(Int PhD. and Ph. D. Programmes)
Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

4. Noetherian and Artinian modules - Continued

Submit a solutions of $*$-Exercises ONLY.

Due Date : Friday, 13-10-2017
4.1 Let A be a commutative ring, V a finite A-module and W an arbitrary A-module. If $V \cong V \oplus W$ (as A modules) then $W=0$. (Hint : Use : Every surjective endomorphism $f: V \rightarrow V$ of a finite module over a commutative ring is bijective.)
4.2 (a) Every artinian module is a direct sum of finitely many indecomposable modules.
(b) Every noetherian module is a direct sum of finitely many indecomposable modules. (Hint : Suppose not, then construct an infinite strict decreasing sequence $V_{0} \supset V_{1} \supset \cdots$ of direct summands in the module and hence construct an infinite strict increasing sequence of direct summands.)
4.3 Let A be a ring and be V an A-module which is a direct sum of submodules V_{1}, \ldots, V_{n}. Suppose that the endomorphism rings of $V_{i}, 1 \leq i \leq n$, are local. If V is a direct sum of the indecomposable submodules W_{1}, \ldots, W_{m}, then $m=n$ and there exists a permutation $\sigma \in \mathfrak{S}_{n}$ with $V_{i} \cong W_{\sigma(i)}$. (Hint : Proof by induction on n. Let P_{1}, \ldots, P_{n} resp. $Q_{1}, \ldots Q_{m}$ be the families of projections corresponding to the decompositions $V=V_{1} \oplus \cdots \oplus V_{n}$ resp. $V=W_{1} \oplus \cdots \oplus W_{m}$. Let $P_{1 j}$ be the restriction $P_{1} \mid W_{j}$ into the image V_{1} and $Q_{j 1}$ be the restriction $Q_{j} \mid V_{1}$ into the image W_{j}. Then $\operatorname{id}_{V_{1}}=\sum_{j=1}^{m} P_{1 j} Q_{j 1}$. Since $\operatorname{End}_{A} V_{1}$ is local, there exists r such that $P_{1 r} Q_{r 1}$ is an isomorphism. Now, it follows from the analog Exercise 7.1, 2016 CSA-E0 219 Linear Algebra and Application 11 of for a general (commutative) base ring, that $Q_{r 1}: V_{1} \rightarrow W_{r}$ is an isomorphism.)
4.4 Let A be a ring and V be an indecomposable A-module which is artinian as well as noetherian. Then $\operatorname{End}_{A} V$ is a local ring whose Jacobson-radical is a nilideal. (Hint : Let $f \in \operatorname{End}_{A} V$. There exists a $m \in \mathbb{N}$ with $\operatorname{Ker} f^{n}=\operatorname{Ker} f^{m}$ and $\operatorname{Img} f^{n}=\operatorname{Img} f^{m}$ for all $n \geq m$. Then $V=\operatorname{Ker} f^{m} \oplus \operatorname{Img} f^{m}$ and it follows that f is nilpotent or bijective.)
4.5 (Theorem of Krull-Schmidt) Let A be a ring and V be an A-module which is artinian as well as noetherian. Then : V is a direct sum of indecomposable submodules V_{1}, \ldots, V_{n}. If $V=W_{1} \oplus \cdots \oplus W_{m}$ is another direct sum decomposition of V into indecomposable submodules, then $m=n$, and there exists a permutation $\sigma \in \mathfrak{S}_{n}$ with $V_{i} \cong W_{\sigma(i)}$.
4.6 Let H be a finitely generated abelian group which is a homomorphic image of a torsion-free abelain group of the finite rank n. Then H is a direct sum of $\leq n$ cyclic groups. (Hint : From the hypothesis it follows that H is also homomorphic image of a finitely generated torsion-free group of the rank $\leq n$. For the concept of rank, see Supplements S1A. 19 and S1A.24)
4.7 A finitely generated abelian group with commutative automorphism group is either cyclic or isomorphic to $\mathbb{Z} \times \mathbb{Z}_{2}$. (Hint : The endomorphism ring of $\mathbb{Z} \times Z_{2}$ ist not commutative. Therefore : The endomorphism ring of a finitly generated abelian group H is commutative if and only if H is cyclic.)
4.8 Let V be an A-module. We say that V is decomposable of bounded (type $\leq m, m \in \mathbb{N}$) if every direct sum decomposition of V has at most m non-trivial summands.
(a) Let A be a noetherian commutative ring. Then A (as an A-module) is decomposable of bounded type. If A is decomposable of bounded type $\leq m$, but not of type $\leq m-1$, then the number of idempotents elements in A is 2^{m} and A is isomorphic to the product ring A_{1}, \ldots, A_{m} with indecomposable rings A_{1}, \ldots, A_{m}.
(b) An A-module V is decomposable of bounded type $\leq m$ if and only if every set (subset of End ${ }_{A} V$) of pairwise commuting A-linear projections have at most $\overline{2}^{m}$ elements. (Hint : If End ${ }_{A} V$ has pairwise distinct commuting A-linear projections $P_{1}, \ldots, P_{s}, s>2^{m}$, then by (a) the (noetherian) commutative ring $C:=\mathbb{Z}\left[P_{1}, \ldots, P_{s}\right] \subseteq$ End $_{A} V$ is isomorphic to a product ring $C_{1} \times \cdots \times C_{n}$ with $n>m$.)

[^0](c) From part (b) deduce that: If V is decomposable of bounded type $\leq m$ and if the homothecy $\vartheta_{2}: V \rightarrow V$ of V by 2 is bijective, then V also has at most $2^{m} A$-linear involutions. (- Recall that: An element $a \in M$ of a multiplicative monoid M is called an involution if $a^{2}=e_{M}(=$ the neural element of $M)$. The involutions are invertible elements which are self inverses. The product of two involutions in M is again involution if and only if both these elements commute. If M is a commutative monoid, then the set $\operatorname{Inv} M$ of all involutions in M is a subgroup of the unit group M^{\times}of M. - Hint : For a ring A, the map $\gamma: \operatorname{Idp} A \rightarrow \operatorname{Inv} A, a \mapsto 1-2 a$, is injective if $2 \cdot 1_{A}$ is a non-zero divisor in A and is bijective if $2 \cdot 1_{A}$ is a unit in A. Moreover, if A is commutative, then γ is even a group homomorphism of the additive group $\operatorname{Idp} A$ (with the addition $a \triangle b:=(a-b)^{2}$) in the multiplicative group $\operatorname{Inv} A$. - For a commutative ring A, the set $\operatorname{Idp} A$ of idempotent elements in A with the addition \triangle defined above and the multiplication induced from A is a Boolean ring. It coincides with A if A itself is Boolean.)
(d) Let A be a local ring and V be a finite A-module, then V is decomposable of bounded type $\leq \operatorname{Dim}_{A / \mathfrak{m}_{A}} V / \mathfrak{m}_{A} V$. (Hint: Use the Lemma von Krull-N a k a y a ma, see Supplements S1A. 19 and S1A.31.)
(e) If V ia artinian and noetherian, then V is decomposable of bounded type.
(f) Let A be a commutative ring and V be a noetherian A-module. Then V is decomposable of bounded type. (—Recall the Noetherian Induction: Let (X, \leq) be a noetherian ordered set. Suppose that a statement $A(x)$ is associated to each element $x \in X$. Assume that the following condition holds: for every $x \in X, A(y)$ holds for all $x<y$, then $A(x)$ also holds. Then $A(x)$ holds for every $x \in X$. Proof : Let $Z:=\{z \in X \mid A(z)$ does not hold $\}$. If $Z \neq \emptyset$, then Z has a maximal element, say $x \in Z$. For every $y \in X$ with $x<y, y \notin Z$ and hence $A(x)$ holds for such y. But, then by hypothesis, $A(x)$ also holds, a contradiction! Therefore $Z=\emptyset$.
-Hint : We may also assume that A is noetherian. Now use noetherian induction on $\mathrm{Ann}_{A} V$ to assume that the assertion is true for all residue class rings of A. If there exist elements $a, b \in A, a \neq 0, b \neq 0$ and $a b=0$, then consider $V / a V$ and $V / b V$. But, if A is an integral domain, then V is decomposable of bounded type $\leq m+n$, if V is of rank m and if the torsion submodule $\mathrm{t}_{A} V$ (whose annihilator is $\neq 0$) is decomposable of bounded type $\leq m$. - Remark : (Principal idempotents) Direct decompositions of rings can be described canonically by idempotent elements, see Supplement S4.1, Theorem 4.S.4 The indecomposability (connectedness) of a commutative ring A is equivalent (see Supplement S4.1, Corollary 4.S.5) to the condition that A has no idempotents other than 0 and 1. In case of a local ring this condition is satisfied as one can see it from an equation of the form $0=e-e^{2}=e(1-e)$; since if e is not a unit, e belongs to the Jacobson-radical, and so $1-e$ is a unit.
Now, let A be an artinian commutative ring. Then by the decomposition theorem for artinian commutative rings (see Supplement S4.5, Theorem 4.S.17) there exists a direct decomposition of A into local rings $A_{i}, i=1, \ldots, s$, corresponding to a decomposition $1=e_{1}+\cdots+e_{s}$ into pairwise orthogonal idempotent elements $e_{i} \neq 0$ such that $A_{i}+a / A\left(1-e_{i}\right)$. These idempotent elements are uniquelly determined. Namely, if $e \in A$ is idempotent, then the homomorphic image of e in A_{i} and hence coincides with either 0 or 1 in A_{i}. It follows that e is sum of some of the e_{i}. Every direct factor of A is therefore direct product of some of the local rings A_{i}. This also proves once again the uniqueness assertion in Supplement S4.5, Theorem 4.S.17). The elements e_{1}, \ldots, e_{r} are called principal idempotents of A.
The principal idempotents of A are obviously distinguished idempotent elements which are $\neq 0$ and not representable as sum of two $\neq 0$ orthogonal idempotent elements. Therefore they are in this sense irreducible. An automorphism of A permutes the principal idempotents of A.)

[^0]: ${ }^{1}$ Let $f: V \rightarrow W$ and $g: W \rightarrow X$ be homomorphisms of modules over a ring. If the composition $g f$ is an isomorphism, then f is injective and $W=\operatorname{Img} f \oplus \operatorname{Ker} g$.

