MA 312 Commutative Algebra / Aug–Dec 2017 (Int PhD. and Ph. D. Programmes)

Download from : http	p://www.math	.iisc.ernet.	in/patil/co	urses/course	s/Current Co	ourses/
Tel: +91-(0)80-2293 3212/094		E-mails: patil@math.iisc.ernet.in				
Lectures : Wednesday and I	Venue: MA LH-2 (if LH-1 is not free)/LH-1					
	, ,	t, Nov 25 (10:30-12 r 05, 2017, 09:00	,			
Evaluation Weightage : Assignments : 20%			Seminars : 30%		Final Examination: 50%	
Range of Marks for Grades (Total 100 Marks)						
	Grade S	Grade A	Grade B	Grade C	Grade D	Grade F
Marks-Range	> 90	76-90	61-75	46-60	35-45	< 35
	Grade A ⁺	Grade A G	rade B ⁺ Gra	de B Grade	C Grade D	Grade F
Marks-Range	> 90	81-90 7	1-80 61-	-70 51-6	0 40-50	< 40
		(Interne				

6. Integral Extensions

6.1 Let $A \subseteq B$ be an extension of rings and let $x \in B^{\times}$. Show that

(a) $x \in B$ is integral over A if and only if $x^{-1} \in A[x]$.

(b) $A[x] \cap A[x^{-1}]$ is integral over A. (Hint: If $y = a_0 + a_1x + \dots + a_nx^n = b_0 + b_1x^{-1} + \dots + b_mx^{-m}$ where $m, n \in \mathbb{N}^+, a_0, \dots, a_n, b_0, \dots, b_m \in A$. The A- submodule of B generated by $1, x, \dots, x^{m+n+1}$ is a faithful A-module.) (c) If B is integral over A, then $B^{\times} \cap A = A^{\times}$ and $x^{-1} \in A[x]$ for all $x \in B^{\times}$.

6.2 For a monic polynomial $F = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0 \in A[X]$, let

$$\mathfrak{A}_F := \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}$$

be the companion matrix of F. Further, for matrices $\mathfrak{A} = (a_{ij}) \in M_{I,J}(A)$, $\mathfrak{B} = (b_{rs}) \in M_{R,S}(A)$, let $\mathfrak{A} \otimes \mathfrak{B}$ be their Kronecker product¹ $(a_{ij}b_{rs}) \in M_{I \times R, J \times S}(A)$.

Show that : if x, y are integral elements of an A-algebra B with integral equations F(x) = 0 and G(y) = 0, $F, G \in A[X]$ are monic polynomials of degrees m and n respectively. Then $\chi_{\mathfrak{A}_F \otimes \mathfrak{A}_G}(xy) = 0$ is an integral

¹ Kronecker product and Tensor product We use the following exercises from linear algebra over an arbitrary commutative ring A.

(1) For matrices $\mathfrak{A} = (a_{ij}) \in M_{I,J}(A)$, $\mathfrak{B} = (b_{rs}) \in M_{R,S}(A)$, let $\mathfrak{A} \otimes \mathfrak{B}$ be their Kronecker product $(a_{ij}b_{rs}) \in M_{I \times R, J \times S}(A)$. We can write $\mathfrak{A} \otimes \mathfrak{B}$ as block matrix in two ways :

$$\mathfrak{A} \otimes \mathfrak{B} = (a_{ij}\mathfrak{B})_{(i,j) \in I \times J} = (b_{rs}\mathfrak{A})_{(r,s) \in R \times S}.$$

(2) Let $f: V \to W$, $f': V' \to W'$ be A-linear maps of free A-modules and let $\mathfrak{M}^{\mathfrak{v}}_{\mathfrak{w}}(f)$ $\mathfrak{M}^{\mathfrak{v}'}_{\mathfrak{w}'}(f')$ be the matrices of f, f' with respect to bases $\mathfrak{v} := \{v_j \mid j \in J\}$, $\mathfrak{w} := \{w_i \mid i \in I\}$, $\mathfrak{v}' := \{v'_{j'} \mid j' \in J'\}$, $\mathfrak{w}' := \{w'_{i'} \mid i' \in I'\}$, respectively. Then the matrix $\mathfrak{M}^{\mathfrak{v} \otimes \mathfrak{v}'}_{\mathfrak{w} \otimes \mathfrak{w}'}(f \otimes f')$ of the tensor product map $f \otimes f' : V \otimes V' \to W \otimes W'$ with respect to bases $\mathfrak{v} \otimes \mathfrak{v}' := \{v_j \otimes v'_{j'} \mid (j,j') \in J \times J'\}$ and $\mathfrak{w} \otimes \mathfrak{w}' := \{w_i \otimes w'_{i'} \mid (i,i') \in I \times I'\}$ is the Kronecker product $\mathfrak{M}^{\mathfrak{v}}_{\mathfrak{w}}(f) \otimes \mathfrak{M}^{\mathfrak{v}'}_{\mathfrak{w}'}(f')$ of the matrices $\mathfrak{M}^{\mathfrak{w}}_{\mathfrak{w}}(f)$ and $\mathfrak{M}^{\mathfrak{w}'}_{\mathfrak{w}'}(f')$.

(a) If both f and f' are of finite rank, then $f \otimes f'$ is of finite rank and in this case $\operatorname{Rank}(f \otimes f') = \operatorname{Rank} f \cdot \operatorname{Rank} f'$. In particular, for $\mathfrak{A} \in \operatorname{M}_m(K)$ and $\mathfrak{A}' \in \operatorname{M}_n(K)$, we have : $\operatorname{Rank}(\mathfrak{A} \otimes \mathfrak{A}') = \operatorname{Rank}(\mathfrak{A}) \cdot \operatorname{Rank}(\mathfrak{A}')$.

(b) Let V and V' be free A-modules of finite ranks $m := \operatorname{Rank}_A V$ and $n := \operatorname{Rank}_A V'$, respectively, $f \in \operatorname{End}_A V$, $f' \in \operatorname{End}_A V'$ and let $\chi_f = \prod_{i=1}^m (X - \lambda_i), \chi_{f'} = \prod_{i=1}^n (X - \mu_i)$. Then

$$\chi_{f\otimes f'} = \prod_{i,j} (X - \lambda_i \mu_j), \quad \operatorname{Tr}(f \otimes f') = \operatorname{Tr}(f) \cdot \operatorname{Tr}(f') \quad \text{and} \quad \operatorname{Det}(f \otimes f') = (\operatorname{Det} f)^n \cdot (\operatorname{Det} f')^m.$$

(**Hint**: We may assume that f and f' are triangulable. Let f = d + n and f' = d' + n' be the additive canonical decomposition into diagonal and nilpotent operators, repsectively. Then $f \otimes f' = (d \otimes d') + (d \otimes n' + n \otimes d' + n \otimes n')$ is the additive canonical decomposition of $f \otimes f'$ into diagonal and nilpotent operators. To prove the formulas for trace and determinant, use $f \otimes f' = (f \otimes id_{V'}) \circ (id_V \otimes f')$ and the Exercise 1. above.)

(c) In particular, the eigenvalues of $f \otimes f'$ are the product of the eigenvalues of f with the eigenvalues of f' (with

equation for the product xy and $\chi_{\mathfrak{A}_F \otimes \mathfrak{E}_n + \mathfrak{E}_n \otimes \mathfrak{A}_G}(x+y) = 0$ integral equation for the sum x + y and both have degree mn, where \mathfrak{E}_n denote the $n \times n$ identity matrix.

6.3 (a) In the matrix ring $M_2(\mathbb{Q})$ give two elements which are integral over \mathbb{Z} , but neither their sum nor their product are integral over \mathbb{Z} . (Hint: Consider the unipotent matrices $\mathfrak{E}_2 + \mathfrak{N}$, where \mathfrak{E}_2 is the identity matrix and \mathfrak{N} is a nilpotent matrix.)

(b) Let *K* be a field and let $A := K[Y^k X^{k+1} | k \in \mathbb{N}]$ be the *K*-subalgebra of the polynomial algebra K[X,Y] generated by monomials $Y^k X^{k+1}$, $k \in \mathbb{N}$. Show that A[XY] is contained in the finitely generated *A*-module, but *XY* is not integral over *A*.

6.4 Let K be a field of characteristic $\neq 2$ and let ${}^{2}K^{\times} := \{x^{2} | x \in K^{\times}\}$ be the group of non-zero squares Then the residue group $K^{\times}/{}^{2}K^{\times}$ is called the quadratic residue class group of K. (Every element of $K^{\times}/{}^{2}K^{\times}$ has self inverse and hence $K^{\times}/{}^{2}K^{\times}$ is a vector space over \mathbb{F}_{2} .)

(a) Show that : for $D \in K^{\times} \setminus {}^{2}K^{\times}$, $K[\sqrt{D}] := K[X]/(X^{2} - D)$, $\sqrt{D} := x =$ the residue class of *X*, is a quadratic field extension of *K* and the map $K[\sqrt{D}] \mapsto D \cdot {}^{2}K^{\times}$ induces a bijective map on the set of *K*-algebra isomorphism classes of the quadratic field extensions of *K* onto the set of non-zero elements of $K^{\times}/{}^{2}K^{\times}$.

(b) Let *K* be the quotient field of the factorial ring *A* and let $p_i, i \in I$, be a representative system for the associative classes of the prime elements of *A*. Show that :

$$K^{\times}/{}^{2}K^{\times} \cong (A^{\times}/{}^{2}A^{\times}) \times \mathbb{F}_{2}^{(I)}.$$

(c) For the following *K* give a (cannonical) representative system for the isomorphism classes of the quadratic field extensions of *K* : (1) *K* is a finite field of characteristic $\neq 2$. (2) $K = \mathbb{R}$ or $K = \mathbb{C}$. (3) $K = \mathbb{Q}$. (4) $K = k(X) = \mathbb{Q}(k[X]) =$ the rational function field in one variable over a field *k* of characteristic $\neq 2$. (5) $K = \mathbb{Q}_p$ the field of *p*-adic numbers. (6) $K = k((X)) = \mathbb{Q}(k[[X]]) =$ the field of formal Laurent series over a field *k* of characteristic $\neq 2$.

6.5 Let *A* and p_i $i \in I$ be as in the Exercise 6.4 (b). Let $J \subseteq I$ be a finite subset and let $p_J := \prod_{i \in I} p_i$, further, let $\varepsilon \in A^{\times}$, $D := \varepsilon p_J$. Assume that either $J \neq \emptyset$ or $\varepsilon \notin {}^2A^{\times}$ i.e. $D \notin {}^2A$. Let *L* be the quadratic extension $K[\sqrt{D}]$ of K := Q(A) = the quotient field of *A* and let *B* be the integral closure of *A* in *L*. Show that : (a) The elements of *B* are precisely

$$\frac{a+b\sqrt{D}}{2}, \quad a,b \in A, a^2-b^2D \in 4A.$$

In particular, $A[\sqrt{D}] = A + A\sqrt{D} \subseteq B \subseteq \frac{1}{2}A[\sqrt{D}]$ and $B = A[\sqrt{D}]$, if $2 \in A^{\times}$.

(**b**) If $D \in 2A$, then $B = A[\sqrt{D}]$, i.e. $1, \sqrt{D}$ is an A-basis of B.

(c) If $D \equiv 1 \mod 4A$, then $1, \omega := (1 + \sqrt{D})/2$ is a A-basis of B.

$$\operatorname{Tr}(\mathfrak{A}\otimes\mathfrak{A}') = \operatorname{Tr}(\mathfrak{A})\cdot\operatorname{Tr}(\mathfrak{A}')$$
 and $\operatorname{Det}(\mathfrak{A}\otimes\mathfrak{A}') = (\operatorname{Det}\mathfrak{A})^n\cdot(\operatorname{Det}\mathfrak{A}')^m$.

multiplicities). Further, if $f \neq 0$ and $f' \neq 0$, then $f \otimes f'$ is diagonalisable if and only if both the components f and f' are diagonalisable. Further, for $\mathfrak{A} \in M_m(K)$ and $\mathfrak{A}' \in M_n(K)$ we have :