(Int PhD. and Ph. D. Programmes)
Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

6. Integral Extensions
6.1 Let $A \subseteq B$ be an extension of rings and let $x \in B^{\times}$. Show that
(a) $x \in B$ is integral over A if and only if $x^{-1} \in A[x]$.
(b) $A[x] \cap A\left[x^{-1}\right]$ is integral over A. (Hint: If $y=a_{0}+a_{1} x+\cdots+a_{n} x^{n}=b_{0}+b_{1} x^{-1}+\cdots+b_{m} x^{-m}$ where $m, n \in \mathbb{N}^{+}, a_{0}, \ldots, a_{n}, b_{0}, \ldots, b_{m} \in A$. The A - submodule of B generated by $1, x, \ldots, x^{m+n+1}$ is a faithful A-module.)
(c) If B is integral over A, then $B^{\times} \cap A=A^{\times}$and $x^{-1} \in A[x]$ for all $x \in B^{\times}$.
6.2 For a monic polynomial $F=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0} \in A[X]$, let

$$
\mathfrak{A}_{F}:=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & -a_{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right)
$$

be the companion matrix of F. Further, for matrices $\mathfrak{A}=\left(a_{i j}\right) \in \mathrm{M}_{I, J}(A), \mathfrak{B}=\left(b_{r s}\right) \in \mathrm{M}_{R, S}(A)$, let $\mathfrak{A} \otimes \mathfrak{B}$ be their Kronecker produc $\mathbb{1}^{1}\left(a_{i j} b_{r s}\right) \in \mathrm{M}_{I \times R, J \times S}(A)$.
Show that : if x, y are integral elements of an A-algebra B with integral equations $F(x)=0$ and $G(y)=0$, $F, G \in A[X]$ are monic polynomials of degrees m and n respectively. Then $\chi_{\mathfrak{A}_{F} \otimes \mathfrak{A}_{G}}(x y)=0$ is an integral
${ }^{1}$ Kronecker product and Tensor product We use the following exercises from linear algebra over an arbitrary commutative ring A.
(1) For matrices $\mathfrak{A}=\left(a_{i j}\right) \in \mathrm{M}_{I, J}(A), \mathfrak{B}=\left(b_{r s}\right) \in \mathrm{M}_{R, S}(A)$, let $\mathfrak{A} \otimes \mathfrak{B}$ be their Kronecker product $\left(a_{i j} b_{r s}\right) \in$ $\mathrm{M}_{I \times R, J \times S}(A)$. We can write $\mathfrak{A} \otimes \mathfrak{B}$ as block matrix in two ways :

$$
\mathfrak{A} \otimes \mathfrak{B}=\left(a_{i j} \mathfrak{B}\right)_{(i, j) \in I \times J}=\left(b_{r s} \mathfrak{A}\right)_{(r, s) \in R \times S}
$$

(2) Let $f: V \rightarrow W, f^{\prime}: V^{\prime} \rightarrow W^{\prime}$ be A-linear maps of free A-modules and let $\mathfrak{M}_{\mathfrak{w}}^{\mathfrak{v}}(f) \mathfrak{M}_{\mathfrak{w}^{\prime}}^{\mathfrak{v}^{\prime}}\left(f^{\prime}\right)$ be the matrices of f, f^{\prime} with respect to bases $\mathfrak{v}:=\left\{v_{j} \mid j \in J\right\}, \mathfrak{w}:=\left\{w_{i} \mid i \in I\right\}, \mathfrak{v}^{\prime}:=\left\{v_{j^{\prime}}^{\prime} \mid j^{\prime} \in J^{\prime}\right\}, \mathfrak{w}^{\prime}:=\left\{w_{i^{\prime}}^{\prime} \mid i^{\prime} \in I^{\prime}\right\}$, respectively. Then the matrix $\mathfrak{M}_{\mathfrak{w} \otimes \mathfrak{r}^{\prime}}^{\mathfrak{v} \otimes \mathfrak{v}^{\prime}}\left(f \otimes f^{\prime}\right)$ of the tensor product map $f \otimes f^{\prime}: V \otimes V^{\prime} \rightarrow W \otimes W^{\prime}$ with respect to bases $\mathfrak{v} \otimes \mathfrak{v}^{\prime}:=$ $\left\{v_{j} \otimes v_{j^{\prime}}^{\prime} \mid\left(j, j^{\prime}\right) \in J \times J^{\prime}\right\}$ and $\mathfrak{w} \otimes \mathfrak{w}^{\prime}:=\left\{w_{i} \otimes w_{i^{\prime}}^{\prime} \mid\left(i, i^{\prime}\right) \in I \times I^{\prime}\right\}$ is the Kronecker product $\mathfrak{M}_{\mathfrak{w}}^{\mathfrak{v}}(f) \otimes \mathfrak{M}_{\mathfrak{w}^{\prime}}^{\mathfrak{v}^{\prime}}\left(f^{\prime}\right)$ of the matrices $\mathfrak{M}_{\mathfrak{w}}^{\mathfrak{v}}(f)$ and $\mathfrak{M}_{\mathfrak{w}^{\prime}}^{\mathfrak{v}^{\prime}}\left(f^{\prime}\right)$.
(a) If both f and f^{\prime} are of finite rank, then $f \otimes f^{\prime}$ is of finite rank and in this case $\operatorname{Rank}\left(f \otimes f^{\prime}\right)=\operatorname{Rank} f \cdot \operatorname{Rank} f^{\prime}$. In particular, for $\mathfrak{A} \in \mathrm{M}_{m}(K)$ and $\mathfrak{A}^{\prime} \in \mathrm{M}_{n}(K)$, we have : $\operatorname{Rank}\left(\mathfrak{A} \otimes \mathfrak{A}^{\prime}\right)=\operatorname{Rank}(\mathfrak{A}) \cdot \operatorname{Rank}\left(\mathfrak{A}^{\prime}\right)$.
(b) Let V and V^{\prime} be free A-modules of finite ranks $m:=\operatorname{Rank}_{A} V$ and $n:=\operatorname{Rank}_{A} V^{\prime}$, respectively, $f \in \operatorname{End}_{A} V$, $f^{\prime} \in \operatorname{End}_{A} V^{\prime}$ and let $\chi_{f}=\prod_{i=1}^{m}\left(X-\lambda_{i}\right), \chi_{f^{\prime}}=\prod_{j=1}^{n}\left(X-\mu_{j}\right)$. Then

$$
\chi_{f \otimes f^{\prime}}=\prod_{i, j}\left(X-\lambda_{i} \mu_{j}\right), \quad \operatorname{Tr}\left(f \otimes f^{\prime}\right)=\operatorname{Tr}(f) \cdot \operatorname{Tr}\left(f^{\prime}\right) \quad \text { and } \quad \operatorname{Det}\left(f \otimes f^{\prime}\right)=(\operatorname{Det} f)^{n} \cdot\left(\operatorname{Det} f^{\prime}\right)^{m}
$$

(Hint: We may assume that f and f^{\prime} are triangulable. Let $f=d+n$ and $f^{\prime}=d^{\prime}+n^{\prime}$ be the additive canonical decomposition into diagonal and nilpotent operators, repsectively. Then $f \otimes f^{\prime}=\left(d \otimes d^{\prime}\right)+\left(d \otimes n^{\prime}+n \otimes d^{\prime}+n \otimes n^{\prime}\right)$ is the additive canonical decomposition of $f \otimes f^{\prime}$ into diagonal and nilpotent operators. To prove the formulas for trace and determinant, use $f \otimes f^{\prime}=\left(f \otimes \mathrm{id}_{V^{\prime}}\right) \circ\left(\mathrm{id}_{V} \otimes f^{\prime}\right)$ and the Exercise 1. above.)
(c) In particular, the eigenvalues of $f \otimes f^{\prime}$ are the product of the eigenvalues of f with the eigenvalues of f^{\prime} (with
equation for the product $x y$ and $\chi_{\mathfrak{A}_{F} \otimes \mathfrak{E}_{n}+\mathfrak{E}_{n} \otimes \mathfrak{A}_{G}}(x+y)=0$ integral equation for the sum $x+y$ and both have degree $m n$, where \mathfrak{E}_{n} denote the $n \times n$ identity matrix.
6.3 (a) In the matrix ring $M_{2}(\mathbb{Q})$ give two elements which are integral over \mathbb{Z}, but neither their sum nor their product are integral over \mathbb{Z}. (Hint : Consider the unipotent matrices $\mathfrak{E}_{2}+\mathfrak{N}$, where \mathfrak{E}_{2} is the identity matrix and \mathfrak{N} is a nilpotent matrix.)
(b) Let K be a field and let $A:=K\left[Y^{k} X^{k+1} \mid k \in \mathbb{N}\right]$ be the K-subalgebra of the polynomial algebra $K[X, Y]$ generated by monomials $Y^{k} X^{k+1}, k \in \mathbb{N}$. Show that $A[X Y]$ is contained in the finitely generated A-module, but $X Y$ is not integral over A.
6.4 Let K be a field of characteristic $\neq 2$ and let ${ }^{2} K^{\times}:=\left\{x^{2} \mid x \in K^{\times}\right\}$be the group of non-zero squares Then the residue group $K^{\times} /{ }^{2} K^{\times}$is called the quadratic residue class group of K. (Every element of $K^{\times} /{ }^{2} K^{\times}$has self inverse and hence $K^{\times} /{ }^{2} K^{\times}$is a vector space over \mathbb{F}_{2}.)
(a) Show that : for $D \in K^{\times} \backslash{ }^{2} K^{\times}, K[\sqrt{D}]:=K[X] /\left(X^{2}-D\right), \sqrt{D}:=x=$ the residue class of X, is a quadratic field extension of K and the map $K[\sqrt{D}] \mapsto D \cdot{ }^{2} K^{\times}$induces a bijective map on the set of K-algebra isomorphism classes of the quadratic field extensions of K onto the set of non-zero elements of $K^{\times} /{ }^{2} K^{\times}$.
(b) Let K be the quotient field of the factorial ring A and let $p_{i}, i \in I$, be a representative system for the associative classes of the prime elements of A. Show that :

$$
K^{\times} /{ }^{2} K^{\times} \cong\left(A^{\times} /{ }^{2} A^{\times}\right) \times \mathbb{F}_{2}^{(I)}
$$

(c) For the following K give a (cannonical) representative system for the isomorphism classes of the quadratic field extensions of K : (1) K is a finite field of charateristic $\neq 2$. (2) $K=\mathbb{R}$ or $K=\mathbb{C}$. (3) $K=\mathbb{Q}$. (4) $K=k(X)=\mathrm{Q}(k[X])=$ the rational function field in one variable over a field k of characteristic $\neq 2$. (5) $K=\mathbb{Q}_{p}$ the field of p-adic numbers. (6) $K=k((X))=\mathrm{Q}(k[[X]])=$ the field of formal Laurent series over a field k of characteristic $\neq 2$.
6.5 Let A and $p_{i} i \in I$ be as in the Exercise 6.4 (b). Let $J \subseteq I$ be a finite subset and let $p_{J}:=\prod_{i \in I} p_{i}$, further, let $\varepsilon \in A^{\times}, D:=\varepsilon p_{J}$. Assume that either $J \neq \emptyset$ or $\varepsilon \not \not^{2} \overline{A^{\times}}$i.e. $D \not \not^{2} A$. Let L be the quadratic extension $K[\sqrt{D}]$ of $K:=\mathrm{Q}(A)=$ the quotient field of A and let B be the integral closure of A in L. Show that :
(a) The elements of B are precisely

$$
\frac{a+b \sqrt{D}}{2}, \quad a, b \in A, a^{2}-b^{2} D \in 4 A
$$

In particular, $A[\sqrt{D}]=A+A \sqrt{D} \subseteq B \subseteq \frac{1}{2} A[\sqrt{D}]$ and $B=A[\sqrt{D}]$, if $2 \in A^{\times}$.
(b) If $D \in 2 A$, then $B=A[\sqrt{D}]$, i.e. $1, \sqrt{D}$ is an A-basis of B.
(c) If $D \equiv 1 \bmod 4 A$, then $1, \omega:=(1+\sqrt{D}) / 2$ is a A-basis of B.

[^0]
[^0]: multiplicities). Further, if $f \neq 0$ and $f^{\prime} \neq 0$, then $f \otimes f^{\prime}$ is diagonalisable if and only if both the components f and f^{\prime} are diagonalisable. Further, for $\mathfrak{A} \in \mathrm{M}_{m}(K)$ and $\mathfrak{A}^{\prime} \in \mathrm{M}_{n}(K)$ we have :

 $$
 \operatorname{Tr}\left(\mathfrak{A} \otimes \mathfrak{A}^{\prime}\right)=\operatorname{Tr}(\mathfrak{A}) \cdot \operatorname{Tr}\left(\mathfrak{A}^{\prime}\right) \quad \text { and } \quad \operatorname{Det}\left(\mathfrak{A} \otimes \mathfrak{A}^{\prime}\right)=(\operatorname{Det} \mathfrak{A})^{n} \cdot\left(\operatorname{Det} \mathfrak{A}^{\prime}\right)^{m} .
 $$

