MA 312 Commutative Algebra / Aug–Dec 2017

(Int PhD. and Ph. D. Programmes)

Download from : http	o://www.math	.iisc.erm	let.in/pat	il/co	urses,	/course	s/C	urrent Cou	irses/	
Tel: +91-(0)80-2293 3212/09449076304				E-mails: patil@math.iisc.ernet.i						
Lectures : Wednesday and Friday ; 14:00–15:30				Venue: MA LH-2 (if LH-1 is not free)/LH						
Seminars : Sat, Nov 18 (1)	0:30–12:45) ; Sa	t, Nov 25 (10:3	0-12:45)							
Final Examination : Tu	esday, December	05, 2017, 09	9:00-12:00							
Evaluation Weightage : Assignments : 20%			Semi	minars: 30%			Final Examination: 50%			
Range of Marks for Grades (Total 100 Marks)										
	Grade S	Grade A	Grad	e B	Grade C			Grade D	Grade F	
Marks-Range	> 90	76-90	61-	75 46		-60		35-45	< 35	
	Grade A ⁺	Grade A	Grade B ⁺	Gra	de B	Grade	C	Grade D	Grade F	
Marks-Range	> 90	81-90	71-80	61-	- 70	51-6	0	40-50	< 40	
	Noetheria	n and A	rtinian	mo	dule	s — Co	ontir	nued		

4.1 Let *A* be a commutative ring, *V* a finite *A*-module and *W* an arbitrary *A*-module. If $V \cong V \oplus W$ (as *A*-modules) then W = 0. (**Hint**: Use: Every surjective endomorphism $f : V \to V$ of a finite module over a *commutative* ring is bijective.)

4.2 (a) Every artinian module is a direct sum of finitely many indecomposable modules.

(b) Every noetherian module is a direct sum of finitely many indecomposable modules. (Hint: Suppose not, then construct an infinite strict decreasing sequence $V_0 \supset V_1 \supset \cdots$ of direct summands in the module and hence construct an infinite strict increasing sequence of direct summands.)

4.3 Let *A* be a ring and be *V* an *A*-module which is a direct sum of submodules V_1, \ldots, V_n . Suppose that the endomorphism rings of V_i , $1 \le i \le n$, are local. If *V* is a direct sum of the indecomposable submodules W_1, \ldots, W_m , then m = n and there exists a permutation $\sigma \in \mathfrak{S}_n$ with $V_i \cong W_{\sigma(i)}$. (**Hint**: Proof by induction on *n*. Let P_1, \ldots, P_n resp. Q_1, \ldots, Q_m be the families of projections corresponding to the decompositions $V = V_1 \oplus \cdots \oplus V_n$ resp. $V = W_1 \oplus \cdots \oplus W_m$. Let P_{1j} be the restriction $P_1|W_j$ into the image V_1 and Q_{j1} be the restriction $Q_j|V_1$ into the image W_j . Then $\mathrm{id}_{V_1} = \sum_{j=1}^m P_{1j}Q_{j1}$. Since $\mathrm{End}_A V_1$ is local, there exists *r* such that $P_{1r}Q_{r1}$ is an isomorphism. Now, it follows from the analog Exercise 7.1, 2016 CSA-E0 219 Linear Algebra and Applications¹ of for a general (commutative) base ring, that $Q_{r1}: V_1 \to W_r$ is an isomorphism.)

4.4 Let *A* be a ring and *V* be an indecomposable *A*-module which is artinian as well as noetherian. Then $\operatorname{End}_A V$ is a local ring whose Jacobson-radical is a nilideal. (**Hint :** Let $f \in \operatorname{End}_A V$. There exists a $m \in \mathbb{N}$ with $\operatorname{Ker} f^n = \operatorname{Ker} f^m$ and $\operatorname{Img} f^n = \operatorname{Img} f^m$ for all $n \ge m$. Then $V = \operatorname{Ker} f^m \oplus \operatorname{Img} f^m$ and it follows that *f* is nilpotent or bijective.)

4.5 (Theorem of Krull-Schmidt) Let *A* be a ring and *V* be an *A*-module which is artinian as well as noetherian. Then: *V* is a direct sum of indecomposable submodules V_1, \ldots, V_n . If $V = W_1 \oplus \cdots \oplus W_m$ is another direct sum decomposition of *V* into indecomposable submodules, then m = n, and there exists a permutation $\sigma \in \mathfrak{S}_n$ with $V_i \cong W_{\sigma(i)}$.

4.6 Let *H* be a finitely generated abelian group which is a homomorphic image of a torsion-free abelain group of the finite rank *n*. Then *H* is a direct sum of $\leq n$ cyclic groups. (**Hint :** From the hypothesis it follows that *H* is also homomorphic image of a finitely generated torsion-free group of the rank $\leq n$. For the concept of rank, see Supplements S1A.19 and S1A.24.)

4.7 A finitely generated abelian group with commutative automorphism group is either cyclic or isomorphic to $\mathbb{Z} \times \mathbb{Z}_2$. (**Hint :** The endomorphism ring of $\mathbb{Z} \times \mathbb{Z}_2$ ist not commutative. Therefore : The endomorphism ring of a finitly generated abelian group *H* is commutative if and only if *H* is cyclic.)

4.8 Let V be an A-module. We say that V is decomposable of bounded (type $\leq m, m \in \mathbb{N}$) if every direct sum decomposition of V has at most m non-trivial summands.

(a) Let A be a noetherian commutative ring. Then A (as an A-module) is decomposable of bounded type. If A is decomposable of bounded type $\leq m$, but not of type $\leq m - 1$, then the number of idempotents elements in A is 2^m and A is isomorphic to the product ring A_1, \ldots, A_m with indecomposable rings A_1, \ldots, A_m .

(b) An A-module V is decomposable of bounded type $\leq m$ if and only if every set (subset of End_AV) of pairwise commuting A-linear projections have at most 2^m elements. (**Hint**: If End_AV has pairwise distinct commuting A-linear projections $P_1, \ldots, P_s, s > 2^m$, then by (a) the (noetherian) commutative ring $C := \mathbb{Z}[P_1, \ldots, P_s] \subseteq$ End_AV is isomorphic to a product ring $C_1 \times \cdots \times C_n$ with n > m.)

¹ Let $f: V \to W$ and $g: W \to X$ be homomorphisms of modules over a ring. If the composition gf is an isomorphism, then f is injective and $W = \text{Im}gf \oplus \text{Ker}g$.

(c) From part (b) deduce that : If *V* is decomposable of bounded type $\leq m$ and if the homothecy $\vartheta_2 : V \to V$ of *V* by 2 is bijective, then *V* also has at most $2^m A$ -linear involutions. (— Recall that : An element $a \in M$ of a multiplicative monoid *M* is called an involution if $a^2 = e_M$ (= the neural element of *M*). The involutions are invertible elements which are self inverses. The product of two involutions in *M* is again involution if and only if both these elements commute. If *M* is a commutative monoid, then the set Inv*M* of all involutions in *M* is a subgroup of the unit group M^{\times} of *M*. — **Hint :** For a ring *A*, the map γ : Idp $A \to \text{Inv}A, a \mapsto 1 - 2a$, is injective if $2 \cdot 1_A$ is a non-zero divisor in *A* and is bijective if $2 \cdot 1_A$ is a unit in *A*. Moreover, if *A* is commutative, then γ is even a group homomorphism of the additive group Idp*A* (with the addition $a \triangle b := (a - b)^2$) in the multiplicative group Inv*A*. — For a commutative ring *A*, the set Idp*A* of idempotent elements in *A* with the addition \triangle defined above and the multiplication induced from *A* is a Boolean ring. It coincides with *A* if *A* itself is Boolean.)

(d) Let A be a local ring and V be a finite A-module, then V is decomposable of bounded type $\leq \text{Dim}_{A/\mathfrak{m}_A} V/\mathfrak{m}_A V$. (Hint: Use the Lemma von Krull-Nakayama, see Supplements S1A.19 and S1A.31.)

(e) If V is artinian and noetherian, then V is decomposable of bounded type.

(f) Let *A* be a commutative ring and *V* be a noetherian *A*-module. Then *V* is decomposable of bounded type. (— Recall the Noetherian Induction: Let (X, \leq) be a noetherian ordered set. Suppose that a statement A(x) is associated to each element $x \in X$. Assume that the following condition holds: for every $x \in X$, A(y) holds for all x < y, then A(x) also holds. Then A(x) holds for every $x \in X$. **Proof:** Let $Z := \{z \in X \mid A(z) \text{ does not hold}\}$. If $Z \neq \emptyset$, then *Z* has a maximal element, say $x \in Z$. For every $y \in X$ with x < y, $y \notin Z$ and hence A(x) holds for such *y*. But, then by hypothesis, A(x) also holds, a contradiction! Therefore $Z = \emptyset$.

— Hint : We may also assume that A is noetherian. Now use noetherian induction on $\operatorname{Ann}_A V$ to assume that the assertion is true for all residue class rings of A. If there exist elements $a, b \in A$, $a \neq 0$, $b \neq 0$ and ab = 0, then consider V/aV and V/bV. But, if A is an integral domain, then V is decomposable of bounded type $\leq m + n$, if V is of rank m and if the torsion submodule $t_A V$ (whose annihilator is $\neq 0$) is decomposable of bounded type $\leq m - n$. **Remark :** (Principal idempotent s) Direct decompositions of rings can be described canonically by idempotent elements, see Supplement S4.1, Theorem 4.S.4. The indecomposability (connectedness) of a commutative ring A is equivalent (see Supplement S4.1, Corollary 4.S.5) to the condition that A has no idempotents other than 0 and 1. In case of a local ring this condition is satisfied as one can see it from an equation of the form $0 = e - e^2 = e(1 - e)$; since if e is not a unit, e belongs to the Jacobson-radical, and so 1 - e is a unit.

Now, let *A* be an artinian commutative ring. Then by the decomposition theorem for artinian commutative rings (see Supplement S4.5, Theorem 4.S.17) there exists a direct decomposition of *A* into local rings A_i , i = 1, ..., s, corresponding to a decomposition $1 = e_1 + \cdots + e_s$ into pairwise orthogonal idempotent elements $e_i \neq 0$ such that $A_i + a/A(1 - e_i)$. These idempotent elements are uniquelly determined. Namely, if $e \in A$ is idempotent, then the homomorphic image of *e* in A_i and hence coincides with either 0 or 1 in A_i . It follows that *e* is sum of some of the e_i . Every direct factor of *A* is therefore direct product of some of the local rings A_i . This also proves once again the uniqueness assertion in Supplement S4.5, Theorem 4.S.17). The elements e_1, \ldots, e_r are called principal idempotents of *A*.

The principal idempotents of A are obviously distinguished idempotent elements which are $\neq 0$ and not representable as sum of two $\neq 0$ orthogonal idempotent elements. Therefore they are in this sense irreducible. An automorphism of A permutes the principal idempotents of A.)