
— The elements of the power an of a left-ideal a are precisely the finite sums of products a1 · · ·an with
ai ∈ a, i = 1, . . . ,n. Further, aman = am+n for all m,n ∈N.

A left-, right-, or two-sided ideal a is called n i l p o t e n t if there exists m ∈N such that am = 0.
Clearly, if am = 0, then a1 · · ·am = 0 for all a1, . . . ,am ∈ a. Moreover, we have the following very
useful special case of Nakayama’s lemma :

2.B.17 Lemma Let A be a ring and let a be a nilpotent left-ideal in A. Let V be an A-module
and let W ⊆V be an A-submodule of V . If W +aV =V , then W =V .

Proof: It is enough to prove that W =W +anV for every n∈N. We show this by induction on n. For n = 0
the assertion is trivial. By induction hypothesis we have the equalities : V =W +anV =W +an(W +aV ) =

W +anW +an(aV ) =W +an+1V .

1 The Corollary 2 is an an easy consequence of the following theorem from set theory :
Theorem For any infinite set Y , we have |Y ×Y |= |Y |. (For the proof of this one need to use Zorn’s Lemma.) From
this we deduce :
Corollary 1 For any two non-empty sets I,Y with one of them infinite, we have |I×Y | = sup{|I|, |Y |}. (We may
assume that |I| ≤ |Y |. Then Y is infinite and |Y | ≤ |I×Y | ≤ |Y ×Y |= |Y | by the above theorem and hence |I×Y |= |Y |
by Schröder-Berstein theorem.)
Corollary 2 Let Y be an infinite set and let E i, i ∈ I, be a family of sets with |I| ≤ |Y | and |E i| ≤ |Y | for all
i ∈ I. Then | ∪ i∈I E i| ≤ |Y |. (We may assume that E i 6= /0 for all i ∈ I. Since |Ei| ≤ |Y |, there is a surjective
map gi : Y → Ei for each i ∈ I. Then the map I×Y → ∪ i∈IE i with (i,y) 7→ g i(y) is also surjective and hence
|∪ i∈I E i| ≤ |I×Y |= sup{|I|, |Y |}= |Y | by Corollary 1.)
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2.B.18 Maximal ideals Let A be a ring. The set of left-ideals in A is ordered by the natural
inclusion ⊆ . Its biggest element if the unit ideal A. A maximal element in the set of left-ideal
different from A is called a m a x i m a l l e f t - i d e a l . Analogously one can define m a x i m a l
r i g h t - i d e a l s . In commutative ring one simply calls them m a x i m a l i d e a l s . Therefore : A
ring is a division ring if and only if its zero ideal is a maximal left-ideal.

2.B.19 Example In the ring Z every ideal is of the form Za with a uniquely determined natural number
a ∈N. For ab ∈N the inclusion Za⊆ Zb is equivalent with a ∈ Zb or with an existence of c ∈N such
that a = cb and so with the divisibility condition “b divides a”. Therefore Za is maximal ideal in Z if and
only if a 6= 1 and a has no divisors other than 1 and a. But this condition exactly characterize the prime
numbers. Therefore it shows that : Za for a ∈N is a maximal ideal in the ring Z if and only if a is a prime
number. If a ∈N,a 6= 1, then a has a prime divisor.

In the zero ring there are no maximal ideals. On the contrary if A 6= 0, then it has enough maximal
left- and right-ideals by Krull’s theorem. Below we will prove more general result than this.

2.B.20 Maximal submodules Let V be an A-module. Then maximal elements (with respect
to the natural inclusion) in the set SA(V ) of all A–submodules of V are called m a x i m a l A
- s u b m o d u l e s of V . Maximal A- submodules of the A-module A are precisely are maximal ideals
in A. Let W be a maximal A-submodule of V and let x ∈V,x 6∈W . Then W 6=W +Ax and by the
maximality of W , we have the equality W +Ax =V . Therefore W is a cofinite A-submodule in the
sense of the following definition.

2.B.21 Definition An A- submodule W of V is called c o f i n i t e if there exists finitely many
elements x1, . . . ,xn ∈V such that V =W +Ax1 + · · ·+Axn. Equivalently, the quotient A-module
V/W is finitely generated.

If W is a cofinite A-submodule of V , then every A-submodule W ′ with W ⊆W ′ ⊆ V is also
cofinite. Every A-submodule of a finite A-module is cofinite.

Below we prove the converse of the above remark that in any A-module V cofinite A-submodules
different from V exists if V has maximal submodules.

2.B.22 Theorem Let W be a cofinite A-submodule of an A-module V with W 6=V . Then there
exists a maximal A-submodule of V which contain W. In particular, in a finite non-zero A-module
V there are maximal A-submodules.

Proof: Let V =W +Ax1 + · · ·+Axn. Let r be the number such that Wr :=W +Ax1 + · · ·+Axr−1 6=V , but
Wr +Axr =V . Then it is enough to prove the theorem for Wr instead of W . We may therefore assume that
W 6= V and W +Ax = V for some x ∈ V . Let M := {W ′ |W ′ is a submodule of V with W ⊆W ′ ⊆ V}.
Then W ∈M and m is a non-empty set ordered by the natural inclusion. We note that M is inductively
ordered. For, if C⊆M is a non-empty chain in M, then U ′ :=∪U∈CU is an upper bound of C in M: Clearly
U ′ is a submodule of V , W ⊆U ′, since C 6= /0. Further, since x 6=U for all U ∈ C , we have x 6=U ′ and so
U ′ 6=V . Now by Zorn’s Lemma there exists a maximal element in M and this is a maximal submodule of V
which contain W .

2.B.23 Corollary In a finite module |,V 6= 0, there are maximal submodules.

By specializing the above corollary to the finite module V = A = A ·1, we note the following:

2.B.24 Corollary ( K r u l l ’ s T h e o r e m ) Let A be a ring and let a be an ideal in A with a 6= A.
Then there exists a maximal ideal m in A with a⊆m( A. In particular, in every non-zero ring,
there are maximal left-ideals.
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