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2. Prime and Maximal Ideals

Due Date : Wednesday, 13-09-2017

Submit a solutions of x-Exercises ONLY.
Strongly Recommended to attempt the «-Exercise 2.11.

All rings considered are commutative with unity. For a ring A, the set A* denote the set of all non-zero
divisors in A and Z(R) := A \. A* denote the set of all zero divisors in A.

2.1 Let J(A) denote the set of all ideals in a ring A.

(a) The operations sum, intersection and product on J(A) are commutative and associative. Moreover, for all a, b,
c€J(A), we have :

(i) (Distributive law) a(b+c)=ab+ac.
(i) (Modular law) IfaDbora2Dcthenan(b+c)=anb-+anc.
(iii) (a+06)(anb) C ab.

0..1 Remark In the ring Z the equality (a+b)(anb) = ab holds.

(iv) ab C anb and the equality aN b = ab holds if a and b are comaximal, i.e. a4 b =A.

(Remark : For aring J(A) is a (multiplicative and additive) monoid (with binary operations product and sum of ideals,
respectively) and also an ordered set (with respect to the natural inclusion) which is compatible with the multiplication.
Therefore J(A) is an ordered monoid. Moreover, itis a lattice, i.e. for any two elements a,b € J(A), both Sup {a, b}
and Inf{a,b} exist.)

(b) (Ideal quotient) Fora, b €J(A), the ideal quotient of a by b is the ideal (a:b):={a€A|abCa}.
In particular, (0:b)is {a €A|ab=0}isthe annihilator of b and is also denoted by Anny (b). If b = Ab, then
we simply write (a : b) for (a: b). (In the ring A=7, let a=Zm, b="7Zn. Then (a : b) =Zq, where ¢=T1, prime P"">
rp :=max(v,(m) —v,(n),0) = v,(m) —min(v,(m) —v,(n)). Therefore g = m/ gcd(m,n).)

Forideals a, a;,i € I, b, b;,i € I, ¢ € J(A), the following computational rules are easy to verify :

() aC(a:b). (i) (a:b)bCa. (i) (a:b):¢)=(a:bc)=(a:c):b).

@iv) (ﬁig a;: b) = Nier(a; = b). W) (a D Yier b,‘) = Nier(a:b;).

(c) (Radical of an ideal) Fora€J(A), the radical of aistheidealr(a)=+/a:={a€A|d" € afor some ne
IN*}. For ideals a, b € J(A), the following computational rules are easy to verify :

(i) a C Va. (i) v/Va=+a. (i) vVab=+/anb) =anvb (iv) vVa+b=4/va+b.
(v) Ya=A ifandonlyif a=A.  (vi) If p is a prime ideal in A, then \/p? =p forall n € N™".

2.2 (Extensions and Contractions of ideals) Let ¢ : A — B be aring homomorphism. We can use ¢ to
transport ideals from A to B and also to transport ideals from B to A. More precisely :

If a is an ideal in A, then the set ¢(a) need not be an ideal in B. The ideal B¢(a) generated by ¢(a) is called the

extension orthe pushforward of a in B. Similarly, if b is an ideal in B, then ¢ ' (b) is always an ideal in A
which is called the contraction orthe pullback of b in A. Therefore, we have the maps :

¢, :J(A) = I(B), ars ¢.(a) := Bo(a) and ¢@* : I(B) — I(A), b ¢*(b) := ¢~ !(b), which are obviously homomor-
phisms of ordered sets. It is extremely useful to ask about properties of ¢, and ¢*, in particular, when is ¢@* is injective
or surjective.

(a) ¢*(SpecB) C SpecA, in other words, contraction of a prime ideal is always a prime ideal. But, in general,
¢0*(Spm B) C Spm A, i.e. contraction of a maximal ideal need not be a maximal ideal. (— Remark : However, the
behavior of prime ideals under ¢, under the ring extensions 1 : Z — B, where B is the ring of algebraic integers in a
number field, is one of the central problems of algebraic number theory.)

(b)

Moreover, (Push-pull formula) ¢*@.a=aforallacJ(A).

2.3 (Nil-radical) The set ng of all nilpotent elements in a ring A is an ideal. (The ideal ny is called the
nil-radical of A. Thering A iscalled reduced if ny =0. For example, integral domains are reduced.)
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(a) The nil-radical of A is the intersection of all the prime ideal in A. i.e. ng = Npespeca P -

(Hint : For the difficult inclusion use the following observation (with a =0 and S := {s" | n € IN}, where s €A~ 1ny):
Let a C A be an ideal and S C A be a multiplicative subset of A, i.e. a submonoid of the multiplicative monoid (4, -) of
A. Then the set P := {b € J(A) | a C b C A\ S} has maximal elements with respect to the natural inclusion and every
such a maximal element in P is a prime ideal in A. By the way this also proves that SpecA # 0 if and only if A # 0.)
(b) For an ideal ain A, \/a = Nycy(q)p, Where V(a) := {p € SpecA [a Cp}.

(Hint: Let 7 : A — A/a be the canonical projection. Then /a = 7! (n4/a). Now, apply (a).)

(c¢) Inaring A the set of zero-divisors Z(A) is a union of certain prime ideals. (Hint : We may assume that A # 0.
Since S = A* is a multiplicative subset of A with {0} NS = 0, by the obeservation in the hint of (a), there are prime
ideal p in A with pN.S = 0. Show that Z(A) = Upeacp, where M := {p € SpecA | pNS = 0}. See also Exercises 2.9
and 2.10)

2.4 For the polynomial ring A[X] over aring A, show that nyx) = (na)[X] and Z(A[X]) =Z(A)+ (na)[X].
(Hint : Use Exercise 1.3a) and c).

2.5 The intersection my := Nespm oM of all maximal ideals in aring A is called the Jacobson-radical
of A.

(a) For an element x € A, the following statements are equivalent :

(i) xemy. (i) 1—xyeA* foreveryy€A.

(b) Let P:= A[X;];c; with I # 0. Then the Jacobson-radical mp and the nil-radical np of P are equal. Hint:
1+Xmp C P*.

2.6 (a) Compute Spm A ,,, my, , na,, for a minimal ring A, of positive characteristic m € IN*. What are

SpecA,,;, Spm A, and their cardinalities? When exactly A,, is reduced? (Some Definitions : Let A be a ring.
Then the additive subgroup Z - 14 generated by 14 is the smallest subring of A (since every subring of A contains the
identity element 14 of A and the cyclic subgroup generated by 14 is already a subring of A). It is called the minimal
ring of A. The minimal ring of A is also the minimal ring of every subring of A. For example, the minimal ring
of Z is Z itself. In particular, Z has no subrings different from Z. A ring which coincides with its minimal ring is
calleda minimal ring per se. The order of the identity element 14 of A in the additive group of A is called the
characteristic of A and is denoted by charA. A ring A is of characteristic O if and only if its minimal ring Z - 14
is infinite. In this case all the multiples n- 14, n € Z, are pairwise distinct. A is of positive characteristic m € IN* if
and only if the minimal ring 7 - 14 is finite and consists of the m pairwise different elements r- 14, r =0,...,m — 1.
If n € Z is a multiple of charA, then na = 0 for all « € A because of na = (n-14)-a=0-a =0. In other words,
the characteristic of A is the exponent of the additive group of A. It follows, that the order of a finite ring and its
characteristic have the same prime divisors, cf. the Theorem of Cauchy (which is easy to prove for finite abelian groups).
All subrings of a ring A have the same characteristic as A .)

(b) Forafamily A;, i€ I, of rings and its product A :=]],;; A;, show that my =]];c;m4, and ng C[];c;ma,.
Give examples that the inclusion for the nil radical may be strict.

2.7 Let R := A[X]| be the formal power series ring one indeterminate X over A. Then :

(a) The nil-radical ng = {f € R| all coefficients of f Cn4} and the Jacobson-radical mg = {f € R| f(0) €
my }. (Hint: Use the analog of the Exercise 1.3|to the power series ring R = A[X] : If f € R is nilpotent, then all the
coefficients of f are nilpotent. Is the converse true?. Further, f € R* if and only if f(0) € A*.)

(b) Show that each prime ideal of A is a contraction of a prime ideal of R.

(c) If M € Spm R, then M is generated by (MNA)U{X} and the contraction MNA of I is a maximal
ideal of A.

2.8 Let A be aring and my be its Jacobson-radical.

(a) Let a be an ideal in A with a C m4. Then the group homomorphism 7% : A* — (A/a)* of unit groups
induced by the canonical projection 7 : A — A/a is surjective with kernel Ker7* = 1 + a. In particular,
A*/(1+a) = (A/a)*. If a®> =0, then the map a — 1 +a with @ — 1 +a is an isomorphism of the additive
group a onto the multiplicative group 1+ a. — Deduce that: If A is a ring with finitely many elements, then

1
(Euler’s Formula) |[A*|=A]- (1—).
b T
(b) Let a and b be two ideals in A with a2 C b C a C my4. Then there exists a canonical isomorphism from
the additive group a/b onto the multiplicative group (14 a)/(1+ b) with @ — 1+ a, where ~ denote the
residue-class map into A /b resp. in A* /(1 +b).

29 (Local rings) Foraring A the following five conditions are equivalent: (i) A contains exactly one
maximal left ideal. (ii) A contains exactly one maximal right ideal. (iii) my =A~A™. (iv) ANAXis a
(two-sided) ideal in A. (v) ANA*is a subgroup of (A,+). (V') A#0and,ifa,b€Aanda+b € A*, then
acA*orbeA*. (V') Foreveryne N, if ay,...,a, € Aand a; +---+a, € A*, then a; € A* for some i.
(A ring A satisfying these conditions is called a local ring.) Using the residue-class ring A /my, the
above conditions are also equivalent to the following condition: (vi) A /my is a division domain. — For
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which m € IN*is the minimal ring A, a local ring? A non-zero ring in which every element is either a unit
or nilpotent is a local ring and its Jacobson-radical is a nil-ideal.

*2.10 (Prime Avoidance Theorem) Let py,...,p,, n > 2, be ideals in A such that at most two of
P1,...,p, are not prime and let R be an additive subgroup of A which is closed under multiplication. (for
example, R could be an ideal of A or a subring of A.) Suppose that R C U ;p;. Then R C p; for some j
with 1 < j < n. (Hint: We use induction on n. For the beginning of induction at n = 2, note that we assume merely
that a :=p; and b := p, are ideals. If R Z a and R € b, then choose a € R~ aand b € R~ b. Thena € b and b € a by
hypothesis R C aUb, but then a+b € R~ (aUb) a contradiction. For induction step we may assume (by renumbering)
that p,,41 is prime. By induction hypothesis, for each j=1,...,n+ 1, there is an element a; € R\ Ul’.’ill,#jpi. Then
aj€pjforall j=1,...,n+1 by hypothesis R C U;’jllp,-, and aj---a, & Ppr1, since p,4 1 is prime. Now, consider the
element b :=ay ---a, +a,+1 € R. — Remark : The Prime Avoidance Theorem is most frequently used in situations

where R is actually an ideal of A and py,...,p, are all prime ideals of A. However, there are some occasions when
general statement useful. The name “Prime Avoidance Theorem” is clear from its reformulation : If py,...,p,, n > 2,
be ideals in A and at most two of pi,...,p, are not prime and if R € p; for every i = 1,...,n, then there exists

c € S\UL pi, i.e. ¢ “avoids” all the ideals pi,...,p,, “most” of which are prime.)
The following refinements of the Prime Avoidance Theorem are extremely useful :

(a) Let py,...,p, be prime ideals in A, a be an ideal in A and let a € A be such that Aa+a Z U, p;.
Then show that there exists ¢ € a such that a+c ¢ U7 p;. (Hint: We may assume that py,...,p, are not
contained in another of them. Further, we may assume that a € U/ p; (otherwise take ¢ = 0) and a Z U p; by Prime
avoidance. Renumber py,...,p, sothata € p;fori=1,... ,kanda &y, for j=k+1,...,n. Now choose b € a~ U p;
by assumption and b’ € piy1 N~ NP, N p1U---Up; by prime avoidance (clear for k = n and for k < n, otherwise
Pre1N---Np, Cp; forsome 1 <i<kand hence[lpj C p; for some 1 <i < kand some k+ 1 < j < n a contradiction
of the assumption). Now check that ¢ := bb’ € a and a+c ¢ U p;.)

(b) Let A be a ring which contain an infinite field as subring. and let a,b;,...,b,, n > 2, be ideals in A such
that a C U?_,b;, then prove that a C b; for some j with 1 < j <n. (Hint: Use: Let Vp,...,V, be subspaces
of a vector space V. If Vo £ V; foralli = 1,...,n, then Vo £ V1 U...UV,, which is a consequence of the Exercise 2.2
2016 CSA-E0 219 Linear Algebra and Applications|(V = Vj with subspaces Vi NVj,...,V,NVp))

2.11 (Minimal prime ideals) Let A be aring and let a be an ideal in A. A minimal element in the
set V(a) = {p € SpecA | a C p} (partially ordered by the inclusion) is called a minimal prime ideal
of a.If A# 0, then a minimal prime ideal of the zero ideal 0 in A is called a minimal prime ideal
in A. The set of minimal prime ideals of a is denoted by Min(a).

(a) Every prime ideal in A containing the ideal a in A contains a minimal prime ideal of a. (Hint: For
p € V(a), the set {p’ € SpecA | a D p’ D p} is inductively ordered with respect to the reverse inclusion and hence by
Zorn’s lemma has a maximal elements with respect to the reverse inclusion, i. e., has a minimal element with respect to
the inclusion.)

(b) The radical of the ideal a is the intersection of the minimal prime ideals of a,ie. v/a = MpeMin(a) P -
In particular, the nil-radical of A is the intersection of the minimal prime ideals of A.

(c) If a is aradical ideal, i. e. a = \/a, then the set

Zs(AJa):={a €A |V, :A/a— A/a is not injective }
of zero-divisors for the A-module A/a is the union of the minimal prime ideals of a, i. e, Zs(A/a) ==
UpeMin(a) P - In particular, the set of zero-divisors in A is the union of the minimal prime ideals of A and hence
all elements of a minimal prime ideals of A are zero-divisors.
(d) Suppose that A is noetherian. Then the set of minimal prime ideals of a is finite. In particular, in a
noetherian reduced ring A, the set of zero divisors in A is a finite union (the minimal) prime ideals in A.

(Hint : Let a be a maximal in the set of ideals {b | Min(b) is not finite} in A. Then there exist a,b € A such that a ¢ a,
b & a, ab € a. Now, consider the minimal prime ideals of a+Aa, a+Ab.)

2.12 (Associated Prime Ideals) In this Exercise another proof of the important assertion about
the set Z(A) of zero divisors in noetherian ring A (see Exercise 2.9 (d) by using an idea of I. KAPLANSKY),
namely : The set of zero-divisors in a noetherian ring is a finite union of prime ideals

— Let A be an arbitrary ring. The set Z(A) of zero-divisors in A is the union of the annihilators (0 :4 a) =
Annga:={b€A|ba=0},acA,a#0.

(a) Every maximal element in set of ideals {Annga |a € A,a # 0} (with respect to the natural inclusion) is
a prime ideal. — (Remark : The prime ideals of the form Annga a € A, a # 0 are called the associated prime
ideals of the ring A and their subset is denoted by AssA.)

(b) If A is noetherian, then the set {Annga | a € A,a # 0} has only finitely many maximal elements (with
respect to the natural inclusion). In particular, the set of zero-divisors in A is a finite union of prime ideals

I Letpbea prime ideal and ay,...,a, are arbitrary ideals in a ring A. Then the following are equivalent: (i) a; C p for some
1<i<n (i) N a; Cp. (i) [T2; a; € p. In particular, if p = N}, a;, then p = a; for some i with 1 <i <n.
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which are precisely the annihilators of elements of A. (Hint: Let Annga;, i € I be the maximal elements
and let a;,...,a;, be a finite generating system for the ideal },;-;Aa; and py := Annyga;, for v =1,...,n. Then
from N}_,py € Annya; it follows that py, € Annga; and hence (see the Footnote 1) py, = Annya; for some

Vo € {1,...,’1}.)
(c) Let a be an ideal in a noetherian ring A. Then a contains a non-zero divisor if and only if Annga =0.
Hint: Use the part b) and the Prime Avoidance Theorem, See Exercise 2.8.

2.13 LetA:=Cp(]0, 1]) be the R-algebra of continuous real valued functions on the closed interval [0, 1] C R.
For f € A,let V(f) :={r €[0,1] | f(t) =0} denote the set of zeros of f in [0, 1] and U(f) := [0, 1]\ V(f).
For f € A, prove that:

(@) fe€A*ifand only if V(f) =0.

(b) f € A is anon-zero divisor in A if and only if V(f) is nowhere dense in [0, 1], i.e. the complement U(f)
of V(f) is dense in [0,1]. (Hint: (=) Let U:=U(f). If U C [0, 1], then UNV = 0 for some non-empty subset
V C[0,1],i.e. VC V(f). By ExerciseElthere exists g € A with V(f) = [0,1] \ V. But, then fg =0and g # 0, i.e. fis
a zero-divisor in A. (<=) Suppose that fg =0 and g # 0. Then g = 0 on U which is dense in [0, 1] and hence g = 0 on
[0,1] by continuity of g. )

(¢) A CSp:=A~Z(A), i.e. there are non-zero divisors which are non-units in A. (Hint: Consider f € A
with V(f) = {x1,....x.}, U(f) := [0, 1]~ {x1,...,x-} =00, ([0,1] \ {x;}) is dense in [0, 1].)

(d) There exists a prime ideal in A which is not maximal in A. (Hint : The set of zero divisors Z(A) = Upcmin(a)»
see Exercise 2.9 (c). If SpecA = Spm A, then A\ Sy =Z(A) = Umespmam = AN A, ie. Sg = A* which contracdicts
(b).)

(e) ForasubsetY C [0,1],letI(Y):={f€A| f(y)=0forally € Y}. For example, [({r}) =m, :={f €
A | f(r) =0} is a maximal ideal in A. Show that I(Y) is an ideal in A and I(Y) € Spm A if and only if Y is
singleton. (Hint : Note thatif Y’ CY C [0, 1], then I(Y) C1(Y").)

2 Exercise : For every closed subset Z C IR, there exists a continuous function f : R — R such that Z=Z(f) = {r e R | f(r) =0}.
(Hint : Consider the distance function 7 — d(t,Z).)
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