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5 . F i n i t e a l g e b r a s o v e r a f i e l d — Hilbert’s Nullstennensatz
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5.1 Show that each of the following set is an algebraic set and find generators for the ideals of algebraic sets
in (a), (c) and (d).
(a) Finite subsets ofAn

K , ∈N+. (b) {(cos t,sin t) ∈A2
R) | t ∈R}.

(c) ( Tw i s t e d c u b i c c u r v e ) {(t, t2, t3) ∈A3
K | t ∈ K}.

(d) {(t p, tq) ∈A2
C | t ∈ C}, where p, q are relatively prime positive integers.

5.2 Let K be an arbitrary field and m, n ∈N+.
(a) If we identify A2

K with A1
K ×A1

K in a natural way, show that the Zariski topology on A2
K is not the

product of the Zariski topologies on the two copies ofA1
K . Compare these two topologies.

(b) Show that the Zariski topology onAn
K is Hausdroff if and only if K is finite.

(c) Show that the Zariski topology ofAn
R (resp. An

C) is weaker than the usual topology onAn
R (resp. An

C).
(d) If m ≤ n and we identify Am

K as a subset of An
K via the natural inclusion ϕ : Am

K → An
K given by

ϕ(a1, . . . ,am) 7→ (a1, . . . ,am,0, . . . ,0). Then show that the Zariski topology on Am
K is the relative topology

from the Zariski topology on An
K . Moreover, if W is an algebraic set in Am

K then ϕ(W ) is an algebraic set in
An

K . What is the relation between the ideals IK(W ) and IK(ϕ(W ))?
(e) Give an example to show that the image of an algebraic set under the natural projection mapA2

K →A1
K

need not be an algebraic set.

5.3 Let L be a line, H = V( f ) be a hypersurface and V be an algebraic set inAn
K . Show that

(a) Either L⊆ H or L∩H is a finite set of at most d = deg f points.
(b) Either L⊆V or L∩V is a finite set of points. (How many!)
(c) Let C= V( f ) and C ′ = V( f ′) be two plane curves in A2

K . If f and f ′ are relatively prime in K[X1,X2]
then show that C∩C ′ is a finite set of at most d ·d ′ points , where d = deg f and d ′ = deg f ′. (Hint : Reduce
to the case f ∈ K[X1] and f ′ ∈ K[X2] and then use (a).)

S5.1 Show that each of the following set is not an algebraic set
(1) {(x,y) ∈A2

R | y = sinx}. (2) {(x,y) ∈A2
R | y = cosx}. (3) {(x,y) ∈A2

R | y = ex}.
(4) {(z,w) ∈A2

C ||z|2 + |w|2= 1}. (5) {(cos t,sin t, t) ∈A3
R | t ∈R}. (6)

⋃
m∈NLm, where Lm is the line

V(Y −mX). (This shows that arbitrary (in fact, even countable) union of algebraic sets need not be an algebraic set. —
Hint : Use the exercise (1.5)(b).)

5.4 Let K be an arbitrary field.
(a) If K is infinite then show that IK(A

n
K) = 0. In particular, if K is infinite, thenAn

K is irreducible.
(b) If K is finite then find a set of generators for IK(A

n
K) = 0. Deduce that if K is finite, then An

K is not
irreducible.

5.5 Let L |K be a field extension with L infinite. For f1, . . . , fn ∈ K[T1, . . . ,Tm], put
V0 := {( f1(t1, . . . , tm), . . . , fn(t1, . . . , tm)) ∈An

L | (t1, . . . , tm) ∈Am
L } .

(a) Show by an example that V0 need not be an K-algebraic set.
(b) Show that the closure V in An

L (in the Zariski topology) of the set V0 is an irreducible K-algebraic set.
(Hint : In fact V = V(a), where a is the kernel of the K-algebra homomorphism K[X1, . . . ,Xn]→ K[T1, . . . ,Tm], defined
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by Xi 7→ fi for every i= 1, . . . ,n. — In this situation one says that V is given by a p o l y n o m i a l p a r a m e t r i z a t i o n
with parameters T1, . . . ,Tm. If m = 1 and fi = T di , i = 1, . . . ,n, for some positive integers d1, . . . ,dn then we say that V
is a m o n o m i a l c u r v e given by the sequence d1, . . . ,dn of positive integers.)
(c) Assume that K = L is algebraically closed and K[T1, . . . ,Tm] is integral over K[ f1, . . . , fn], then show that
V0 is closed, that is, V0 =V .

5.6 (a) A finite commutative reduced C-algebra 6= 0 is isomorphic to a product algebra Cn, n ∈N, where n
is determined uniquely by the isomorphism type of the algebra. Every such a C-algebra is cyclic.
(b) A finite commutative R-algebra 6= 0 is isomorphic to a product algebra Rm×Cn, m,n ∈N,where the
natural numbers m,n are determined uniquely by the isomorphism type of the algebra. Every such R-algebra
is cyclic.

5.7 Let K be a field. If the unit group K× of K is finitely generated, then K is finite. (One can generalise this
result to commutative rings which has only finitely many maximal ideals. — Such rings are called s e m i l o c a l. See
“Bemerkungen über die Einheitengruppen semilokaler Ringe”, Math. Phys. Semesterberichte 17, 168-181(1970).)

5.8 Let K be a field. If K is finite type over Z, then K is finite. (Hint : If CharK = 0, then show that Q is finite
type over Z-algbera.)

5.9 The Hilbert’s Nullstellensatz (HNS3) can be easily proved for uncountable fields (for example, for R
and C) as follows :
Let K be a countable field and L be a field which is finite type over K, L = K[x1, . . . ,xn]. If x ∈ L is not
algebraic over K, then the elements (x−a)−1, a ∈ K, are K-linearly independent On the other hand DimKL
is countable. (Remark : Analogously one proves : Let K be a uncountable field and L be a field. If L is generated as
an K-algebra by xi, i ∈ I, with Card I < CardK. Then every x ∈ L is algebraic over K.)

5.10 Let K be a field, P :=K[X1, . . . ,Xn] and m be a maximal ideal in P. Then there exists a generating system
f1, . . . , fn of the ideal m of the form fi ∈K[X1, . . . ,Xi], 1≤ i≤ n. (Hint : Induction on n. Let A := K[X1, . . . ,Xn−1],
n :=m∩A. Show that m/nP is a principal ideal in P/nP∼= (A/n)[Xn].)

5.11 Let K be a field. A commutative K-algebra of finite type in aritinian if and only if it is finite over K.
(Hint : Use HNS3.)

5.12 Let K be a field which is not algebraically closed.
(a) For every m ∈ N+, there exists a non-constant polynomial fm ∈ K[X1, . . . ,Xm] whose zero-set in Km

is singleton {0 = (0, . . . ,0)}, i.e. VK( f ) = {(0, . . . ,0)}. (Hint : Induction on m. For m ≥ 2, put fm+1 =
f2( fm,Xm+1).)
(b) Every K-algebraic set V ⊆ Kn ,n≥ 1, is a hypersurface in Kn, i.e. it is the zero-set of a single polynomial,
in sympols : V = VK( f ) with f ∈ K[X1, . . . ,Xn]. (Hint : Use (a).)

5.13 ( G e n e r a l i s a t i o n o f H N S 1 ) Let K be an arbitrary field, S be the set of all polynomials in
K[X1, . . . ,Xn] that have no zeros in Kn, i.e. S := { f ∈ K[X1, . . . ,Xn] | VK( f ) = /0} and let a be an ideal in
K[X1, . . . ,Xn]. If S∩a= /0, then VK(a) 6= /0. (Hint : Use the Exercise ???.)

5.14 ( H N S 4 ) Let K be an algebraically closed field. Then the map Kn→ Spm K[X1, . . . ,Xn], a 7→ma =
〈X1− a1, . . . ,Xn− an〉 is bijective. Moreover, for any ideal a ∈ I(K[X1, . . . ,Xn], a ∈ VK(a) if and only if
a⊆ma.

5.15 Let E |K be an arbitrary field extension and a( K[X1, . . . ,Xn] be a non-unit ideal. Then the extended
ideal aE[X1, . . . ,Xn] ( E[X1, . . . ,Xn] is also a non-unit ideal. (Hint : Apply HNS1 to the field extension E |K,
where E denote an algebraic closure of E.)

5.16 Prove the equivalence of HNS4 and HNS1. (Hint : Use the above Exercise.)
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S5.1 In this exercise we want to collect the fundamental properties of the product algebras KI, where K is a
field and I is finite set. KI is the K-algebra of all functions I→ K. Any map f : I→ J of finite sets induces
a K-algebra homomorphism f ∗ : KJ → KI, ψ 7→ ψ f .
(a) Let Idp(KI) be the set of all idempotent elements in KI. As for any commutative ring, this set is a
Boolean ring with addition eB f := (e− f )2 and with multiplication of the given ring. Let ei := (δi j) j∈I ∈KI,
i ∈ I. Show that the map J 7→ eJ := ∑ j∈J e j is an isomorphism P(I)→ Idp(KI) of Boolean rings, where the
power set P(I) = FI

2 carries the canonical Boolean ring structure. In particular, ei, i ∈ I are the p r i n c i p a l
i d e m p o t e n t s of KI which are, by definition, the atoms in the Boolean ring Idp(KI). (Remember that in any
Boolean ring B, a≤ b if and only if ab = a, is the canonical order on B.)
(b) Let R be the set of all equivalence relations on (the finite set) I with |I|= n. The cardinality |R| is, by
definition, the n - t h B e l l n u m b e r . For R ∈R, we denote by πR the canonical projection I→ I/R. Show
that the map R 7→CR := Im (π∗R) is an order reversing bijection of R onto the set of all K-subalgebras of KI .
The inverse map is given by C 7→ RC, where for a K-subalgebra C ⊆ KI, RC ∈ R is the equivalence relation

i≡C i′ if and only if ϕ(i) = ϕ(i′) for all ϕ ∈C .

In particular, the set of K-subalgebras of KI is finite of cardinality βn, and any K-subalgebra of KI is again
isomorphic to a product K-algebra KJ, more precisely, CR ∼= KI/R for all R ∈R. With the notation of the part
a), the principal idempotents of CR are eX ∈ KI, X ∈ I/R. — For an element x = (xi)i∈I ∈ KI, the subalgebra
K[x] generated by x is CR where R is the equivalence relation

i≡x i′ if and only if xi = xi′ .

In particular, K[x] = KI if and only if the components of x are pairwise distinct. The K-algebra KI has a
primitive element if and only if |K| ≥ n = |I|. (Remember that, in general, a p r i m i t i v e e l e m e n t of an algebra
is a generating element of the given algebra.)
(c) The map J 7→ aJ := KIeJ is an order preserving bijection from P(I) onto the set of all ideals in KI. The
inverse map is given by a 7→ D(a) := I \V(a), where

V(a) := {i ∈ I | ϕ(i) = 0 for all ϕ ∈ a} .
(a 7→ V(a) is an order reversing bijection.) The quotient algebra KI/aJ is isomorphic to KI\J = KV(aJ).
In particular, the map i 7→mi := {ϕ ∈ KI | ϕ(i) = 0}= aI\{i} is a bijection of I onto K-SpecKI = SpmKI =

SpecKI. For an arbitrary ideal a⊆ KI, one has a=
⋂

i∈V(a)mi.

S5.2 Let K be a field. Two elements x,y in a K-algebra A are said to be c o n j u g a t e over K if they are
algebraic over K and if they have the same minimal polynomial over K.
(a) Let L|K be a normal field extension. Show that x,y ∈ L are conjugate over K if and only if there exists
a K-algebra automorphism ψ : L→ L such that ψ(x) = y.
(b) Let L|K be a normal field extension and let L1 be an intermediary field such that every polynomial in
K[X ] which has a zero in L has a zero in L1. Then show that L = L1. (Hint : One can easily reduce to the case
that L is finite over K. If K is finite, then the assertion easily from that fact that L has a primitive element. Now, if K
is infinite and if ϕ1, . . . ,ϕr are all K-automorphisms of L, then L =

⋃r
i=1 ϕi(L1) by the part a) and hence L = L1.)

S5.3 Let K be a field, A be a K-algebra, a1, . . . ,an ∈ K be distinct elements and let x ∈ A be such that
x−a1, . . . ,x−an are units in A. Then 1,x, . . . ,xn−1 are linearly independent over K if and only if the elements
(x− a1)

−1, . . . ,(x− an)
−1 are linearly independent over K. (Proof : Put yi = (x− ai)

−1 and y := ∏
n
i=1(x− ai).

Then y ∈ A× and if y1, . . . ,yn are linearly independent over K, then yy1, . . . ,yyn linearly independent over K in
K +Kx+ · · ·Kxn−1. Conversely, if 1,x, . . . ,xn−1 are linearly independent over K and if b1y1 + · · ·+ bnyn = 0 with
bi ∈K, then multiply by y and compute the co-efficient of xn−1 to get b1+ · · ·+bn = 0. Therefore 0 = ∑

n
i=1 bi(yi−yn) =

∑
n−1
i=1 bi(ai−an)yiyn and so y1, . . . ,yn are linearly independent over K by induction on n. •)

S5.4 Let K be a finite field and f ∈ K[X1, . . . ,Xn].
(a) ( C h e v a l l e y ’ s T h e o r e m ) If 0 ∈ VK( f ) and n > deg( f ), then V( f ) has a non-trivial K-rational
point a ∈ Kn, a 6= 0. (Proof : Suppose on the contrary that VK( f ) = {0}. — Use the following simple Lemma ??.
Put F = 1− f q−1. Then R(F) = ∏

n
i=1(1−Xq−1

i ). (check this equality by evaluating both sides on every a ∈ Kn

and using (2.a), (2.d) and (1) in the Lemma ??). Now, use (2.b) to get (q− 1) · deg( f ) = deg(F) ≥ deg(R(F)) =

deg(∏n
i=1(1−Xq−1

i )) = (q−1) ·n and so deg( f )≥ n. a contradiction. •

5.S.1 Lemma Let K be a finite field with q elements and f , g ∈ K[X1, . . . ,Xn]. Then
(1) If degXi

( f )≤ q−1 for every i = 1, . . . ,n and f (a) = 0 for every a ∈ Kn then f = 0.
(2) There exists a unique polynomial R( f ) ∈ K[X1, . . . ,Xn] such that : (2.a) degXi

(R( f )) ≤ q− 1 for all i = 1, . . .n.
(2.b) deg(R( f ))≤ deg( f ). (2.c) R( f +g) = R( f )+R(g). (2.d) The polynomial function f −R( f ) : Kn→ K is the
zero function, that is, f (a) = R( f )(a) for every a ∈ Kn. )
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(b) If f is homogeneous of degree 2 and n≥ 3, then VK( f ) has a non-trivial K-rational point. (Hint : Use
Chevalley’s Theorem in (a).)

S5.5 Let L |K be a field extension. A K-algebraic set V ⊆ Ln is called a K-c o n e ( w i t h v e r t e x a t
t h e o r i g i n ) if V = VL(F1, . . . ,Fr) for some homogeneous polynomials F1, . . . ,Fr ∈ K[X1, . . . ,Xn]. For an
algebraic set V ⊆ Kn, show that V is a cone if and only if for each a ∈V , a 6= 0, the line L(a,0) joining a and
0 is contained in V .

S5.6 Let L |K be a normal field extension. Two points a = (a1, . . . ,an) and b = (b1, . . . ,bn) ∈ Ln are called
K-c o n j u g a t e s if there exists a K-automorphism σ of L such that σ(bi) = ai for every i = 1, . . .n.
(a) Let V ⊆ Ln be an K-algebraic set . If a ∈V , then V contains all K-conjugates of a.
(b) Let V ⊆ Ln be a finite set of points with the property that : if a ∈V then V contains all K-conjugates
of a. Then show that V is a K-algebraic set. (Hint : If a ∈ Ln, then there exist an ideal a ⊆ K[X1, . . . ,Xn] and a
K-algebra isomorphism K[a1, . . . ,an]∼= K[X1, . . . ,Xn]/a.)

S5.7 Let L |K be a field extension and V ⊆ Ln be an L-algebraic set. Then the set VK := V ∩Kn of all
K-rational points of V is an K-algebraic set in Kn.

S5.8 Let Zn := {(a1, . . . ,an) | ai ∈Z for every i = 1, . . . ,n} be the set of lattice points. If V is an algebraic
set in Cn with Zn ⊆V , then show that V = Cn.
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