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2 . P r i m e a n d M a x i m a l I d e a l s

Submit a solutions of ∗ - E x e r c i s e s ONLY. Due Date : Wednesday, 13-09-2017
Strongly Recommended to attempt the ∗ - E x e r c i s e 2 . 1 1.

All rings considered are commutative with unity. For a ring A, the set A∗ denote the set of all non-zero
divisors in A and Z(R) := ArA∗ denote the set of all zero divisors in A.

2.1 Let I(A) denote the set of all ideals in a ring A.
(a) The operations sum, intersection and product on I(A) are commutative and associative. Moreover, for all a, b,
c ∈ I(A), we have :
(i) ( D i s t r i b u t i v e l a w ) a(b+ c) = ab+ac.
(ii) ( M o d u l a r l a w ) If a⊇ b or a⊇ c, then a∩ (b+ c) = a∩b+a∩ c.
(iii) (a+b)(a∩b)⊆ ab.

0..1 Remark In the ring Z the equality (a+b)(a∩b) = ab holds.
(iv) ab⊆ a∩b and the equality a∩b= ab holds if a and b are comaximal, i.e. a+b= A.
(Remark : For a ring I(A) is a (multiplicative and additive) monoid (with binary operations product and sum of ideals,
respectively) and also an ordered set (with respect to the natural inclusion) which is compatible with the multiplication.
Therefore I(A) is an ordered monoid. Moreover, it is a l a t t i c e, i.e. for any two elements a,b ∈ I(A), both Sup{a,b}
and Inf{a,b} exist.)
(b) ( I d e a l q u o t i e n t ) For a, b ∈ I(A), the i d e a l q u o t i e n t of a by b is the ideal (a : b) :={a∈A | ab⊆a}.
In particular, (0 : b) is {a ∈ A | ab= 0} is the a n n i h i l a t o r of b and is also denoted by AnnA(b). If b= Ab, then
we simply write (a : b) for (a : b). (In the ring A=Z, let a=Zm, b=Zn. Then (a : b)=Zq, where q=∏p prime prp ,
rp :=max(vp(m)− vp(n),0) = vp(m)−min(vp(m)− vp(n)). Therefore q = m/gcd(m,n).)
For ideals a, ai , i ∈ I, b, bi , i ∈ I, c ∈ I(A), the following computational rules are easy to verify :
(i) a⊆ (a : b). (ii) (a : b)b⊆ a. (iii)

(
a : b) : c

)
= (a : bc) =

(
a : c) : b

)
.

(iv)
(
∩i∈I ai : b

)
= ∩i∈I(ai : b). (v)

(
a : ∑i∈I bi

)
= ∩i∈I(a : bi).

(c) ( R a d i c a l o f a n i d e a l ) For a∈ I(A), the r a d i c a l o f a is the ideal r(a)=
√
a := {a∈A | an ∈ a for some n∈

N+}. For ideals a, b ∈ I(A), the following computational rules are easy to verify :

(i) a⊆
√
a. (ii)

√√
a=
√
a. (iii)

√
ab=

√
a∩b) =

√
a∩
√
b (iv)

√
a+b=

√√
a+
√
b.

(v)
√
a= A if and only if a= A. (vi) If p is a prime ideal in A, then

√
pn = p for all n ∈N+.

2.2 ( E x t e n s i o n s a n d C o n t r a c t i o n s o f i d e a l s ) Let ϕ : A→ B be a ring homomorphism. We can use ϕ to
transport ideals from A to B and also to transport ideals from B to A. More precisely :
If a is an ideal in A, then the set ϕ(a) need not be an ideal in B. The ideal Bϕ(a) generated by ϕ(a) is called the
e x t e n s i o n or the p u s h f o r w a r d o f a i n B. Similarly, if b is an ideal in B, then ϕ−1(b) is always an ideal in A
which is called the c o n t r a c t i o n or the p u l l b a c k o f b i n A. Therefore, we have the maps :
ϕ∗ : I(A)→ I(B), a 7→ ϕ∗(a) := Bϕ(a) and ϕ∗ : I(B)→ I(A), b 7→ ϕ∗(b) := ϕ−1(b), which are obviously homomor-
phisms of ordered sets. It is extremely useful to ask about properties of ϕ∗ and ϕ∗, in particular, when is ϕ∗ is injective
or surjective.

(a) ϕ∗(SpecB) ⊆ SpecA, in other words, contraction of a prime ideal is always a prime ideal. But, in general,
ϕ∗(Spm B)⊆ Spm A, i.e. contraction of a maximal ideal need not be a maximal ideal. ( — Remark : However, the
behavior of prime ideals under ϕ∗ under the ring extensions ι :Z→ B, where B is the ring of algebraic integers in a
number field, is one of the central problems of algebraic number theory.)
(b)
Moreover, ( P u s h - p u l l f o r m u l a ) ϕ∗ϕ∗a= a for all a ∈ I(A).

2.3 ( N i l - r a d i c a l ) The set nA of all nilpotent elements in a ring A is an ideal. (The ideal nA is called the
n i l - r a d i c a l o f A. The ring A is called r e d u c e d if nA = 0. For example, integral domains are reduced.)
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(a) The nil-radical of A is the intersection of all the prime ideal in A . i.e. nA = ∩p∈SpecA p .
(Hint : For the difficult inclusion use the following observation (with a= 0 and S := {sn | n ∈N}, where s ∈ ArnA) :
Let a⊆ A be an ideal and S⊆ A be a multiplicative subset of A, i.e. a submonoid of the multiplicative monoid (A, ·) of
A. Then the set P := {b ∈ I(A) | a⊆ b⊆ ArS} has maximal elements with respect to the natural inclusion and every
such a maximal element in P is a prime ideal in A. By the way this also proves that SpecA 6= /0 if and only if A 6= 0.)
(b) For an ideal a in A,

√
a= ∩p∈V(a) p, where V(a) := {p ∈ SpecA | a⊆ p}.

(Hint : Let π : A→ A/a be the canonical projection. Then
√
a= π−1(nA/a). Now, apply (a).)

(c) In a ring A the set of zero-divisors Z(A) is a union of certain prime ideals. (Hint : We may assume that A 6= 0.
Since S = A∗ is a multiplicative subset of A with {0}∩S = /0, by the obeservation in the hint of (a), there are prime
ideal p in A with p∩S = /0. Show that Z(A) = ∪p∈Mp , where M := {p ∈ SpecA | p∩S = /0}. See also Exercises 2.9
and 2.10)

2.4 For the polynomial ring A[X ] over a ring A , show that nA[X ] = (nA)[X ] and Z(A[X ]) = Z(A)+(nA)[X ] .
(Hint : Use Exercise 1.3 a) and c).

2.5 The intersection mA := ∩m∈Spm Am of all maximal ideals in a ring A is called the J a c o b s o n - r a d i c a l
o f A.
(a) For an element x ∈ A , the following statements are equivalent :
(i) x ∈mA . (ii) 1− xy ∈ A× for every y ∈ A .
(b) Let P := A[Xi]i∈I with I 6= /0 . Then the Jacobson-radical mP and the nil-radical nP of P are equal. Hint:
1+XimP ⊆ P×.
2.6 (a) Compute Spm Am, mAm , nAm for a minimal ring Am of positive characteristic m ∈N∗. What are
SpecAm, Spm Am and their cardinalities? When exactly Am is reduced? (Some Definitions : Let A be a ring.
Then the additive subgroup Z ·1A generated by 1A is the smallest subring of A (since every subring of A contains the
identity element 1A of A and the cyclic subgroup generated by 1A is already a subring of A). It is called the m i n i m a l
r i n g o f A . The minimal ring of A is also the minimal ring of every subring of A . For example, the minimal ring
of Z is Z itself. In particular, Z has no subrings different from Z . A ring which coincides with its minimal ring is
called a m i n i m a l r i n g per se. The order of the identity element 1A of A in the additive group of A is called the
c h a r a c t e r i s t i c o f A and is denoted by charA . A ring A is of characteristic 0 if and only if its minimal ring Z ·1A
is infinite. In this case all the multiples n ·1A , n ∈ Z , are pairwise distinct. A is of positive characteristic m ∈N∗ if
and only if the minimal ring Z ·1A is finite and consists of the m pairwise different elements r ·1A , r = 0, . . . ,m−1.
If n ∈ Z is a multiple of charA , then na = 0 for all a ∈ A because of na = (n · 1A) · a = 0 · a = 0. In other words,
the characteristic of A is the exponent of the additive group of A . It follows, that the order of a finite ring and its
characteristic have the same prime divisors, cf. the Theorem of Cauchy (which is easy to prove for finite abelian groups).
All subrings of a ring A have the same characteristic as A .)
(b) For a family A i, i∈ I , of rings and its product A :=∏ i∈I A i , show that mA =∏ i∈I mA i and nA⊆∏ i∈I nA i .
Give examples that the inclusion for the nil radical may be strict.

2.7 Let R := A[[X ]] be the formal power series ring one indeterminate X over A . Then :
(a) The nil-radical nR = { f ∈R | all coefficients of f ⊆ nA} and the Jacobson-radical mR = { f ∈R | f (0)∈
mA} . (Hint : Use the analog of the Exercise 1.3 to the power series ring R = A[[X ]] : If f ∈ R is nilpotent, then all the
coefficients of f are nilpotent. Is the converse true?. Further, f ∈ R× if and only if f (0) ∈ A×.)
(b) Show that each prime ideal of A is a contraction of a prime ideal of R.
(c) If M ∈ Spm R, then M is generated by (M∩A)∪{X} and the contraction M∩A of M is a maximal
ideal of A .

2.8 Let A be a ring and mA be its Jacobson-radical.
(a) Let a be an ideal in A with a⊆mA. Then the group homomorphism π× : A×→ (A/a)× of unit groups
induced by the canonical projection π : A→ A/a is surjective with kernel Kerπ× = 1+ a. In particular,
A×/(1+a)∼= (A/a)×. If a2 = 0, then the map a→ 1+a with a 7→ 1+a is an isomorphism of the additive
group a onto the multiplicative group 1+a. — Deduce that : If A is a ring with finitely many elements, then

( E u l e r ’ s F o r m u l a ) |A×|= |A| · ∏
m∈Spm A

(
1− 1
|A/m|

)
.

(b) Let a and b be two ideals in A with a2 ⊆ b⊆ a⊆mA. Then there exists a canonical isomorphism from
the additive group a/b onto the multiplicative group (1+ a)/(1+b) with a 7→ 1+a, where denote the
residue-class map into A/b resp. in A×/(1+b).

2.9 ( L o c a l r i n g s ) For a ring A the following five conditions are equivalent: (i) A contains exactly one
maximal left ideal. (ii) A contains exactly one maximal right ideal. (iii) mA =ArA×. (iv) ArA× is a
(two-sided) ideal in A . (v) ArA× is a subgroup of (A ,+). (v′) A 6= 0 and, if a, b ∈ A and a+b ∈ A×, then
a ∈ A× or b ∈ A×. (v′′) For every n ∈N, if a1, . . . ,an ∈ A and a1 + · · ·+an ∈ A×, then ai ∈ A× for some i.
(A ring A satisfying these conditions is called a l o c a l r i n g . ) Using the residue-class ring A/mA , the
above conditions are also equivalent to the following condition : (vi) A/mA is a division domain. — For
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which m ∈N∗ is the minimal ring Am a local ring? A non-zero ring in which every element is either a unit
or nilpotent is a local ring and its Jacobson-radical is a nil-ideal.

∗2.10 (P r i m e Av o i d a n c e T h e o r e m) Let p1, . . . ,pn , n≥ 2, be ideals in A such that at most two of
p1, . . . ,pn are not prime and let R be an additive subgroup of A which is closed under multiplication. (for
example, R could be an ideal of A or a subring of A.) Suppose that R ⊆ ∪n

i=1pi . Then R ⊆ p j for some j
with 1≤ j ≤ n . (Hint : We use induction on n. For the beginning of induction at n = 2, note that we assume merely
that a := p1 and b := p2 are ideals. If R 6⊆ a and R 6⊆ b, then choose a ∈ Rra and b ∈ Rrb. Then a ∈ b and b ∈ a by
hypothesis R⊆ a∪b, but then a+b ∈ Rr (a∪b) a contradiction. For induction step we may assume (by renumbering)
that pn+1 is prime. By induction hypothesis, for each j = 1, . . . ,n+1, there is an element a j ∈ Rr∪n+1

i=1,i 6= jpi. Then
a j ∈ p j for all j = 1, . . . ,n+1 by hypothesis R⊆ ∪n+1

i=1 pi , and a1 · · ·an 6∈ pn+1, since pn+1 is prime. Now, consider the
element b := a1 · · ·an +an+1 ∈ R. — Remark : The Prime Avoidance Theorem is most frequently used in situations
where R is actually an ideal of A and p1, . . . ,pn are all prime ideals of A. However, there are some occasions when
general statement useful. The name “Prime Avoidance Theorem” is clear from its reformulation : If p1, . . . ,pn , n≥ 2 ,
be ideals in A and at most two of p1, . . . ,pn are not prime and if R 6⊆ pi for every i = 1, . . . ,n, then there exists
c ∈ S\∪n

i=1pi , i.e. c “avoids” all the ideals p1, . . . ,pn , “most” of which are prime.)
The following refinements of the Prime Avoidance Theorem are extremely useful :
(a) Let p1, . . . ,pn be prime ideals in A , a be an ideal in A and let a ∈ A be such that Aa+ a 6⊆

⋃n
i=1 pi .

Then show that there exists c ∈ a such that a+ c 6∈ ∪n
i=1p1 . (Hint : We may assume that p1, . . . ,pn are not

contained in another of them. Further, we may assume that a ∈ ∪n
i=1pi (otherwise take c = 0) and a 6⊆ ∪n

i=1pi by Prime
avoidance. Renumber p1, . . . ,pn so that a∈ pi for i = 1, . . . ,k and a 6∈ p j for j = k+1, . . . ,n. Now choose b∈ ar∪n

i=1pi
by assumption and b′ ∈ pk+1 ∩ ·· · ∩ pn r p1 ∪ ·· · ∪ pk by prime avoidance (clear for k = n and for k < n, otherwise
pk+1∩·· ·∩pn ⊆ pi for some 1≤ i≤ k and hence1 p j ⊆ pi for some 1≤ i≤ k and some k+1≤ j ≤ n a contradiction
of the assumption). Now check that c := bb′ ∈ a and a+ c 6∈ ∪n

i=1pi.)
(b) Let A be a ring which contain an infinite field as subring. and let a,b1, . . . ,bn , n≥ 2, be ideals in A such
that a⊆ ∪n

i=1bi , then prove that a⊆ b j for some j with 1≤ j ≤ n . (Hint : Use : Let V0, . . . ,Vn be subspaces
of a vector space V . If V0 6⊆Vj for all i = 1, . . . ,n, then V0 6⊆V1∪ . . .∪Vn, which is a consequence of the Exercise 2.2,
2016 CSA-E0 219 Linear Algebra and Applications (V =V0 with subspaces V1∩V0, . . . ,Vn∩V0))

∗2.11 ( M i n i m a l p r i m e i d e a l s ) Let A be a ring and let a be an ideal in A . A minimal element in the
set V(a) = {p ∈ SpecA | a⊆ p} (partially ordered by the inclusion) is called a m i n i m a l p r i m e i d e a l
o f a . If A 6= 0, then a minimal prime ideal of the zero ideal 0 in A is called a m i n i m a l p r i m e i d e a l
in A . The set of minimal prime ideals of a is denoted by Min(a) .
(a) Every prime ideal in A containing the ideal a in A contains a minimal prime ideal of a . (Hint : For
p ∈ V(a), the set {p′ ∈ SpecA | a⊇ p′ ⊇ p} is inductively ordered with respect to the reverse inclusion and hence by
Zorn’s lemma has a maximal elements with respect to the reverse inclusion, i. e., has a minimal element with respect to
the inclusion.)
(b) The radical of the ideal a is the intersection of the minimal prime ideals of a , i.e.

√
a = ∩p∈Min(a) p .

In particular, the nil-radical of A is the intersection of the minimal prime ideals of A .
(c) If a is a radical ideal, i. e. a=

√
a , then the set

ZA(A/a) := {a ∈ A | ϑa : A/a→ A/a is not injective}
of zero-divisors for the A-module A/a is the union of the minimal prime ideals of a , i. e, ZA(A/a) ==
∪p∈Min(a) p . In particular, the set of zero-divisors in A is the union of the minimal prime ideals of A and hence
all elements of a minimal prime ideals of A are zero-divisors.
(d) Suppose that A is noetherian. Then the set of minimal prime ideals of a is finite. In particular, in a
noetherian reduced ring A, the set of zero divisors in A is a finite union (the minimal) prime ideals in A.
(Hint : Let a be a maximal in the set of ideals {b |Min(b) is not finite} in A. Then there exist a,b ∈ A such that a 6∈ a ,
b 6∈ a , ab ∈ a . Now, consider the minimal prime ideals of a+Aa , a+Ab .)

∗2.12 ( A s s o c i a t e d P r i m e I d e a l s ) In this Exercise another proof of the important assertion about
the set Z(A) of zero divisors in noetherian ring A (see Exercise 2.9 (d) by using an idea of I. KAPLANSKY),
namely : The set of zero-divisors in a noetherian ring is a finite union of prime ideals
— Let A be an arbitrary ring. The set Z(A) of zero-divisors in A is the union of the annihilators (0 :A a) =
AnnA a := {b ∈ A | ba = 0} , a ∈ A, a 6= 0.
(a) Every maximal element in set of ideals {AnnA a | a ∈ A,a 6= 0} (with respect to the natural inclusion) is
a prime ideal. — (Remark : The prime ideals of the form AnnA a a ∈ A, a 6= 0 are called the a s s o c i a t e d p r i m e
i d e a l s of the ring A and their subset is denoted by AssA.)
(b) If A is noetherian, then the set {AnnA a | a ∈ A,a 6= 0} has only finitely many maximal elements (with
respect to the natural inclusion). In particular, the set of zero-divisors in A is a finite union of prime ideals

1 Let p be a prime ideal and a1, . . . ,an are arbitrary ideals in a ring A. Then the following are equivalent : (i) ai ⊆ p for some
1≤ i≤ n. (ii) ∩n

i=1ai ⊆ p. (iii) ∏
n
i=1 ai ⊆ p. In particular, if p= ∩n

i=1ai, then p= ai for some i with 1≤ i≤ n.
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which are precisely the annihilators of elements of A. (Hint : Let AnnA ai , i ∈ I be the maximal elements
and let ai1 , . . . ,ain be a finite generating system for the ideal ∑i∈I Aai and pν := AnnA aiν for ν = 1, . . . ,n . Then
from ∩n

ν=1pν ⊆ AnnA ai it follows that pν0 ⊆ AnnA ai and hence (see the Footnote 1) pν0 = AnnA ai for some
ν0 ∈ {1, . . . ,n} .)
(c) Let a be an ideal in a noetherian ring A . Then a contains a non-zero divisor if and only if AnnA a= 0.
Hint: Use the part b) and the Prime Avoidance Theorem, See Exercise 2.8.

2.13 Let A :=CR([0,1]) be theR-algebra of continuous real valued functions on the closed interval [0,1]⊆R.
For f ∈ A, let V( f ) := {t ∈ [0,1] | f (t) = 0} denote the set of zeros of f in [0,1] and U( f ) := [0,1]rV( f ).
For f ∈ A, prove that :
(a) f ∈ A× if and only if V( f ) = /0.
(b) f ∈ A is a non-zero divisor in A if and only if V( f ) is nowhere dense in [0,1], i.e. the complement U( f )
of V( f ) is dense in [0,1]. (Hint : (⇒) Let U := U( f ). If U ( [0,1], then U∩V = /0 for some non-empty subset
V ⊆ [0,1], i.e. V ⊆ V( f ). By Exercise2 there exists g ∈ A with V( f ) = [0,1]rV . But, then f g = 0 and g 6= 0, i.e. f is
a zero-divisor in A. (⇐) Suppose that f g = 0 and g 6= 0. Then g = 0 on U which is dense in [0,1] and hence g = 0 on
[0,1] by continuity of g. )

(c) A× ( S0 := ArZ(A), i.e. there are non-zero divisors which are non-units in A. (Hint : Consider f ∈ A
with V( f ) = {x1, . . . ,xr}, U( f ) := [0,1]r{x1, . . . ,xr}= ∩r

i=1 ([0,1]r{xi}) is dense in [0,1].)
(d) There exists a prime ideal in A which is not maximal in A. (Hint : The set of zero divisors Z(A) = ∪p∈Min(A),
see Exercise 2.9 (c). If SpecA = Spm A, then ArS0 = Z(A) = ∪m∈Spm Am= ArA×, i.e. S0 = A× which contracdicts
(b).)
(e) For a subset Y ⊂ [0,1], let I(Y ) := { f ∈ A | f (y) = 0 for all y ∈ Y}. For example, I({t}) = mt := { f ∈
A | f (t) = 0} is a maximal ideal in A. Show that I(Y ) is an ideal in A and I(Y ) ∈ Spm A if and only if Y is
singleton. (Hint : Note that if Y ′ ⊆ Y ⊆ [0,1], then I(Y )⊆ I(Y ′).)

2 Exercise : For every closed subset Z⊆R, there exists a continuous function f :R→R such that Z =Z( f ) = {t ∈R | f (t) = 0}.
(Hint : Consider the distance function t 7→ d(t,Z).)
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