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1 . M o d u l e s a n d A l g e b r a s

Submit a solutions of ∗ - E x e r c i s e s ONLY. Due Date : Wednesday, 30-08-2017

1.1 Determine the quotient and the remainder of the division :
a) of f ∈ K[X ] by X2−a in K[X ], where K is a field.
b) of Xm−1 by Xn−1 in Z[X ] for m,n ∈N∗.

1.2 Let R be a commutative ring, g ∈ A[X ] be a polynomial of degree n≥ 1, with leading coefficient a unit
and εg : R[X ]→ R[X ] be the substitution homomorphism with X 7→ g. Let B = (R[X ],εg) be the R[X ]-algebra
with the structure homomorphism. Then the R[X ]-algebra B is free of rank n with basis 1, . . . ,Xn−1. What is
the kernel of the canonical R[X ]-algebra homomorphism (R[X ])[Y ]→ B with Y 7→ X?

1.3 Let R be a commutative ring, P := R[Xi]i∈I be the polynomial algebra and f = ∑aνXν ∈ P.
a) f is nilpotent if and only if all the coefficients of f are nilpotent.
b) f is a unit in P if and only if a0 is a unit in R and all coefficients aν , ν 6= 0, of f are nilpotent. ( Hint :
We may assume that P = R[X ] . Let m := deg f > 0. It is enough to prove that am is nilpotent. But f g = 1 with
g = b0 + · · ·+ bnXn , and so by induction ai+1

m bn−i = 0 for i = 0, . . . ,n . Variant : Pass to the ring of fractions RS ,
S := S(am) , and apply the degree formula.)
c) (T h e o r e m o f M c C o y) f is a zero-divisor in P if and only if there exists a ∈ R , a 6= 0 such that
a f = 0. (Hint : We may assume that I is finite with |I|= n. First, suppose that n = 1, i.e. P = R[X ] , f g = 0 with
g ∈ P, m := deg f , degg > 0. In the case aig = 0 for all i is the assertion is trivial. Otherwise, let r the maximum of i
with 1≤ i≤ m and aig 6= 0. Then deg(arg)< degg and f · (arg) = 0. — Now, suppose that n≥ 1 and f = ∑

m
i=0 fiX i

n
with fi ∈ Q := R[X1, . . . ,Xn−1] . If f g = 0 with g ∈ Q, g 6= 0, then hg = 0 for all h = ∑

m
i=0 fiX

si
n−1 in Q with si ∈N

arbitrary. Apply the induction hypothesis to h and choose si so that si+1 enough bigger than si .)
d) f is idempotent if and only if f = a0 is a constant polynomial and a0 is idempotent in R . (Hint : We may
assume that P = R[X ] . Since f is idempotent, so are a0 and ( f −a0)

2 and hence ( f −a0)
2 = 0 and f = a0 .)

∗1.4 Let R be a commutative ring and Zn be a cyclic group of the order n≥ 1. Then the R-algebras R[Zn]
and A[X ]/(Xn−1)isomorphic.

∗1.5 Let M be a regular totally ordered monoid with neutral element ι and B = ∑
⊕
σ∈M Bσ be an M-gradaded

domain.
a) Every left- or right divisor of a homogeneous element 6= 0 of B is again homogeneous. In particular, all
units in B are homogeneous.
b) Let B be commutative (and hence an integral domain), p ⊆ B be a homogeneous prime ideal in B and
b = ∑σ∈M bσ ∈ B be an element 6= 0 with the leading form bω and initial form bα , α ≤ ω . If bσ ∈ p for all
σ 6= ω , bω /∈ p and bα /∈ p2, then every divisor of b in B is homogeneous. In particular, if p is a homogeneous
prime element 6= 0 in B and if p |bσ for σ 6= ω as well as p 6 | bω and p2 6 | bα , then all divisors of b in B are
homogeneous. (Remark : This is so-called L e m m a o f E i s e n s t e i n (due to G. Eisenstein (1823-1852)) which
has many variants.)

1.6 Let R be a commutative ring 6= 0 and P := R[Xi, i ∈ I ] be the polynomial algebra over R in indeterminates
Xi, i ∈ I. Further, let F = ∑ν∈N(I) aνXν ∈ P.

a) It is ν! aν =
(
Dν

X F
)
(0), ν ∈N(I). (Remember the definition ν! = ∏i νi!. – It is enough to prove the formula for

monomial F = X µ , µ ∈N(I).)
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b) Let c = (ci) ∈ SI . The polynomials (X−c)ν = ∏i(Xi−ci)
νi , ν ∈N(I), form an R-module basis of P. ( The

substitution homomorphism P→ P, Xi 7→ Xi− ci, i ∈ I, is an R-algebra automorphism of P, a so-called t r a n s l a t i o n
a u t o m o r p h i s m of P.)
If F = ∑ν∈N(I) bν(X− c)ν , then prove the Ta y l o r - F o r m u l a

ν! bν =
(
Dν

X F
)
(c) .

( If Q⊆ S, then bν = (1/ν!)
(
Dν

X F
)
(c), ν ∈N(I).)

c) Let r ∈N∗ and n ∈N. Using the Taylor-Formula in Z[X1, . . . ,Xr] prove the universal polynomial formula
(X1 + · · ·+Xr)

n = ∑
ν∈Nr,|ν |=n

(n
ν

)
Xν

and the universal polarisation formulae
2r−1r! X1 · · ·Xr = ∑

ε

ε2 · · ·εr(X1 + ε2X2 + · · ·+ εrXr)
r

(on the right hand side the sum runs through all the sign-tuples ε = (ε2, . . . ,εr) ∈ {1,−1}r−1) and
(−1)rr! X1 · · ·Xr = ∑

H⊆{1,...,r}
(−1)|H|X r

H = ∑
e
(−1)e1+···+er(e1X1 + · · ·+ erXr)

r

(in the last sum e runs through the tuples (e1, . . . ,er) ∈ {0 , 1}r).

1.7 Let R be a commutative ring 6= 0 and P := R[Xi, i ∈ I ] be the polynomial algebra over R in the indeter-
minates Xi, i ∈ I. The map DerSP ∼−→ P I , δ 7→

(
δ (Xi)

)
i∈I , is a P-module isomorphism. For every I-tuple

(Gi)∈ P I δ : F 7→∑i∈I
(
DXiF

)
Gi , is a R-derivation. In particular, if I is finite, then DerSP is a free P-module

of rank |I| with basis DXi , i ∈ I.
(Remark :. In particular, it follows that for sets I,J with |I| 6= |J| the R-algebras P and Q := R[X j, j ∈ J ] are not
isomorphic if one of the sets is finite. However, this is also true if both sets I and J are not finite; this follows from
RangSP = |N(I)|= |I| if I is infinite. Note that the R-algebras P and Q may be isomorphic even if |I| 6= |J|. For example,
for infinite set I, P and P[Yk,k ∈ K] are isomorphic rings if |K| ≤ |I|.)

1.8 Let K be a field. The K-algebra automorphisms of K[X ] are precisely the substitution homomorphisms
X 7→ aX +b , a,b ∈ K, a 6= 0. Therefore the group AutK-AlgK[X ] of the K-algebra automorphisms of K[X ] is
anti-isomorphic and hence isomorphic to the affine group A1(K) = K oK× of K, see Example ???. ( The
K-automorphism gruoup of a polynomial algebra K[X1, . . . ,Xn], n≥ 2, is much more complicated in more than one
variable and is still an object of active rearch. For an important subgroup see the next Exercise.)

1.9 Let K be a field and Li , i ∈ I, be a family of homogeneous polynomials of degree 1 in the polynomial
algebra P := K[Yj] j∈J . The substitution homomorphism Xi 7→ Li , i ∈ I, from K[Xi]i∈I into P is injective resp.
surjective, resp. bijective, if and only if the Li , i ∈ I, is linearly independent, resp. a generating system, resp.
a basis of the K-vector space P1 of all homogeneous polynomials of degree 1 in K[Yj] j∈J . In particular, in the
case I = J the substitution endomorphism P→ P, Yj 7→ L j, j ∈ J, is a K-algebra automorphism if and only if
its restriction to P1 is a K-vector space automorphisms of P1. ( With this one can identify the general linear group
GLK(P1) = AutK(P1) with the subgroup of AutK-AlgP. Together with the translation automorphisms aus Aufg. 2.9.4b)
they generate the so-called group of the a f f i n e K-algebra automorphisms of P.)

∗1.10 a) Over an integral domain R every R-algebra automorphism ϕ of A[X ] is a linear automorphism.
(Hint : We may assume that the constant term of ϕ(X) is 0. Then the ideal R[X ]X is ϕ-invariant.)
b) Let R be a commutative ring and ϕ be an R-algebra endomorphism of R[X ]. Then ϕ is an automorphism
if and only if ϕ(X) = a+gX with a ∈ R and g ∈ R[X ]×. (Hint : Suppose that ϕ is of the given form and a be the
ideal generated by the coefficients other than the constant term. Then a is a niltoptent ideal by Exercise S.14 b). Now,
pass to the residue-class ring is (R/a)[X ] and apply Exercise 42, 6a).)

∗1.11 For m ∈ N, let Pm := K[X1 . . . ,Xm] be the polynomial algebra in m indeterminates over the field
K. If ϕ : Pm → Pn is an injective, (resp. surjectiv) K-algebra homomorphism, then m ≤ n (resp. m ≥ n).
In particular, m = n, if ϕ is an isomorphism. ( If degϕ(Xi) ≤ d , i = 1, . . . ,m, then degϕ(F) ≤ d · degF for all
F ∈ Pm . Further, use the fact that the polynomials in Pm of deg≤ r ∈N form a K-vector space of dimension

(r+m
m

)
bilden. – In the case of that ϕ surjective, one can reduce to the case of that ϕ is injective. – Another proof for m = n, if
ϕ is a K-algebra isomorphism, one can find in Exercise 1.5. If m 6= n, then Pm and Pn are not isomorphic even as rings ;
because every ring isomorphism induces an automorphism of K, since K×= P×m = P×n .)

1.12 Let K be an infinite field and F,G polynomials in K[Xi, i ∈ I ] . If F 6= 0 and G vanish on KI \VK(F),
then G = 0.

∗1.13 Let R be a noetherian commutative ring 6= 0 and let Φ : R[X ]→ RR be the canonical homomorphism.
(R noetherian is not necessary for this.)
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a) If R is a finite ring, then Φ is not injective.
b) Φ is surjective if and only if R is a finite field. Moreover, in this case, the kernel of Φ is generated by
Xq−X = (Xq−1−1)X , where q := |R|. (R noetherian is not necessary for this.)
c) If Ker Φ contains a monic polynomial, then R is a finite ring. (Suppose on the contrary that R is infinite. Then
by passing to the residue-class ring modulo an ideal in R which is maximal in the set of ideals with infinite residue-class
rings, we may further assume that all residue-class rings of R are finite. There exist elements a,b ∈ R with a 6= 0, b 6= 0,
ab = 0. With R/Ra and R/Rb, the residue-class ring R/Rab = R is also finite.)
d) Show that Φ is not injective if and only if there exists a maximal ideal m in R and an element a 6= 0 with
am= 0 and the residue-class field R/m is finite.
e) ( P. S a m u e l ) For every n ∈N+, there exist only finitely many ideals a in A with |R/a| ≤ n (Hint : Let
f := ∏

n−1
i=0 (X

n−X i) and c be the intersection of ideals a with |R/a| ≤ n. Then f (x) ∈ c for all x ∈ R and hence by a)
R/c is finite. – Remark : The number theoretic function zR :N+→Z, n 7→ zR(n) := the number of ideals a in R with
|R/a|= n, is called the D e d e k i n d ’ s F u n k t i o n of R. It is multiplicative (Proof!). The associated D i r i c h l e t ’ s
s e r i e s

ζR =
∞

∑
n=1

zR(n)
ns

is a complex-analytic function (in s) and is called the D e d e k i n d ’ s Z eta function ζR von R. For R =Z, z(n) = 1
for all n ∈N+; and hence ζZ is the R i e m a n n ’s Z eta function,.)
f) If V is a noetherian module over R and if n ∈N+, then there exist finitely many submodules of W of V
with |M/N| ≤ n.
g) If B is a (not necessarily commutative) finitely generated R-algebra, then there exists only finitely many
(left-, right-, resp. two-sided) ideals b in B with |B/b| ≤ n.

∗1.14 Let K be an infinite field and V be a K-vector space. Every linearly independent family fi ∈V ∗, i ∈ I,
of K-linear forms V → K is algebraically independent in the K-Algebra KV of K-valued functions on V .
(Hint : One can reduce to the case that V is finite dimensional and use the Exercise 7.4, 2016 CSA-E0 219 Linear
Algebra and Applications. — Often K-subalgebra of KV (of all K-valued functions on V ), generated by the K-linear
forms V → K is called the algebra of p o l y n o m i a l f u n c t i o n s on V . For V = KI and a finite index set I, this
coincides with the usual definition.)

1.15 Let K be a field and A be a K-algebra. Further, let x ∈ A∗ be a non-zero divisor and integral (d.h.
algebrac over K. Then x ∈ A, even a unit A and x−1 ∈ K[x]. ( The multiplication by x on the finite K-algebra K[x]
is injective and hence bijective.) Determine the minimal polynomial µx−1 of x−1 with the help of the minimal
polynomial µx of x. ( The constant term of µx is 6= 0.) In particular, A is a division domain if A is a domain and
integral over K.

1.16 Let K ⊆ L be an extension of fields. Then the elements of L which are algebraic over K form a subfield
of L which contains K. It is called the a l g e b r a i c c l o s u r e or the a l g e b r a i c h u l l of K in L. If K is
finite, then the algebraic hull of K in L is at most countable. If K is infinite, then K and the algebraic hull of K
in L have the same cardinality. ( The polynomial ring K[X ] have the same cardinality as K if K is infinite. – Remark :
Elements L which are algebraic over the prime field of L are called just a l g e b r a i c or a b s o l u t e a l g e b r a i c. The
absolute algebraic elements of L form a countable subfield of L. In particular, the subfield Q of the (absolute) algebraic
numbers in C is countable. and then set CrQ of transcendental (over Q) complex numbers has the cardinality ℵ of the
continuum.In 1874 Cantor gave a proof for the existence of transcendental complex numbers, see Cantor, G.: Über eine
Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen, J. für die reine und angew. Math. 74, 258-262 (1874).
However, he did not provide any transcendental complex numbers explicitly. First time such numbers are produced in
1844 by J. Liouville (1809-1882). (Since C is algebraically closed by the Fundamental Theorem of Algebra, Q is also
algebraically closed.))

1.17 Let K ⊆ L⊆M be an extension of fields. If M is algebraic over L and L is algebraic over K, then M is
also algebraic over K with DimKM = DimKL · DimLM.

1.18 Let R be a commutative ring 6= 0.
a) Let G ∈ R[X ] be a monic polynomial of degree m≥ 1. For every polynomial F 6= 0, there exist unique
polynomials P0, . . . ,Pr with Pr 6= 0 and

F = P0 +P1G+ · · ·+PrGr , Pi = 0 or degPi < m , i = 0, . . .r .

(This expansion is the analog of the g-adic expansion of natural numbers and is called the G-a d i c e x p a n s i o n of F .
For G = X− c of degree 1, this is handled in the Taylor-expansion of F in c.)
b) Let F ∈ S[X ] be polynomial of degree n and c ∈ S. The coefficients b0, . . . ,bn−1 of the quotient Q =
bn−1 +bn−2X + · · ·+b0Xn−1 in the representation F = F(c)+Q · (X − c) are the values F0(c), . . . ,Fn−1(c)
in the Horner’s Scheme for computation of F(c) = Fn(c) Applying this process to the polynomial Q instead
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of F successively one can obtain the coefficients in the Taylor-expansion of F in c. – What are the expansions
of the polynomial X4−3X3 +5X2−X +2 ∈Z[X ] at c = 2 and at c =−1.

1.19 Let R be a commutative ring 6= 0 and G= c0+c1X + · · ·+cn−1Xn−1+Xn ∈ R[X ] be a monic polynomial
of degree n ∈ N∗. Assume that n is a unit in R. In the free residue-class R-algebra R[x] = R[X ]/(G) of
rank n, the element x̃ := x+ 1

n cn−1 satisfies the equation c̃0 + · · ·+ c̃n−2 x̃ n−2 + x̃ n = 0 with coefficients c̃i,
i = n−2, . . . ,0, in R. In particular, R[x] = R[ x̃ ] 2pt≈←− R[X ]/(G̃), where the coefficient of Xn−1 in the monic
polynomial G̃ := c̃0 + · · ·+ c̃n−2Xn−2 +Xn ∈ R[X ] is 0. (The polynomial G̃ obtained from the polynomial G by
the (linear) T s c h i r n h a u s ( e n ) - T r a n s f o r m a t i o n (due to W. Tschirnhaus(en) (1651-1708)).)

1.20 Let R be a noetherian commutative ring 6= 0 and G j, j ∈ J, be arbitrary family of polynomials in the
polynomial algebra R[X1, . . . ,Xn]. Then there exists a finite subset J′ ⊆ J with the following property : For
every commutative R-Algebra A, VA(G j, j ∈ J) = {x ∈ An | G j(x) = 0 , j ∈ J}= VA(G j, j ∈ J′). ( Hint : By
Hilbert’s Basis Theorem R[X1, . . . ,Xn] is also a noetherian ring.)
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S u p p l e m e n t 1
M o d u l e s ∗ a n d A l g e b r a s

∗ The concept of a module seems to have made its first appearance in Algebra in Algebraic Number Theory – in studying
subsets of rings of algebraic integers. Modules first became an important tool in Algebra in late 1920’s largely due
to the insight of E m m y N o e t h e r, who was the first to realize the potential of the module concept. In particular,
she observed that this concept could be used to bridge the gap between two important developments in Algebra that
had been going on side by side and independently:the theory of representations (=homomorphisms) of finite groups
by matrices due to F r o b e n i u s , B u r n s i d e , S c h u r et al and the structure theory of algebras due to M o l i e n ,
C a r t a n , We d d e r b u r n et al.

S1.1 Let A be an R-algebra over the commutative ring R 6= 0 and V be an A-left-right-biimodule with rv = vr
for all r ∈ R, v ∈V . Then the direct sum A⊕V with the multiplication

(x,v) · (y,w) = (xy,xw+ vy) , x,y ∈ A, v,w ∈V,

is an R-algebra, in which V = {0}⊕V is a twosided ideal with (A⊕V )/V ∼−→ A and V 2 = 0. Further
(A⊕V )× = A×⊕V . (Hint : It is (x,v)−1 = (x−1,−x−1vx−1) for x ∈ A×, v ∈V . – The R-algebra A⊕V is called the
i d e a l i s a t i o n of V . If A is commutative, then the idealisation of an arbitrary A-module V is defined and is again
commutative.)

S1.2 Let R be a commutative ring, f1, . . . , fn ∈ R[X ] be polynomials of degrees ≤ n−2 and x1, . . . ,xn ∈ R be
arbitrary. Then Det( fi(x j))1≤i, j≤n = 0.

S1.3 Let R be a commutative ring and V be an R-module. Let a ∈ R be a unit. Then the homothecy
ϑa : V →V x 7→ ax is bijective. Give an example of a non-zero R-module and a non-unit a ∈ R such that
the homothecy ϑa is bijective. Hint: Consider Z-modules, i.e. Finite abelian groups.

S1.4 Let U , W , U ′ , W ′ be submodules of an R-module V . Then :
(a) (M o d u l a r L a w) If U ⊆W , then W ∩ (U +U ′) =U +(W ∩U ′) .
(b) If U ∩W =U ′∩W ′, then U is the intersection of U +(W ∩U ′) and U +(W ∩W ′) .

S1.5 In this supplement, we recall the concepts of direct products and direct sums of arbitrary family of
modules.
a) ( D i r e c t p r o d u c t s ) Let Wi, i ∈ I, be a family of R-modules. Then the direct product ∏i∈I Wi with
componentwise addition and componentwise scalar multiplication is also an R-module. Analogous to abelian
groups, with the canonical R-linear projections pi : ∏i∈I Wi→Wi, it has the following universal property :
For every R-module V , the canonical map

HomR
(
V,∏

i∈I
Wi
) ∼−→ ∏

i∈I
HomA(V,Wi) , f 7→ (pi f )i∈I ,

is a group isomorphism and if R is commutative, then an R-module isomorphism. The I-tuple ( fi)i∈I ∈
∏i∈I HomR(V,Wi) is the image of the R-homomorphism V →∏i∈I Wi, x 7→ ( fi(x))i∈I , which is denoted by
( fi)i∈I .
b) ( D i r e c t s u m s ) Let Vj, j ∈ J, be a family of R-modules. The restricted direct product or the d i r e c t
s u m

⊕
j∈J Vj := {(x j) j∈J ∈∏ j∈J Vj | x j = 0 for almost all j ∈ J} of Vj, j ∈ J, is a submodule. Besides the

canonical projections (v j) j∈J 7→ v j, now the canonical injections ı j : Vj→
⊕

j∈J Vj, j ∈ J, an important rolle.
For x j ∈Vj, the J-tuple ı j(x j) = (δi jx j)i∈J with j-th component x j and all other components 0. Analogous to
the abelian groups the direct sums with the canonical R-linear injections ı j : Vj→

⊕
j∈J Vj has the following

universal property : For every R-module W, the canonical map

HomA
(⊕

j∈J
Vj,W

) ∼−→ ∏
j∈J

HomA(Vj,W ) , g 7→ (gıj) j∈J ,

is a group isomorphism und if R is commutative, then an R-module isomorphism. The J-tuple ( f j) j∈J ∈
∏ j∈J HomR(Vj,W ) is the image of the R-homomorphism

∑
j∈J

f j :
⊕
j∈J

Vj→W , (x j) j∈J 7→ ∑
j∈J

f j(x j) .

c) The combination of the universal properties of direct product and direct sum provide the following
important theorem :
Let Vj, j ∈ J, and Wi, i ∈ I, be families of R-modules. Then the canonical map

HomR
(⊕

j∈J
Vj ,∏

i∈I
Wi
) ∼−→ ∏

(i, j)∈I×J
HomR(Vj,Wi) , f 7→ ( fi j)(i, j)∈I×J , fi j := pi f ıj , i ∈ I, j ∈ J,
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is a group isomorphism and if R is commutative, then an R-module isomorphism. The matrix ( fi j)(i, j)∈I×J ∈
∏(i, j)∈I×J HomR(Vj,Wi) is the image of the homomorphism

f :
⊕
j∈J

Vj→ ∏
i∈I

Wi , (x j) j∈J 7→ (yi)i∈I mit yi := ∑
j∈J

fi j(x j) , i ∈ I .

( For finite index sets, direct sums and direct product coincides. Let I,J,K be finite sets and Uk, k ∈ K, an another
family of A-modules. Then, if the matrices B= (g jk)∈∏ j,k HomR(Uk,Vj) and A= ( fi j)∈∏1, j HomR(Vj,Wi) describe
the homomorphisms g :

⊕
k∈K Uk→

⊕
j∈J Vj resp. f :

⊕
j∈J Vj →

⊕
i∈I Wi, then the composition f ◦g :

⊕
k∈K Uk→⊕

i∈I Wi is defined by the p r o d u c t m a t r i x

AB := ( fi j)i, j(g jk) j,k = (hik)i,k ∈ ∏
(i,k)∈I×K

HomA(Uk,Wi) with hik := ∑
j∈J

fi j ◦g jk , (i,k) ∈ I×K.

If the index sets I, J, K are not finite, then formulate the restrictions of the matrices A and B.
More often used are the cases Rn and Rm in the theorem in part c) (under the identification EndRR = Rop). Then :
Every R-module homomorphism f : An→Am is given by an m×n-matrix A= (ai j)∈Mm,n(Aop) =

(
Aop
){1,...m}×{1,...,n}.

It is – as usual common to denote – the elements x ∈ An resp. y ∈ Rm as one column matrices with n resp. m rows, then

f (x) = Ax=


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




x1
x2
...

xn

=


y1
y2
...

ym

= y with yi =
n

∑
j=1

x jai j , 1≤ i≤ m .

Note that the matrix coefficients are considered and multiplied in the opposite ring Rop! This provides the summands
x jai j instead of ai jx j and so also note the multiplication of matrices. The endomorphism ring of the R-module Rn is
the ring Mn(Aop) of the square n×n-matrices with coefficients in Rop. The identity of Rn is then represented by the
u n i t m a t r i x En = (δi j)) ∈Mn(A). In the important case when R is commutative, naturally one nedd not distinguish
between R and Rop. )
d) In general, it is simpler to produce a direct sum representation of an module than the direct product
representation. For example, the following lemma :
( D i r e c t s u m s o f s u b m o d u l e s ) Let Ui, i ∈ I, be a family of submodules of the R-module V and
h :
⊕

i∈I Ui → V , (ui)i∈I 7→ ∑i∈I ui , be the canonical R-homomorphism with the image ∑i∈I Ui . Then h
injective i.e. the sum of Ui is direct if and only if the following condition is satisfied : For every i ∈ I, one has

Ui∩ ∑
j 6=i

U j = {0} .

If I is totally ordered, then this condition is also equivalent with the following : Ui∩∑ j<iU j = {0} for all
i ∈ I.
If the sum ∑i∈I Ui ⊆V is direct, then this sum is also denoted by ∑

⊕
I∈I Ui.

S1.6 Let R be a commutative ring and let Vi , i ∈ I , be an infinite family of non-zero R-modules. Prove that
W :=

⊕
i∈I Vi is not a finite R-module.

S1.7 Let K be a field and let R be a subring of K such that every element of K can be expressed as a
quotient a/b with a,b ∈ R, b 6= 0. (i. e. K is the quotient field of R ). If K is a finite R -module, then prove
that R = K . In particular, Q is not a finite Z–module. (Hint : Suppose K = Rx1 + · · ·+Rxn and b ∈ R, b 6= 0,
with bxi ∈ R for i = 1, . . . ,n . Now, try to express 1/b2 as a linear combination of xi , i = 1, . . . ,n .)

S1.8 Let R be an integral domain. If the set of all non-zero ideals in R have a minimal element (with respect
to the inclusion). Show that R is a field. In particular, an integral domain such that the set of all ideals is an
artinian ordered set (with respect to inclusion), is a field. ( Recall that an ordered set (X ,≤) is called a r t i n i a n
if every non-empty subset of X has a minimal element. For example finite ordered sets are artinian. An ordered set
is w e l l o r d e r e d if it is totally ordered and artinian. The prototype of the well ordered set is the set N of natural
numbers with its natural order. )

S1.9 Let R be an arbitrary ring and I be an index-set. In the |I|-fold direct sum R(I) = ∑
⊕
i∈I R⊆ RI , for every

i ∈ I, let ei := (δi j) j∈I be the I-tuple with i-th component 1 and all other components. Then every element
(ai)i∈I ∈ R(I) has the (unique) representation (ai)i∈I = ∑i∈I aiei. Therefore the family ei is a generated system
for the R-module R(I). The R-module R(I) is called the f r e e R - m o d u l e corresponding to the (index-)set
I. It is a prototype of a free R-module, see ???. Since Hom R(R,V ) ∼−→ V ( f 7→ f (1)), the R-module R(I)

together with the map ιI : I→ R(I), i 7→ ei has the following universal property :
Let R be ring and I be a set. Then for every R-module V , the map

Hom(R(I),V ) ∼−→V I , f 7→ f ◦ ıI = ( f (e i))i∈I ,
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is an isomorphism of groups and if R is commutative, it is even an isomorphism of R-mdules. The inverse
image of the I-tuple v= (vi)i∈I ∈V I , is the homomorphism

fv : R(I)→V , (ai)i∈I 7→ ∑
i∈I

aivi ,

whose image is the submodule ∑i∈I Rvi of V generated by vi, i ∈ I.

The kernel of the homomorphism fv : R(I)→V , (ai)i∈I 7→ ∑i∈I aivi , is the submodule

RelA(vi, i ∈ I) = SyzA(vi, i ∈ I) :=
{
(ai) ∈ A(I)

∣∣ ∑
i∈I

aivi = 0
}

and is called the r e l a t i o n m o d u l e or the s y z y g y m o d u l e of the family (vi)i∈I ∈V I . Its elements
are so-called the r e l a t i o n s or S y z y g i e s of the vi, i ∈ I.1 Therefore

A(I)/SyzA(vi, i ∈ I) ∼−→ Img f = ∑
i∈I

Avi .

In particular, R(I)/SyzA(vi, i ∈ I) ∼−→ V , if vi, i ∈ I, is a generated system for V . Every R-module with
generating system consisting of |I| elements is isomorphic to a residue-class module of R(I). In particular,
residue-class modules of Rn are, up to isomorphisms, all finite modules with n generators, n ∈N. A cyclic
R-module V = Rx is isomorphic to a residue-class module of R, more precisely, Rx∼= R/SyzRx = R/AnnRx.
To provide an R-module, often one can give only a submodule U ⊆ A(I) which is the syzygy module of
a generating system of V and there by restrict ro supply a generating system of U . If I is finite and R is
noetherian, then U is always generating by finitely many elements, see ???. The module V is then itself
finitely generated.
a) A family of elements vi, i∈ I, of elements of the R-module V is called l i n e a r l y i n d e p e n d e n t o v e r
R if

S1.10 Let R be a non-zero ring and let I be an infinite indexed set. For every i ∈ I, let e i be the I-tuple
(δ i j) j∈I ∈ RI with δ i j = 1 for j = i and δ i j = 0 for j 6= i.

a) The family e i , i ∈ I, is a minimal generating system for the left-ideal R(I) in the ring RI . In particular,
R(I) is not finitely generated ideal.

0..1 Remark Submodules of finitely generated modules need not be finitely generated!

b) There exists a generating system for R(I) as an RI–module that does not contain any minimal generating system.
Hint: First consider the case I =N and the tuples e0 + · · ·+ en, n ∈N.

S1.11 ( To r s i o n s u b m o d u l e , To r s i o n m o d u l e s and To r s i o n - f r e e M o d u l e s ) Let R be a commu-
tative ring and let V be an R-module. An element x ∈V is called t o r s i o n if there exists a non-zero divisor a ∈ R
with ax = 0. The set of all torsion elements in V t(V ) = tR(V ) = {x ∈V | x is a torsion element} is an R-submodule
of V. This submodule is called the t o r s i o n - s u b m o d u l e of V. An R-module V is called t o r s i o n - f r e e if
t(V ) = 0. If every element of V is torsion, i.e., if t(V ) =V then V is called t o r s i o n - m o d u l e. The R-module R is
always torsion-free. More generally, every free R-module is torsion-free.
(a) Direct sum of torsion-modules is again a torsion-module. A submodule of a torsion-module is a torsion-module.
(b) Direct product of torsion-free modules is again a torsion-free module. A submodule of a torsion-free module is a
torsion-free module.
(c) In an abelian group (in any Z-module) torsion-elements are precisely the set of elements of positive order. The
Z-module Q is torsion-free. Every finite abelian group if a Z-torsion module. For n ∈N∗, let Zn denote a cyclic
group of order n . Then the direct product ∏n∈N∗ Zn of the Z-torsion modules Zn , n ∈N∗, is not Z-torsion module.

S1.12 Let R be an integral domain with quotient field K. Then :
a) If V is a torsion module over R , then Hom R(V,R) = 0.
b) Hom R(K,R) 6= 0 if and only if R = K . In particular, HomZ(Q,Z) = 0. (Hint : Every element f ∈ Hom R(K,R)
is a homothecy of K by the element f (1) .)
a) If K is an arbitrary direct sum of finite R-submodules, then R = K.

S1.13 ( M i n i m a l n u m b e r o f g e n e r a t o r s and M i n i m a l g e n e r a t i n g s y s t e m s ) Let R be a commu-
tative ring and V be an R-module. The infimum of the cardinal numbers of the generating systems of V (which exists by
the well ordering of cardinal numbers) is called the minimal number of generators for V and is denoted by µR(V ). If

1 The use of the word "‘Syzygy"’ goes back to D. Hilbert (1862-1943).
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µR(V ) ∈N, then V is called a f i n i t e R-module. If µR(V )≤ 1, i.e. V is generated by (at most) one element, then V is
called c y c l i c. Note that µR(0) = 0. Prove that :
a) If µR(V ) ∈N, then every generating system of V contains a finite generating subsystem.
b) Suppose that µR(V ) is not finite. Then every generating system of V has a generating subsystem with µR(V )
elements. In particular, every minimal generating system of V has µR(V ) elements.

c) If 0→U
f−→ V

g−→W → is an exact sequence of R-modules and R-module homomorphisms, then µR(V ) ≤
µR(U)+µR(W ). – In particular, if V is finitely generated if and only if both U and W are finitely generated.
(Remarks : Note that a minimal generating system of a finite R-module can contain more than µR(V ) elements. For
example, {2,3} is a minimal generating system for the cyclic Z-module Z. More generally, for a given m ∈N∗, there
are minimal generating systems for the Z-module Z which have exactly m elements.
Further, an R-module V may not have any minimal generating system. (Then naturally, µR(V ) is infinite.) For example,
the Z-module Q has no minimal generating system, see the Exercise below.)

S1.14 The Z–module Q does not have minimal generating system. (Hint : In fact the additive group (Q,+) does not
have a subgroup of finite index 6= 1. This follows from the fact that the group (Q,+) is divisible2 and hence every
quotient group of (Q,+) is also divisible. Further, If H finitely generated divisible abelian group, then H = 0.)
More generally, the quotient field Q(R) of an integral domain R which is not a field, has no minimal generating system
as an R-module. In particular, Q(R) is not finitely generated R-module.
( R e l a t i o n m o d u l e s and l i n e a r l y i n d e p e n d e n t f a m i l i e s ) Let vi, i ∈ I, be a family of elements of the
R-module V .

S1.15 ( M a x i m a l s u b m o d u l e s ) Let R be a commutative ring and let V be an R-module. Then maximal
elements (with respect to the natural inclusion) in the set SR(V ) of all R–submodules of V are called m a x i m a l
R- s u b m o d u l e s of V . Maximal R- submodules of the R-module R are precisely are maximal ideals in R. Let W
be a maximal R-submodule of V and let x ∈V,x 6∈W . Then W 6=W +Rx and by the maximality of W , we have the
equality W +Rx =V . Therefore W is a cofinite R-submodule in the sense of the following definition :
An R-submodule W of V is called c o f i n i t e if there exists finitely many elements x1, . . . ,xn ∈ V such that V =
W +Rx1 + · · ·+Rxn. Equivalently, the quotient R-module V/W is finitely generated.
If W is a cofinite R-submodule of V , then every R-submodule W ′ with W ⊆W ′ ⊆ V is also cofinite. Every R-
submodule of a finite R-module is cofinite. Note that in any R-module V cofinite R-submodules different from V exists
if V has maximal submodules.

a) Prove the converse : Let W be a cofinite R-submodule of an R-module V with W 6=V . Then there exists a maximal
R-submodule of V which contain W . In particular, in a finite non-zero R-module V there are maximal R-submodules.
b) Use a) to deduce the ( K r u l l ’ s T h e o r e m ) : Let R be a ring and let a be an ideal in R with a 6= R. Then there
exists a maximal ideal m in R with a⊆m( R. In particular, in every non-zero ring, there are maximal left-ideals.

S1.16 Let R be a ring and let V 6= 0 be an R-module. If R, does not have maximal submodules, then R does not have
a minimal generating system. (Hint : If xi, i ∈ I is a minimal generating system for V , then I 6= /0 . Let i0 ∈ I and
W := ∑ i∈I\{ i0}Axi. Then W is a cofinite submodule of V and hence V has maximal submodules.)

S1.17 ( J a c o b s o n - r a d i c a l ) Let R be a commutative ring. The intersection of all maximal ideals of R is called the
J a c o b s o n – r a d i c a l of R and is denoted by mR. Note that mR 6= R if and only if there exists a maximal ideal in R.
Equivalently, R 6= 0.
a) Let V be an R-module and let U be a cofinite submodule of V . If V =U +mV for all maximal ideals m of R, then
V =U .
b) Let R be a commutative ring and V be a finite R-module. If V = mV for all maximal ideals m of R, then V = 0.
(Apply a) with U := 0.)

c) ( L e m m a o f K r u l l – N a k a y a m a ) Let R be a commutative ring and a be an ideal in R. Then the following
statements are equivalent:
(i) a⊆mR.
(ii) For every R-module V and every cofinite submodule U of V the implication holds: If V =U +aV , then V =U .

S1.18 ( S i m p l e m o d u l e s ) Let R a (commutative) ring 6= 0. An R-module V is called s i m p l e, if V 6= 0 and the
only submodules of V are the trivial submodules 0 and V .
a) For an R-module V , the following statements are equivalent: (i) V is simple. (ii) Every homomorphism V →W of
R-modules is either a zero-homomorphism or injective. (iii) V = Rx for every x ∈V r{0}. (iv) V is isomorphic to a
residue-class module R/a, where a is a maximal ideal in R.
b) Let V be simple R-module. Then the annihilator ideal AnnRV of V is the intersection of the maximal ideals AnnRx,
x ∈V r{0}.

2 Divisible abelian groups. An abelian (additively written) group H is d i v i s i b l e if for every n ∈ Z, the group homomor-
phism λn : H→H, defined by a 7→ na is surjective. For example, the group (Q,+) is divisible, the group (Z,+) and finite groups
are not divisible. Further, quotient of a divisible group is also divisible. Free abelian groups of finite rank are not divisible.
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S1.19 Let f : V →W be a homomorphism of R-modules.
a) For a submodule U ⊆V , it is f−1( f (U)) =U +Ker f and

U/(U ∩Ker f ) ∼−→ (U +Ker f )/Ker f ∼−→ f (U).

b) If f surjective, then the maps U 7→ f (U) and X 7→ f−1(X) are inverse maps of each other between the set of
submodules U of V containing Ker f and the set of all submodules X of W .
c) Let V and W be simple R-modules, see Exercise S1.??. Then every R-homomorphism V →W is either the
zero-homomorphism or an isomorphism. In particular, EndRV is a division domain (L e m m a o f ( I s s a i ) S c h u r).
d) If R is commutative, then the modules R/m, m ∈ SpmR, up to isomorphism, are the only simple R-modules and
distinct maximal ideals of R define non-isomorphic simple R-modules. (Remark : Note that AnnR(R/m) =m. – The
classification of the simple modules over non-commutative rings is complicated. A local ring R with Jacobson-radical
mR has the residue-class division domain R/mR (as R-module), up to isomorphism, are the only simple R-modules.)
e) If V is a K-vector space, V 6= 0, then V is a simple EndKV -module, see Example S1.?? The endomorphisms of V as
EndKV -module are the homothecies ϑa, a∈K, of V . Therefore EndEndKVV ∼= K the image of the action homomorphism
ϑ : K→ EndV .
Let V be a module over the ring R and U ⊆ V be a submodule of V . Recall that, by definition, U is a d i r e c t
s u m m a n d of V if U has a module complement W ⊆V , i.e. V =U⊕W .
a) U is a direct summand of V if and only if there exists a projection p ∈ EndRV with Im p = U . In this case,
V = U ⊕W with W := Ker p, p = pU,W is called the p r o j e c t i o n o n t o U a l o n g W , and the complementary
projection q = qU,W = idV −pU,W = pW,U is the p r o j e c t i o n a l o n g U o n t o W .
b) If R = K is a division domain, then every subspace U ⊆V has a complement.
c) Let W be a complement of U . Then the map f 7→ Γ f = { f (y)+y | y ∈W} ⊆V is a bijective map from HomR(W,U)
onto the set of all complements of U in V .

S1.20 ( I n d e c o m p o s a b l e M o d u l e s ) Let V be an R-module over the ring R 6= 0. We say that V is i n d e -
c o m p o s a b l e or i r r e d u c i b l e, if V 6= 0 and there is no direct sum decomposition V =U⊕W with submodules
U 6= 0 6=W of V .
a) V indecomposable if and only if V 6= 0 and the endomorphism ring EndRV has no non-trivial idempotent elements.
Every simple R-module is indecomposable. Give an example of a indecomposable module which is not simple. The
R-(left- or right-)module R is indecomposable if and only if the ring R has no non-trivial idempotent elements. (Note
the explicit distinction of this with the indecomposability of R as ring. This is equivalent to that R has no non-trivial
central idempotent elements.)
b) The only indecomposable vector spaces over a division domain K are the 1 dimensional vector spaces. (In general
it is difficult – if not impossible, to classify the indecomposable modules over a given ring R. The finitely generated
indecomposable abelian groups (= Z-modules) are precisely the cyclic groups Z= Z0 and Zpα , p ∈ P, α ∈N∗. This
is the substantial part of the main theorem the finitely generated abelian groups. However, there are many more
indecomposable abelian groups, for example, all non-zero subgroups of Q= (Q,+) are indecomposable and similarly,
all Prüfer’s p-groups I(p), p ∈ P, are also indecomposable. Every abelian p-group with 1-dimensional (i.e. non-zero
cyclic) p-socal is indecomposable. Up to isomorphism these are precisely the groups Zpα , α ∈N∗, and I(p). Why?)

S1.21 A ring R 6= 0 is a division domain if and only if all R-(left-) modules (or if all R-right modules) are free.

S1.22 Let V be a module over the local ring R with the Jacobson-radical mA and vi, i ∈ I, be a family of elements in V .

a) If vi, i ∈ I, is a generating system of V , then vi, i ∈ I, is minimal if and only if SyzR(vi, i ∈ I)⊆mRR(I). In this case
(Note that R× = RrmR), the residue-classes [vi] ∈V/mRV , i ∈ I, form a (R/mR)-basis of V/mRV , and it follows

µR(V ) = |I|= DimR/mR(V/mRV ) .

In particular, for every finite R-module V , we have µR(V ) = DimR/mR(V/mRV ) and V = 0 if and only if V =mRV ist.

b) If U ⊆V is a submodule of V such that the residue-class module V/U is finite and if V =U +mRV , then V =U
(L e m m a o f N a k a y a m a). (Since V/U =mR(V/U), it follows V/U = 0.) If V is finite, then the elements vi, i ∈ I,
generates V if and only if their residue-classes generates the vector space V/mRV .

S1.23 Let A be a ring 6= 0.
a) If Am ∼= Am+1 (as A-modules) for a natural number m ∈N, then Am ∼= An for all n≥ m.
b) Elements x,y∈A form a basis of the A-module A if and only if there exist elements a,b∈A such that (1) ax+by= 1,
(2) xa = 1, (3) xb = 0, (4) ya = 0 und (5) yb = 1. (In the matrix notation

(x , y)
(

a
b

)
= (1) ,

(
a
b

)
(x , y) =

(
1 0
0 1

)
,

where all matrices are considered over the opposite ring Aop.)
c) Let B be a ring 6= 0 and V be an B-module 6= 0 with V ∼=V ⊕V (e.g. a free B-module with infinite basis). Then there
exist elements a,b,x,y in the endomorphism ring A := EndBV satisfying the equations (1) to (5) in b). In particular,
the finite free A-modules does not have rank. (Describe the isomorphisms V ∼−→V ⊕V and V ⊕V ∼−→V which are
inverses to each other by matrices with coefficients in the ring EndAV .)
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S1.24 Let R be a commutative ring and P := R[Xi]i∈I mit I 6= /0. Then the Jacobson-radical mP and the nil-radical nP
of P are equal. (Hint : 1+XimP ⊆ P×, see Exercise S1.4 b).)

S1.25 Let K be a field and F be a free abelian group. Then the Jacobson-radical of the group ring K[F ] is the
zero-ideal. (Hint : The group ring K[F ] entsteht aus einem Polynomring über K durch Nenneraufnahme der Monome.
Gradüberlegung wie in vorstehender Aufgabe.)

S1.26 Let R be a commutative ring, A be the formal power series ring R[[X ]] in one indeterminate X over R and
f = ∑

∞
n=0 aν Xν ∈ A.

a) If f is nilpotent, then all the coefficients of f are nilpotent. Is the converse true?
b) f is a unit in R if and only if a0 is a unit in R .
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