MA 312 Commutative Algebra / Aug–Dec 2017

(Int PhD. and Ph. D. Programmes)

Download from : htt	cp://www.mat	h.iisc.err	net.in/pat	il/co	urses,	/courses/	'Current Co	urses/	
Tel: +91-(0)80-2293 3212/09449076304				E-mails: patil@math.iisc.ernet.ir					
Lectures : Wednesday and Friday ; 14:00–15:30				Venue: MA LH-2 (if LH-1 is not free)/LH-					
· · · ·	10:30–12:45) ; S Yuesday, Decemb	, (,						
Evaluation Weightage : Assignments : 20% Semi				nars: 30% Final Examination: 50					
	I	Range of Mark	s for Grades (1	otal 100	Marks))			
	Grade S	Grade A	Grad	Grade B		ade C	Grade D	Grade F	
Marks-Range	> 90	76-90	61-	-75	46	-60	35-45	< 35	
	Grade A ⁺	Grade A	Grade B ⁺	Gra	de B	Grade C	Grade D	Grade F	
Marks-Range	> 90	81-90	71-80	61-	-70	51-60	40-50	< 40	
	nite algel		r a field	1 — I	Hilber				
Submit a solutions of * - Exercises ONLY.						Due Date : Wednesday, 13-09-2017			

5.1 Show that each of the following set is an algebraic set and find generators for the ideals of algebraic sets in (a), (c) and (d).

(a) Finite subsets of $\mathbb{A}_{K}^{n} \in \mathbb{N}^{+}$. (b) $\{(\cos t, \sin t) \in \mathbb{A}_{\mathbb{R}}^{2} \mid t \in \mathbb{R}\}$. (c) (Twisted cubic curve) $\{(t, t^{2}, t^{3}) \in \mathbb{A}_{K}^{3} \mid t \in K\}$.

(d) $\{(t^p, t^q) \in \mathbb{A}^2_{\mathbb{C}} \mid t \in \mathbb{C}\}$, where p, q are relatively prime positive integers.

5.2 Let *K* be an arbitrary field and $m, n \in \mathbb{N}^+$.

(a) If we identify \mathbb{A}_K^2 with $\mathbb{A}_K^1 \times \mathbb{A}_K^1$ in a natural way, show that the Zariski topology on \mathbb{A}_K^2 is not the product of the Zariski topologies on the two copies of \mathbb{A}^1_K . Compare these two topologies.

(b) Show that the Zariski topology on \mathbb{A}^n_K is Hausdroff if and only if K is finite.

(c) Show that the Zariski topology of $\mathbb{A}^n_{\mathbb{R}}$ (resp. $\mathbb{A}^n_{\mathbb{C}}$) is weaker than the usual topology on $\mathbb{A}^n_{\mathbb{R}}$ (resp. $\mathbb{A}^n_{\mathbb{C}}$). (d) If $m \leq n$ and we identify \mathbb{A}_K^m as a subset of \mathbb{A}_K^n via the natural inclusion $\varphi : \mathbb{A}_K^m \to \mathbb{A}_K^n$ given by $\varphi(a_1,\ldots,a_m) \mapsto (a_1,\ldots,a_m,0,\ldots,0)$. Then show that the Zariski topology on \mathbb{A}_K^m is the relative topology from the Zariski topology on \mathbb{A}_K^n . Moreover, if W is an algebraic set in \mathbb{A}_K^m then $\varphi(W)$ is an algebraic set in \mathbb{A}_K^m then $\varphi(W)$ is an algebraic set in \mathbb{A}^n_K . What is the relation between the ideals $I_K(W)$ and $I_K(\varphi(W))$?

(e) Give an example to show that the image of an algebraic set under the natural projection map $\mathbb{A}^2_K \to \mathbb{A}^1_K$ need not be an algebraic set.

5.3 Let L be a line, H = V(f) be a hypersurface and V be an algebraic set in \mathbb{A}_K^n . Show that

(a) Either $L \subseteq H$ or $L \cap H$ is a finite set of at most $d = \deg f$ points.

(b) Either $L \subseteq V$ or $L \cap V$ is a finite set of points. (How many!)

(c) Let $\mathcal{C} = V(f)$ and $\mathcal{C}' = V(f')$ be two plane curves in \mathbb{A}^2_K . If f and f' are relatively prime in $K[X_1, X_2]$ then show that $\mathcal{C} \cap \mathcal{C}'$ is a finite set of at most $d \cdot d'$ points, where $d = \deg f$ and $d' = \deg f'$. (Hint: Reduce to the case $f \in K[X_1]$ and $f' \in K[X_2]$ and then use (a).)

S5.1 Show that each of the following set is *not* an algebraic set

Solution that each of the following set is *not* an algebraic set (1) $\{(x,y) \in \mathbb{A}^2_{\mathbb{R}} \mid y = \sin x\}$. (2) $\{(x,y) \in \mathbb{A}^2_{\mathbb{R}} \mid y = \cos x\}$. (3) $\{(x,y) \in \mathbb{A}^2_{\mathbb{R}} \mid y = e^x\}$. (4) $\{(z,w) \in \mathbb{A}^2_{\mathbb{C}} \mid |z|^2 + |w|^2 = 1\}$. (5) $\{(\cos t, \sin t, t) \in \mathbb{A}^3_{\mathbb{R}} \mid t \in \mathbb{R}\}$. (6) $\bigcup_{m \in \mathbb{N}} \mathbb{L}_m$, where \mathbb{L}_m is the line V(Y - mX). (This shows that arbitrary (in fact, even countable) union of algebraic sets need not be an algebraic set. —

Hint: Use the exercise (1.5)(b).)

5.4 Let *K* be an arbitrary field.

(a) If K is infinite then show that $I_K(\mathbb{A}_K^n) = 0$. In particular, if K is infinite, then \mathbb{A}_K^n is irreducible.

(b) If K is finite then find a set of generators for $I_K(\mathbb{A}^n_K) = 0$. Deduce that if K is finite, then \mathbb{A}^n_K is not irreducible.

5.5 Let $L \mid K$ be a field extension with L infinite. For $f_1, \ldots, f_n \in K[T_1, \ldots, T_m]$, put $V_0 := \{ (f_1(t_1, \dots, t_m), \dots, f_n(t_1, \dots, t_m)) \in \mathbb{A}_L^n \mid (t_1, \dots, t_m) \in \mathbb{A}_L^m \}.$

(a) Show by an example that V_0 need not be an K-algebraic set.

(b) Show that the closure V in \mathbb{A}_L^n (in the Zariski topology) of the set V_0 is an irreducible K-algebraic set. (**Hint :** In fact $V = V(\mathfrak{a})$, where \mathfrak{a} is the kernel of the *K*-algebra homomorphism $K[X_1, \ldots, X_n] \to K[T_1, \ldots, T_m]$, defined

by $X_i \mapsto f_i$ for every i = 1, ..., n. — In this situation one says that V is given by a polynomial parametrization with parameters $T_1, ..., T_m$. If m = 1 and $f_i = T^{d_i}$, i = 1, ..., n, for some positive integers $d_1, ..., d_n$ then we say that V is a monomial curve given by the sequence $d_1, ..., d_n$ of positive integers.)

(c) Assume that K = L is algebraically closed and $K[T_1, \ldots, T_m]$ is integral over $K[f_1, \ldots, f_n]$, then show that V_0 is closed, that is, $V_0 = V$.

5.6 (a) A finite commutative reduced \mathbb{C} -algebra $\neq 0$ is isomorphic to a product algebra \mathbb{C}^n , $n \in \mathbb{N}$, where *n* is determined uniquely by the isomorphism type of the algebra. Every such a \mathbb{C} -algebra is cyclic.

(b) A finite commutative \mathbb{R} -algebra $\neq 0$ is isomorphic to a product algebra $\mathbb{R}^m \times \mathbb{C}^n$, $m, n \in \mathbb{N}$, where the natural numbers m, n are determined uniquely by the isomorphism type of the algebra. Every such \mathbb{R} -algebra is cyclic.

5.7 Let *K* be a field. If the unit group K^{\times} of *K* is finitely generated, then *K* is finite. (One can generalise this result to commutative rings which has only finitely many maximal ideals. — Such rings are called semilocal. See "Bemerkungen über die Einheitengruppen semilokaler Ringe", Math. Phys. Semesterberichte **17**, 168-181(1970).)

5.8 Let *K* be a field. If *K* is finite type over \mathbb{Z} , then *K* is finite. (**Hint**: If Char*K* = 0, then show that \mathbb{Q} is finite type over \mathbb{Z} -algbera.)

5.9 The Hilbert's Nullstellensatz (HNS3) can be easily proved for uncountable fields (for example, for \mathbb{R} and \mathbb{C}) as follows :

Let *K* be a countable field and *L* be a field which is finite type over *K*, $L = K[x_1, ..., x_n]$. If $x \in L$ is not algebraic over *K*, then the elements $(x - a)^{-1}$, $a \in K$, are *K*-linearly independent On the other hand $\text{Dim}_K L$ is countable. (**Remark :** Analogously one proves : Let *K* be a uncountable field and *L* be a field. If *L* is generated as an *K*-algebra by x_i , $i \in I$, with Card I < Card K. Then every $x \in L$ is algebraic over *K*.)

5.10 Let *K* be a field, $P := K[X_1, ..., X_n]$ and m be a maximal ideal in *P*. Then there exists a generating system $f_1, ..., f_n$ of the ideal m of the form $f_i \in K[X_1, ..., X_i]$, $1 \le i \le n$. (**Hint :** Induction on *n*. Let $A := K[X_1, ..., X_{n-1}]$, $n := m \cap A$. Show that m/nP is a principal ideal in $P/nP \cong (A/n)[X_n]$.)

5.11 Let *K* be a field. A commutative *K*-algebra of finite type in aritinian if and only if it is finite over *K*. (**Hint :** Use HNS3.)

5.12 Let *K* be a field which is *not* algebraically closed.

(a) For every $m \in \mathbb{N}_+$, there exists a non-constant polynomial $f_m \in K[X_1, \ldots, X_m]$ whose zero-set in K^m is singleton $\{0 = (0, \ldots, 0)\}$, i.e. $V_K(f) = \{(0, \ldots, 0)\}$. (Hint: Induction on m. For $m \ge 2$, put $f_{m+1} = f_2(f_m, X_{m+1})$.)

(b) Every *K*-algebraic set $V \subseteq K^n$, $n \ge 1$, is a hypersurface in K^n , i.e. it is the zero-set of a single polynomial, in sympols : $V = V_K(f)$ with $f \in K[X_1, ..., X_n]$. (Hint : Use (a).)

5.13 (Generalisation of HNS1) Let *K* be an arbitrary field, *S* be the set of all polynomials in $K[X_1, \ldots, X_n]$ that have no zeros in K^n , i.e. $S := \{f \in K[X_1, \ldots, X_n] \mid V_K(f) = \emptyset\}$ and let \mathfrak{a} be an ideal in $K[X_1, \ldots, X_n]$. If $S \cap \mathfrak{a} = \emptyset$, then $V_K(\mathfrak{a}) \neq \emptyset$. (**Hint**: Use the Exercise ???.)

5.14 (HNS4) Let *K* be an algebraically closed field. Then the map $K^n \to \text{Spm } K[X_1, \ldots, X_n]$, $a \mapsto \mathfrak{m}_a = \langle X_1 - a_1, \ldots, X_n - a_n \rangle$ is bijective. Moreover, for any ideal $\mathfrak{a} \in \mathfrak{I}(K[X_1, \ldots, X_n], a \in V_K(\mathfrak{a})$ if and only if $\mathfrak{a} \subseteq \mathfrak{m}_a$.

5.15 Let E | K be an arbitrary field extension and $\mathfrak{a} \subsetneq K[X_1, \ldots, X_n]$ be a non-unit ideal. Then the extended ideal $\mathfrak{a} E[X_1, \ldots, X_n] \subsetneq E[X_1, \ldots, X_n]$ is also a non-unit ideal. (**Hint:** Apply HNS1 to the field extension $\overline{E} | K$, where \overline{E} denote an algebraic closure of E.)

5.16 Prove the equivalence of HNS4 and HNS1. (Hint: Use the above Exercise.)

S5.1 In this exercise we want to collect the fundamental properties of the product algebras K^I , where K is a field and I is *finite* set. K^I is the K-algebra of all functions $I \to K$. Any map $f: I \to J$ of finite sets induces a K-algebra homomorphism $f^*: K^J \to K^I$, $\psi \mapsto \psi f$.

(a) Let $Idp(K^I)$ be the set of all idempotent elements in K^I . As for any commutative ring, this set is a Boolean ring with addition $e \triangleright f := (e - f)^2$ and with multiplication of the given ring. Let $e_i := (\delta_{ij})_{j \in I} \in K^I$, $i \in I$. Show that the map $J \mapsto e_J := \sum_{j \in J} e_j$ is an isomorphism $\mathfrak{P}(I) \to Idp(K^I)$ of Boolean rings, where the power set $\mathfrak{P}(I) = \mathbb{F}_2^I$ carries the canonical Boolean ring structure. In particular, $e_i, i \in I$ are the principal idempotents of K^I which are, by definition, the atoms in the Boolean ring $Idp(K^I)$. (Remember that in any Boolean ring $B, a \leq b$ if and only if ab = a, is the canonical order on B.)

(b) Let \mathcal{R} be the set of all equivalence relations on (the finite set) I with |I| = n. The cardinality $|\mathcal{R}|$ is, by definition, the n-th Bell number. For $R \in \mathcal{R}$, we denote by π_R the canonical projection $I \to I/R$. Show that the map $R \mapsto C_R := \text{Im}(\pi_R^*)$ is an order reversing bijection of \mathcal{R} onto the set of all K-subalgebras of K^I . The inverse map is given by $C \mapsto R_C$, where for a K-subalgebra $C \subseteq K^I$, $R_C \in \mathcal{R}$ is the equivalence relation $i \equiv_C i'$ if and only if $\varphi(i) = \varphi(i')$ for all $\varphi \in C$.

In particular, the set of *K*-subalgebras of K^I is finite of cardinality β_n , and any *K*-subalgebra of K^I is again isomorphic to a product *K*-algebra K^J , more precisely, $C_R \cong K^{I/R}$ for all $R \in \mathbb{R}$. With the notation of the part a), the principal idempotents of C_R are $e_X \in K^I$, $X \in I/R$. — For an element $x = (x_i)_{i \in I} \in K^I$, the subalgebra K[x] generated by x is C_R where R is the equivalence relation

$$\equiv_x i'$$
 if and only if $x_i = x_{i'}$.

In particular, $K[x] = K^{I}$ if and only if the components of x are pairwise distinct. The K-algebra K^{I} has a primitive element if and only if $|K| \ge n = |I|$. (Remember that, in general, a primitive element of an algebra is a generating element of the given algebra.)

(c) The map $J \mapsto \mathfrak{a}_J := K^I e_J$ is an order preserving bijection from $\mathfrak{P}(I)$ onto the set of all ideals in K^I . The inverse map is given by $\mathfrak{a} \mapsto D(\mathfrak{a}) := I \setminus V(\mathfrak{a})$, where

 $\mathbf{V}(\mathfrak{a}) := \{i \in I \mid \varphi(i) = 0 \text{ for all } \varphi \in \mathfrak{a}\}.$

 $(\mathfrak{a} \mapsto V(\mathfrak{a})$ is an order reversing bijection.) The quotient algebra K^{I}/\mathfrak{a}_{J} is isomorphic to $K^{I\setminus J} = K^{V(\mathfrak{a}_{J})}$. In particular, the map $i \mapsto \mathfrak{m}_{i} := \{\varphi \in K^{I} \mid \varphi(i) = 0\} = \mathfrak{a}_{I\setminus\{i\}}$ is a bijection of I onto K-Spec $K^{I} = \text{Spm} K^{I} =$ Spec K^{I} . For an arbitrary ideal $\mathfrak{a} \subseteq K^{I}$, one has $\mathfrak{a} = \bigcap_{i \in V(\mathfrak{a})} \mathfrak{m}_{i}$.

S5.2 Let K be a field. Two elements x, y in a K-algebra A are said to be conjugate over K if they are algebraic over K and if they have the same minimal polynomial over K.

(a) Let L|K be a normal field extension. Show that $x, y \in L$ are conjugate over K if and only if there exists a K-algebra automorphism $\psi: L \to L$ such that $\psi(x) = y$.

(b) Let L|K be a normal field extension and let L_1 be an intermediary field such that every polynomial in K[X] which has a zero in L has a zero in L_1 . Then show that $L = L_1$. (Hint: One can easily reduce to the case that L is finite over K. If K is finite, then the assertion easily from that fact that L has a primitive element. Now, if K is infinite and if $\varphi_1, \ldots, \varphi_r$ are all K-automorphisms of L, then $L = \bigcup_{i=1}^r \varphi_i(L_1)$ by the part a) and hence $L = L_1$.)

S5.3 Let *K* be a field, *A* be a *K*-algebra, $a_1, \ldots, a_n \in K$ be distinct elements and let $x \in A$ be such that $x - a_1, \ldots, x - a_n$ are units in *A*. Then $1, x, \ldots, x^{n-1}$ are linearly independent over *K* if and only if the elements $(x - a_1)^{-1}, \ldots, (x - a_n)^{-1}$ are linearly independent over *K*. (**Proof :** Put $y_i = (x - a_i)^{-1}$ and $y := \prod_{i=1}^n (x - a_i)$. Then $y \in A^{\times}$ and if y_1, \ldots, y_n are linearly independent over *K*, then yy_1, \ldots, yy_n linearly independent over *K* in $K + Kx + \cdots Kx^{n-1}$. Conversely, if $1, x, \ldots, x^{n-1}$ are linearly independent over *K* and if $b_1y_1 + \cdots + b_ny_n = 0$ with $b_i \in K$, then multiply by *y* and compute the co-efficient of x^{n-1} to get $b_1 + \cdots + b_n = 0$. Therefore $0 = \sum_{i=1}^n b_i(y_i - y_n) = \sum_{i=1}^{n-1} b_i(a_i - a_n)y_iy_n$ and so y_1, \ldots, y_n are linearly independent over *K* by induction on *n*.

S5.4 Let *K* be a *finite* field and $f \in K[X_1, \ldots, X_n]$.

(a) (Chevalley's Theorem) If $0 \in V_K(f)$ and $n > \deg(f)$, then V(f) has a non-trivial K-rational point $a \in K^n$, $a \neq 0$. (**Proof:** Suppose on the contrary that $V_K(f) = \{0\}$. — Use the following simple Lemma ??. Put $F = 1 - f^{q-1}$. Then $R(F) = \prod_{i=1}^{n} (1 - X_i^{q-1})$. (check this equality by evaluating both sides on every $a \in K^n$ and using (2.a), (2.d) and (1) in the Lemma ??). Now, use (2.b) to get $(q-1) \cdot \deg(f) = \deg(F) \ge \deg(R(F)) = \deg(\prod_{i=1}^{n} (1 - X_i^{q-1})) = (q-1) \cdot n$ and so $\deg(f) \ge n$. a contradiction.

5.S.1 Lemma Let K be a finite field with q elements and f, $g \in K[X_1, ..., X_n]$. Then

(1) If $\deg_{X_i}(f) \le q-1$ for every $i=1,\ldots,n$ and f(a)=0 for every $a \in K^n$ then f=0.

(2) There exists a unique polynomial $R(f) \in K[X_1, ..., X_n]$ such that: (2.a) $\deg_{X_i}(R(f)) \leq q-1$ for all i = 1, ... n. (2.b) $\deg(R(f)) \leq \deg(f)$. (2.c) R(f+g) = R(f) + R(g). (2.d) The polynomial function $f - R(f) : K^n \to K$ is the zero function, that is, f(a) = R(f)(a) for every $a \in K^n$.) (b) If f is homogeneous of degree 2 and $n \ge 3$, then $V_K(f)$ has a non-trivial K-rational point. (Hint: Use Chevalley's Theorem in (a).)

S5.5 Let L | K be a field extension. A K-algebraic set $V \subseteq L^n$ is called a K-cone (with vertex at the origin) if $V = V_L(F_1, \ldots, F_r)$ for some homogeneous polynomials $F_1, \ldots, F_r \in K[X_1, \ldots, X_n]$. For an algebraic set $V \subseteq K^n$, show that V is a cone if and only if for each $a \in V$, $a \neq 0$, the line L(a, 0) joining a and 0 is contained in V.

S5.6 Let L | K be a *normal* field extension. Two points $a = (a_1, ..., a_n)$ and $b = (b_1, ..., b_n) \in L^n$ are called *K*-c on j u g at e s if there exists a *K*-automorphism σ of *L* such that $\sigma(b_i) = a_i$ for every i = 1, ..., n.

(a) Let $V \subseteq L^n$ be an K-algebraic set. If $a \in V$, then V contains all K-conjugates of a.

(b) Let $V \subseteq L^n$ be a finite set of points with the property that : if $a \in V$ then V contains all K-conjugates of a. Then show that V is a K-algebraic set. (Hint: If $a \in L^n$, then there exist an ideal $\mathfrak{a} \subseteq K[X_1, \ldots, X_n]$ and a K-algebra isomorphism $K[a_1, \ldots, a_n] \cong K[X_1, \ldots, X_n]/\mathfrak{a}$.)

S5.7 Let L | K be a field extension and $V \subseteq L^n$ be an *L*-algebraic set. Then the set $V_K := V \cap K^n$ of all *K*-rational points of *V* is an *K*-algebraic set in K^n .

S5.8 Let $\mathbb{Z}^n := \{(a_1, \ldots, a_n) \mid a_i \in \mathbb{Z} \text{ for every } i = 1, \ldots, n\}$ be the set of lattice points. If *V* is an algebraic set in \mathbb{C}^n with $\mathbb{Z}^n \subseteq V$, then show that $V = \mathbb{C}^n$.