MA 312 Commutative Algebra / Aug-Dec 2017

(Int PhD. and Ph. D. Programmes)

Download from : http	p://www.math	.iisc.err	net.in/pat	il/cou	irses/cours	es/Current (Courses/	
Tel: +91-(0)80-2293 3212/09449076304				E-mails: patil@math.iisc.ernet.in				
Lectures : Wednesday and Friday ; 14:00–15:30				Venue: MA LH-2 (if LH-1 is not free)/LH-1				
	0:30–12:45) ; Sa lesday, Decembe	, (,					
Evaluation Weightage : Assignments : 20%				Seminars : 30% Final Examination : 50%				
Range of Marks for Grades (Total 100 Marks)								
	Grade S	Grade A	A Grad	e B	Grade C	Grade D	Grade F	
Marks-Range	> 90	76-90	61-	75	46-60	35-45	< 35	
	Grade A ⁺	Grade A	Grade B ⁺	Grad	de B Grad	e C Grade D	Grade F	
Marks-Range	> 90	81-90	71-80	61-	-70 51—	60 40-50	< 40	
6. Rings and Modules of Fractions — Localisation								

6.1 Let *A* be a commutative ring, $S \subseteq A$ be a multiplicative system in *A* and let *V* be an *A*-module. We say that an element $a \in A$ is a non-zero divisor on *V*, if the map $\lambda_a : V \to V$, $x \mapsto ax$ is injective. If $a \in A$ is a non-zero divisor on *V*, then a/1 is a non-zero divisor on the A_S -module V_S . In particular, if $a \in A$ is a non-zero divisor in *A*, then a/1 is a non-zero divisor in A_S .

6.2 Let *A* be a commutative ring and let $T \subseteq S \subseteq A$ be multiplicative systems in *A*. Then the A_T -algebra A_S is canonically isomorphic to the ring of fractions of A_T with respect to the image of *S* in A_T under the canonical map $\iota_T : A \to A_T$, i.e. $A_S \cong (A_T)_{\iota_T(S)}$ as A_T -algebras.

6.3 (so(Saturated multiplicative systems) Let *A* be a commutative ring. For every multiplicative system $S \subseteq A$, the subset $S' := \{a \in A \mid a \text{ divide some } s \in S\}$ is a multiplicative system in *A* and $S' = \iota_S^{-1}((A_S)^{\times})$, where $\iota_S : A \to A_S$ is the canonical ring homomorphism $a \mapsto a/1$. Further, $S \subseteq S'$ and (S')' = S'. If *S* and *T* are multiplicative systems in *A*, then A_S and A_T are isomorphic *A*- algebras if and only if S' = T'. (**Remark :** The multiplicative system *S'* is called the satuation of *S*; *S* is called saturated if S = S'.)

6.4 Let A be a non-zero commutative ring, S be the multiplicative system of non-zero divisors in A. Then the total quotient ring $Q(A) := A_S$ is a non-zero ring. An A-module V is called module with rank over A if V_S is a free A_S -module; in this case, we also say that V has rank over A and put:

$$\operatorname{Rank}_A V := \operatorname{Rank}_A V_S$$
.

(a) Every free A-module V is a module with rank over A and in this case rank is nothing but the rank of the free A-module V, i.e. *the* cardinality of an A-basis of V.

(b) If the *A*-module *V* is a module with rank over *A*, then the A_S -module V_S is a module with rank over A_S . In fact, V_S has an A_S -basis of the form $x_i/1, i \in I$; moreover, $x_i, i \in I$, is a maximal linearly independent family in *V*.

(c) Suppose that *A* is an integral domain. Then $S = A \setminus \{0\}$ and $Q(A) = A_S$ is the quotient field of *A* and hence every A_S -module is free. In particular, every *A*-module *V* has rank over *A*; moreover, Rank_A*V* is *the* cardinality of a maximal linearly independent family in *V*.

6.5 Let *A* be a commutative ring, *S* be the multiplicative system of non-zero divisors in *A* and let *V* be an *A*-module. Then the kernel of the canonical map $\iota_S^V : V \to V_S$ is the torsion submodule

$$\mathbf{t}_A V := \{ x \in V \mid sx = 0 \text{ for some } s \in S \}$$

of V. We say that V is torsion (respectively torsion-free) if $t_A V = V$ (respectively $t_A V = 0$). Show that :

(a) If V is finitely generated torsion-free with rank over A, then V is isomorphic to a submodule of a finite free A-module

(b) For an abelain group *H*, the following are equivalent :

(i) *H* is isomorphic to a subgroup of the additive group $(\mathbb{R}, +)$.

(ii) *H* is torsion free and $\operatorname{Card}(H) \leq \operatorname{Card}(\mathbb{R})$. (Hint: If $\operatorname{Card}(H) \leq \operatorname{Card}(\mathbb{R})$ then $\operatorname{Rank}(H) \leq \operatorname{Card}(\mathbb{R})$.)

6.6 Let *A* be a commutative ring, *S* a multiplicative system in *A* and *V*, *W* be modules over *A*. Then we have the canonical homomorphism

$$\Phi$$
: Hom_A(V, W)_S \rightarrow Hom_{As}(V_S, W_S),

Show that :

(a) If V is a finite A-module, then Φ injective.

(b) If V is a finite A-module and if the canonical homomorphism $W \to W_S$ injective (in this case one say that W is S-torsion-free), then Φ bijective.

(c) If V is finitely presented A-module, then Φ bijective.

(**Hint :** Consider an exact sequence $G \xrightarrow{f} F \xrightarrow{g} V \longrightarrow 0$ with finite free A-modules F, G and the canonical commutative diagram

$$0 \longrightarrow \operatorname{Hom}_{A}(V,W)_{S} \xrightarrow{g} \operatorname{Hom}_{A}(F,W)_{S} \xrightarrow{g} \operatorname{Hom}_{A}(G,W)_{S}$$

$$\Phi \downarrow \qquad \Phi_{F} \downarrow \qquad \Phi_{G} \downarrow$$

$$0 \longrightarrow \operatorname{Hom}_{A_{S}}(V_{S},W_{S}) \xrightarrow{f'} \operatorname{Hom}_{A_{S}}(F_{S},W_{S}) \xrightarrow{f} \operatorname{Hom}_{A_{S}}(G_{S},W_{S})$$

with exact rows, Φ_F , Φ_G are bijective and hence Φ is bijective.)

6.7 (a) Let *A* be an integral domain, $S := A \setminus \{0\}$ and $K := A_S = Q(A)$. Show that if the canonical homomorphism

$$\operatorname{Hom}_{A}(K,A)_{S} \longrightarrow \operatorname{Hom}_{A_{S}}(K_{S},A_{S})$$

is surjective, then A = K.(Hint: Consider id_K!.) - Deduce that if K is finite over A then A = K.

(b) Let *A* be a commutative ring and *S* be a multiplicative system in *A*. If A_S is a finite *A*-module, then A_S is isomorphic to $A/\text{Ker}(A \to A_S)$.

6.8 Let *K* be a field, *I* be an infinite indexed set and $A := K^I$. Further, let \mathfrak{a} be the ideal $K^{(I)}$ in *A* and *S* be the multiplicative system of elements $(s_i) \in K^I$ with $s_i \neq 0$ for almost all $i \in I$. Then :

(a) The canonical homomorphism

$$\operatorname{Hom}_{A}(A/\mathfrak{a},A)_{S} \longrightarrow \operatorname{Hom}_{A_{S}}((A/\mathfrak{a})_{S},A_{S})$$

is not surjective. (**Hint**: In fact, $\operatorname{Ann}_A \mathfrak{a} = 0$, $\operatorname{Hom}_A(A/\mathfrak{a}, A) \cong \operatorname{Ann}_A \mathfrak{a}$, $f \mapsto f(1_{A/\mathfrak{a}})$ and $\mathfrak{a}_S = 0$.) (**b**) For every infinite set *J* the canonical homomorphism

$$\operatorname{Hom}_{A}(A^{(J)}, A)_{S} \longrightarrow \operatorname{Hom}_{A_{S}}(A^{(J)}_{S}, A_{S})$$

is not injective.

6.9 Let *A* be a commutative ring and let *V* be a projective *A*- module (i. e. *V* is a direct summand of a free *A*-module). Let *S* be the multiplicative system of non-zero divisors in *A*. If V_S is a finite A_S -module, then *V* is a finite *A*-module. (**Hint :** Let *f* be an embedding of *V* as a direct summand in a free *A*- module of the type $A^{(I)}$ and consider the image of f_S .) In particular, a projective module over an integral domain is finite if and only if it has a finite rank.

6.10 Let *A* be a commutative ring and $\mathfrak{a} \subseteq A$ be an ideal; *S* denote the multiplicative system $1 + \mathfrak{a}$ in *A*. Then $\mathfrak{a}A_S$ is contained in the Jacobson-radical of A_S . (**Hint**: $1 + \mathfrak{a}A_S \subseteq (A_S)^{\times}$.)

6.11 Let *A* be a commutative ring and *V* be a finite *A*-module. For a multiplicative system *S* in *A*, show that $V_S = 0$ if and only if sV = 0 for some $s \in S$.

6.12 (Lemma of Dedekind) Let A be a commutative ring, V be a finite A-module and a be an ideal in A with V = aV. Show that (1+a)V = 0 for some $a \in a$. (Hint: Note that $V_{1+a} = 0$ by the Lemma of Krull-Nakayama¹ — **Remark**: For an another elementary proof: Suppose that $V = Ax_1 + \cdots + Ax_n$ and $V_i := Ax_1 + \cdots + Ax_i$ for i = 0, ..., n. By induction show that there are elements $a_j \in a$ such that $(1-a_j)V \subseteq aV_{n-j}$, j = 0, ..., n.)

¹ Lemma of Krull-Nakayama Let A be a commutative ring, \mathfrak{a} be an ideal in A. The following statements are equivalent :

⁽i) $\mathfrak{a} \subseteq \mathfrak{m}_A$. (ii) For every A-module V and every submodule U of V with V/U finitely generated, the following implication hold : If $V = U + \mathfrak{a}V$, then V = U.