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Supplement 1A
Modules”

* The concept of a module seems to have made its first appearance in Algebra in Algebraic Number Theory —in studying
subsets of rings of algebraic integers. Modules first became an important tool in Algebra in late 1920’s largely due
to the insight of Emmy Noether, who was the first to realize the potential of the module concept. In particular,
she observed that this concept could be used to bridge the gap between two important developments in Algebra that
had been going on side by side and independently:the theory of representations (=homomorphisms) of finite groups
by matrices due to Frobenius, Burnside, Schur etal and the structure theory of algebras due to Molien,
Cartan, Wedderburn etal.

S1A.1 (Module-structures) Let R be aring and V an additive abelain group. If
RxV =V, (a,x)— ax,

is an operation of the multiplicative monoid (R, -) of R on V as monoid of group homomorphism, i.e. the action
homomorphism 9:A—=EndV, ar (% x—ax),

is a homomorphism of (R, -) in the multiplicative monoid (End V, o) of the endomorphism ring End V = (End V, +, 0)
of (V,+). Since End V is a ring, it is natural to consider such an operation of R which is even a ring homomorphism.

Let R be a ring. An additive abelain group (V,+) together with an operation R x V — V is called an R-module
or also a module over R, if this operation is defined (the action homomorphism) by a ring homomorphism
Y=Uy:A—EndV,ie. foralla,b € Aandall x,y € V, we have :

(1) (ab)x=a(bx), (2) a(x+y)=ax+by, (3) (a+b)x=ax+bx, (4) 1-x=x.

A map f: V — W of the R-module V in the R-module W is an R-homomorphismora homomorphism of
R-modules oraR-linear map,if f is a homomorphism of the additive groups of V and W, which is compatible
with the operations ¥y and Sy of Ron V resp. W, i.e. if fody, =Ow,o f foralla € R, i.e. if for all a € R and all

x,y €V, we have:
Fa+y)=f@)+f0), flax)=af(x).

The modules over a division domain K are called K-vector spaces or vector spaces over K.

The operation R XV — V of an R-module V is called the scalar multiplicationof V. Itis biadditive. In particular,
0-x=0=a-0forall x €V and all so-called scalars a € R. The operation ¥,: V =V, x+>ax,ofa€ RonV is
called the homothecyor stretching by a. If this is injective, then a € A called regular for the R-module
V. The additive translation Ty, : x = xo +x of V by an element xo € V is called called the shifting by xo. The
composition of R-homomorphisms is again an R-homomorphism. The set of all R-homomorphisms f: V — W of an
R-module V in an R-module W is denoted by

Homg(V,W).

Obviously, this is a subgroup of the group Hom(V,W) of the homomorphisms of the additive groups of V and W.
Accordingly, denote by Isog(V,W) C Homg(V,W) the set of all R-isomorphisms of V onto W, i.e. the set of
all bijective R-homomorphisms V — W. The set EndgV := Homg(V,V) of all the R-endomorphisms of Visa
subring of End V, its whose unit group (EndgV )™ is the group

GLRV = AuyV = ISOR(V,V)

of the R-automorphisms of VE| If R is commutative, then the homothecies ¥y ,, a € R, of an R-module V are
R-linear. In this case, it follows that the a-fold af = ¥w 0 f = f o ¥y, of an R-homomorphism V — W is again an
R-homomorphism, and one can easily check that with this scalar multiplication Homg(V,W) is an R-module. We
summarise once again:

IfV and W are modules over the ring R, then Homg (V, W) is a subgroup of Hom(V,W). Moverover, if R is commutative,
then Homg (V, W) is an R-module with the scalarmultiplication af: x — af(x) = f(ax), a € R, f € Homg(V,W).

AnR-submodule U of V is a subgroup of (V,+), which is invariant under the scalar multiplication, i.e. ax € U for
allae Randx € U.If U; CV,i € I, are submodules of V, then their sum } ;c; U; C V is not only a subgroup, but even
an R-submodule of V and it is the smallest submodule of V which contains all the U;, i € I. Images and inverse images
of submodules under the R-linear map f: V — W of R-modules are obviously again submodules. In particular, Img f

is a submodule of W and Ker f = f~!(0) is a submodule of V.

S1A.2 (Examples of modules) (1) Let W be an abelain group. The characteristic homomorphism x: Z —
End W, a— x, = aidw, is the only ring homomorphism of Z into End W. It follows that W has a unique Z-module

I Often, the suffix R in the notation for sets of R-homomorphisms is suppressed if there is no doubt about the scalar ring R.
Generally, the scalar ring R is also often known as the base ring, if it is always (chosen) fixed.
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structure, and it is given by the multiple-map (a,x) — ax, a € Z, x € W. Abelian groups and Z-modules are one and
the same, and Hom(V,W) = Homy(V,W) for abelian groups V,W.

(2) Let R be aring. The Cayley-homomorphism R — End (R,+), a — L, defines an R-module structure on R, whose
homothecies are the left translations L,, a € R. The corresponding operation R x R — R is the (ring) multiplication of
R. Unless otherwise specified, R is considered with this R-module structure. The R-submodules of R are then precisely
the left-ideals of R.

If f: R — V is an R-homomorphism, then f(a) = f(a-1) =af(1) for all a € R. Therefore f is uniquely determined by
the value f(1). Conversely, for arbitrary v € V, the map R — V, a — av is an R-homomorphism. Therefore : The map

Homg(R,V) =5V, f f(1),

is bijective and obviously, even a group isomorphism resp. an R-module homomorphism, if R is commutative. If V =R,
then (fog)(1) = f(g(1)) = g(1) (1) for the composition of two R-endomorphisms f,g: R — R. The map f — f(1)
is a ring isomorphism EndgA == AP,

The right translations R, : x — xa, a € R, defines a ring homomorphism R: R°? — End (R, +) and hence an R°P-module

structure on R whose homothecies are the right stranslations R,, a € R, and the R°P-submodules are the right-ideals in
R.

Generally, an R°P-module is called a R-right modulel and all the time R-modules considered are R-left mod-
ules, unless explicitly mentioned otherwise. An R-right module structure on V is written as a right operation V xA —V,
(x,a) — xa, such that the following well arranged computational rules hold :

(1) x(ab) = (xa)b, (2) (x+y)a=xa+yb, (3)x(a+b)=xa+xb, (4)x-1=x

for all a,b € R, x,y € V. The ring R itself have two module structures, moreover, they are compatible in the folowing
sense : The homothecies of one structure commute with the homothecies of the other structure, i.e. L,oR, = R oL,
for all a,b € A.

(3) (Bimodules) More generally, two (left-)ymodule structures on the same abelain group (V,+) with the action
homomorphisms ©: R — EndV resp. n: S — EndV are compatible, if the homothecies 9,, a € R, and 1y, b € S,
commute, i.e. if a(bx) = b(ax) foralla € R, b € S, x € V, equivalently, if the homothecies of one structure are linear
with respect to the other structure. In such a case we say that V is a R-S-bim o d ule. Therefore, every ring R is a R-R°P-
bimodule, and every module over a commutative ring R with a and the same R-module structure a R-R-bimodule. If V
is a R-S-bimodule and W is an R-module, then Homg(V, W) with the right operation Homg(V,W) x § — Homg(V,W),
(f,b) = fb:= fomn, is a S-right module, i.e. a S°P-(left-)module. In analogous way, Homg(V,W) with the left
operation bf := 1Mo f is a S-left module if W has a R-S-bimodule structure.

As above if R is commutative, using the canonical R-R-bimodule structure of V (or of W), we get the R-module
structure on Homy (V,W). For every ring R and every R-module V, the above isomorphism Homg(R,V) =% V is an
R-module isomorphism if Homg(R, V) has the R-module structure induced from the R-R°P-bimodule structure on R. —
In contrast, to the elements of Homg(R, V), the so-called R-linear forms f € V* := Homg(V,R) on V are difficult
to characterize. However, by the last remark, the R-R°P-bimodule structure on R induces an R-rightmodule structure on

V= Hompg (V, R)

with the scalar multiplication fa: x — f(x)a, a € A, f € V*. With this module structure V* is called the dual
moduleofV.

(4) (Restriction of scalars) LetV be an R-module with action homomorphism ©#: R — EndV.If ¢: R — R
is a homomorphism of rings, then the composition (¥’ := ¥ o @): R’ — EndV defines a R’-module structure on V
with the operation (a',x) — a'x = @(d’)x. It is called the induced R’ -module structure onV by ¢. It
is particularly important in the case when R’ is a subring of R and ¢ is the canonical inclusion R' < R. Then the
R’-operation on V is simply the restriction of the R-operation. Without mentioning explicitly, we will consider every
R-module also as R’-module. For example, every complex (i.e. C-)vector space also a real (i.e. R-)vector space and
every R-vector space also a QQ-vector space.

(4) (Annihilator) LetV be an R-module with action homomorphism ¥ : A — EndV. Then the two-sided ideal
AnngV :=Kerd ={a€A|ax=0 for all xeV}={acA|aV =0}
is called the Annihilator the module V. Itis AnngV = (),cy Anngx, where
Anngx:={a €A |ax=0}

the annihilator of the element x € V. Since Anngx is the kernel of the R-homomorphism R — V, a — ax, and so it
is (only) a left-ideal. The R-module V' is called a faithful R-moduleif AnngV =0.If a C AnngV is a two-sided
ideal in annihilator of V, then the action homomorphism ¥ : A — EndV induces a homomorphism ¥ : A/a — EndgV
of rings and hence a (R/a)-module structure on V with scalar multiplication [a], x = ax and Anng/,V = (AnngV)/a.
Conversely, an (R/a)-module structure on V, using the canonical projection R — R/a, defines an R-module structure
on V with a C AnngV. Therefore : (R/a)-modules and R-modules whose annihilator contain a are one and the same.
For example, the annihilator of an abelian group W (considered as Z-module) is the ideal ZExpW C Z. For m € IN,

the abelian groups with (ExpW) | m and A,,-modules are the same. In particular, for a prime number p € P elementary
abelian p-groups and F,-vector spaces are identical objects.

(5) (Torsion module-Torsion-free Modules) LetV be a module over the commutative ring R. an
element x € V is called a torsion element of V if there exists a nonzero-divisor a € A* such that ax = 0, or
equivalently, Anngx contains a nonzero-divisor. The set of all torsion elements of V is denoted by

TRV .
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Obviously, TgV is a R-submodule of V. For a nonzero-divisor a € A*, T,V :=Kerd, = {x € V | ax = 0} is called the
a-torsion of V. Then Ra C AnngT,V, and hence T,V is an (R/Ra)-module (see (4)), and TgV = g T4V. The
R-module V iscalleda torsion moduleif TRV =V, andis called torsion free if TRV =0.
(6) Let W be an additive abelian group. The identity map EndW — EndW defines the so-called tautological
(EndW)-module structure on W with scalar multplication

fx:=f(x), f€EndW, xeW.

In particular, W is a module over every subring of EndW. An arbitrary R-module structure on W is induced by the
action homomorphism ¥: R — EndW.

S1A.3 Let R be a commutative ring and V be an R-module. Let a € R be a unit. Then the homothecy
Y, :V =V x> ax is bijective. Give an example of a non-zero R-module and a non-unit a € R such that
the homothecy ¥, is bijective. Hint: Consider Z-modules, i.e. Finite abelian groups.

S1A4 Let U, W, U’', W' be submodules of an R-module V. Then :
(@ Modular Law)If U CW,then WN(U+U')=U+WnU').
(b) If UNW =U'NW/, then U is the intersection of U + (W NU’) and U + (WNW').

S1A.5 In this supplement, we recall the concepts of direct products and direct sums of arbitrary family of modules.

a) (Direct products) LetW,, i € I, be a family of R-modules. Then the direct product [];c; W; with component-
wise addition and componentwise scalar multiplication is also an R-module. Analogous to abelian groups, with the
canonical R-linear projections p;: [];c;W; — W,, it has the following universal property : For every R-module V, the
canonical map

Homg (V, HIWl) - _HIHOHIR(‘CW:') , [ (pif)iers
ic IS
is a group isomorphism and if R is commutative, then an R-module isomorphism. The I-tuple (f;)ics € [1;c; Homg(V,W;)
is the image of the R-homomorphism V — [T;c; Wi, x = (fi(x));es, which is denoted by (f;)ie;-
b) (Direct sums) LetV;, j€J, be a family of R-modules. The restricted direct product or the direct sum
Djcs Vi :={(xj)jes €1jesVj | xj =0 foralmostall j € J} of Vj, j € J, is a submodule. Besides the canonical
projections (v;) jes + v;, now the canonical injections 1;: V; — @;c; V), j € J, an important rolle. For x; € V;, the
J-tuple 1j(x;) = (8;xj)ics With j-th component x; and all other components 0. Analogous to the abelian groups the
direct sums with the canonical R-linear injections ¢;: V; — € jc; V; has the following universal property : For every
R-module W, the canonical map
Homg (@ V;,W) =% [T Homg(V;, W), g+ (81))jes,

jed jeJ
is a group isomorphism und if R is commutative, then an R-module isomorphism. The J-tuple (f;) jes € [1;e; Homg(V;, W)
is the image of the R-homomorphism

Lfit @Vi=W, (xj)jes— L filx)).

jel jes jes

¢) The combination of the universal properties of direct product and direct sum provide the following important
theorem :
LetVj, j€J, and W, i € I, be families of R-modules. Then the canonical map

Homg (@ V;, [IW;) == [1 Homg(V;,Wi), f (fij)ijerxs fij :=pifij, i€l jel,
jeJ i€l (i,/)elxJ
is a group isomorphism and if R is commutative, then an R-module isomorphism. The matrix ( fij)(i,j)elx J €
[1(i,j)erxs Homg(V;, W;) is the image of the homomorphism
[ @V =1Wi, (x))jes = (i)ier mit yi:= Y fij(x;), i€l
jel il jel

(For finite index sets, direct sums and direct product coincides. Let I,J, K be finite sets and Uy, k € K, an another
family of R-modules. Then, if the matrices B = (g i) € [1;x Homg(Uy,V;) and A = (f;;) € [1; ;Homg(V;, W;) describe
the homomorphisms g: @rcx Ur — @V tesp. f: Djcs Vi — Dicy Wi then the composition fog: Prex U —
P,c; Wi is defined by the product matrix

AB = (fij)ij(gjx)jx= (hi)ix € [1 Homg(Uy,W;) with hy:= Y fijogj, (i,k) eI xK.
(i) EIxK jer

If the index sets I, J, K are not finite, then formulate the restrictions of the matrices %[ and 8.

More often used are the cases R" and R™ in the theorem in part ¢) (under the identification EndgR = R°P). Then: Every
R-module homomorphism f: R" — R" is given by an m X n-matrix 2 = (a;j) € M, »(RP) = (ROP) {Lempx{ln} q¢
is — as usual common to denote — the elements r € R” resp. 1) € R™ as one column matrices with n resp. m rows, then

ar an Aaln X1 Y1
azi ann azn X2 2 n
f(;):m?: . . . . .= . =1y with y; = Xja,'j,lgigm.
: . : j=1
aml Adm2 - dmn Xn m
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Note that the matrix coefficients are considered and multiplied in the opposite ring R°P! This provides the summands
x;a;; instead of a;;x; and so also note the multiplication of matrices. The endomorphism ring of the R-module R" is

the ring M,,(R°P) of the square n x n-matrices with coefficients in R°P. The identity of R" is then represented by the
unit matrix &, =(9;;)) € M,(R). In the important case when R is commutative, naturally one nedd not distinguish
between R and R°P. )

d) In general, it is simpler to produce a direct sum representation of an module than the direct product representation.
For example, the following lemma:

(Direct sums of submodules) LetU, i €1, be afamily of submodules of the R-module V and h: @,.;U; =V,
(wi)ier = Yicp i, be the canonical R-homomorphism with the image Y ;c;U;. Then h injective i.e. the sum of U; is
direct if and only if the following condition is satisfied : For every i € I, one has

un ZU/Z{O}.
J#

If I is totally ordered, then this condition is also equivalent with the following : UiNY.;;U; = {0} foralliel.

If the sum Y ;; U; C V is direct, then this sum is also denoted by Zﬁ, U,.

S1A.6 (Residue-class modules) LetV be an R-module and U C V be an R-submodule. The residue-class
group

VU

is always an R-module. Its scalar multiplication is defined by a[x]y = [ax]y, a € R, x € V. The operation ¥, of a € R
on V /U is induced by the operation 9, of @ on V (since ¥,(U) C U, ¥ is well-defined). The canonical projection
my: V — V /U is R-linear and has the following universal property :

a) (Universal property of the residue-class module) LetU be a submodule of the R-module V and
f: V. — W be a R-linear map in an R-module W with U C Ker f. Then there exists a unique R-linear map f: V /U —W
with f = fomy. There by f([xlu) = f(x), x €V, Img f =Img f and Ker f = (Ker f)/U (C V/U). — The map f
is an isomorphism if and only if f surjective and U = Ker f. In particular, V /Ker f =% Imgf (Isomorphism
theorem for modules).

The cosets x+ U, x € V, of a K-subspace U of a K-vector space V (K skew-field) are also called affine subspaces
(parrallel to U) of VE]

The above theorem is a special case of the following :

b) (Theorem on induced homomorphisms for modules) Letg: V— W and f: V — X be homo-
morphisms of R-modules. Suppose that g is surjective, and Kerg C Ker f. Then there exists a unique homomorphism
f+ W — X such that f = f og. — Further, f surjective if and only if f surjective. — f is injective if and only if Kerg =
Ker f. — f is an isomorphism if and only if f surjective and Kerg=Ker f (Isomorphism Theorem for modules).

S1A.7 For submodules U, W of a R-module V obtain the following canonical isomorphism: (1) U/(U N
W)= (U+W)/W. 2) fUCW, then V/W = (V/U)/(W/U).

S1A.8 (Generating systems, Minimal number of generators and Minimal gener-
ating systems) LetRbeacommutative ring and V be an R-module.
a) For an arbitrary family v;, i € I, of elements of V, the elements

Yaivi, (a)ier€RD,
ic

are called the linear combinations of the v;, i € I, (with coefficients in R). They form the submodule of V
generated by v;, i € I, i.e. the smallest R-submodule of V which contains all the v;, i € I. If this submodule is equal to
V,thenv;, i€l iscalleda generating system for V. The linear combinations of the family vy,...,v, in V are
the elements

ayvi+-+apve, (ai,...,a,) €R".

Forv e V,Rv={av|a € A} is the submodule generated by v and consequently, ¥ ;c; Rv; is the submodule generated
by the v;, i € I. If M C V is a subset of V, then RM is the submodule of V generated by M. Thereby for rings we use the
following already introduced convention : For a subset S of R and a subset M of V, RM denote the subgroup of (V,+)
generated by the complex-product {ax |a € S, x € M} of S and M.

b) The infimum of the cardinal numbers of the generating systems of V (which exists by the well ordering of
cardinal numbers) is called the minimal number of generators for V and is denoted by ug(V). If ug(V) € IN,

2 Occasionally similar such term is also used for modules.

D P Patl/TIS~ MNTTZMA MA2B1D ~na crimmN1 +av NAvambear 950 95017 - 11-ED A n AN



Supplement 1A A MA 312 Commutative Algebra / Aug—Dec 2017 Page 5

then V iscalleda finite R-module. If ug(V) <1, i.e. V is generated by (at most) one element, then V is
called cyclic. Note that tug(0) = 0. Prove that:

1) If ug(V) € N, then every generating system of V contains a finite generating subsystem.

2) Suppose that ug(V) is not finite. Then every generating system of V has a generating subsystem with
ugr(V) elements. In particular, every minimal generating system of V has ug(V) elements.

) f0—-U N V %5 W — is an exact sequence of R-modules and R-module homomorphisms, then
UR(V) < ur(U) + ugr(W). — In particular, if V is finitely generated if and only if both U and W are finitely
generated.

(Remarks : Note that a minimal generating system of a finite R-module can contain more than g (V') elements. For
example, {2,3} is a minimal generating system for the cyclic Z-module Z. More generally, for a given m € IN* there
are minimal generating systems for the Z-module Z which have exactly m elements.

Further, an R-module V may not have any minimal generating system. (Then naturally, tg (V) is infinite.) For example,
the Z-module @ has no minimal generating system, see the Exercise below.)

S1A.9 The Z-module @ does not have minimal generating system. (Hint : In fact the additive group (@, +)
does not have a subgroup of finite index # 1. This follows from the fact that the group (Q,+) is diVisibleE] and hence
every quotient group of (Q,+) is also divisible. Further, If H finitely generated divisible abelian group, then H =0.)
More generally, the quotient field Q(R) of an integral domain R which is not a field, has no minimal generating
system as an R-module. In particular, Q(R) is not finitely generated R-module.

S1A.10 Let R be a commutative ring and let V;, i € I, be an infinite family of non-zero R-modules. Prove
that W := @, Vi is not a finite R-module.

S1A.11 Let K be a field and let R be a subring of K such that every element of K can be expressed as a
quotient a/b with a,b € R, b # 0. (i. e. K is the quotient field of R). If K is a finite R-module, then prove
that R = K. In particular, @ is not a finite Z-module. (Hint: Suppose K = Rx; +---+Rx, and b€ R, b #0,
with bx; € R for i =1,...,n. Now, try to express l/b2 as a linear combination of x;, i=1,...,n.)

S1A.12 Let R be an integral domain. If the set of all non-zero ideals in R have a minimal element (with
respect to the inclusion). Show that R is a field. In particular, an integral domain such that the set of all
ideals is an artinian ordered set (with respect to inclusion), is a field. (Recall that an ordered set (X, <) is called
artinian if every non-empty subset of X has a minimal element. For example finite ordered sets are artinian. An
ordered setis well ordered if it is totally ordered and artinian. The prototype of the well ordered set is the set IN
of natural numbers with its natural order. )

S1A.13 (Free modules) Let R be an arbitrary ring and I be an index-set. In the |I|-fold direct sum RY) =
ij RC R!, foreveryi €1, let e; := (; ;) jer be the I-tuple with i-th component 1 and all other components. Then every
element (a;)ies € RY has the (unique) representation (a;);e; = Y ;s aie;. Therefore the family e; is a generated system
for the R-module R"). The R-module R") is called the free R-module corresponding to the (index-)set /. It is a
prototype of a free R-module, see ???. Since Homg(R,V) =%V (f — £(1)), the R-module R") together with the map
y:1— RY i ¢; has the following universal property :

Let R be ring and I be a set. Then for every R-module V, the map

Hom(R", V) =5 V! fis fouy = (f(e))ier
is an isomorphism of groups and if R is commutative, it is even an isomorphism of R-mdules. The inverse image of the
I-tuple v = (v;)ic; € V!, is the homomorphism

for RO SV (a)ier _Zldivi,
IS
whose image is the submodule Y ;c;Rv; of V generated by v;, i € I. In particular, f, is surjective if and only if
YiciRvi=V,ie. v; i€l is a generating system forV.

The kernel of the homomorphism f, : RY) — V., (a;)ic; — Licsaivi, is the submodule
Relg(vi,i € I) = Syzg(vi,i € I) := {(a;) eAld | ¥ aivi=0}
i€l
and is called the relation moduleorthe syzygy module of the family (v;);c; € V. Its elements are so-called
the relations or Syzygies ofthev;, i eIE]Therefore
AD/Syzp(viiel) “ Img f = ¥ Av;.
icl

3 Divisible abelian groups. An abelian (additively written) group H is divisible if for every n € Z, the group homomor-
phism A, : H — H, defined by a — na is surjective. For example, the group (Q,+) is divisible, the group (Z,+) and finite groups
are not divisible. Further, quotient of a divisible group is also divisible. Free abelian groups of finite rank are not divisible.

4 The use of the word "“Syzygy"” goes back to D. Hilbert (1862-1943).
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In particular, RY)/ Syz (vi,i € I) =5V, if v;, i € I, is a generated system for V. Every R-module with generating system
consisting of |I| elements is isomorphic to a residue-class module of R In particular, residue-class modules of R"
are, up to isomorphisms, all finite modules with n generators, n € IN. A cyclic R-module V = Rx is isomorphic to a
residue-class module of R, more precisely, Rx 2 R/Syzpx = R/Anngx. To provide an R-module, often one can give
only a submodule U C AU which is the syzygy module of a generating system of V and there by restrict ro supply a
generating system of U. If [ is finite and R is noetherian, then U is always generating by finitely many elements, see
7?77. The module V is then itself finitely generated.
Let v;, i € I, be a family of elements of an R-module V.
a) The family v;,i €I,is linearly independent over R if Syzg(v;,i € I) =0, and hence if a linear combination
Yicraiviof vi,i € I, over R is 0 if and only if a// (and not only almost all) coefficients a; i € I, are 0.
Obviously, the family v;, i € I, is linearly independent over R if and only if its every finite subfamily is linearly
independent.
The family v;, i € I, is linearly independent over R if and only if the R-module homomorphism f, : R¥) — V,
(ai)ier = Yicjaivi, is injective. Equivalently, the sum Y ,c; Rx; of cyclic submodules Rv; is direct and more over,
AnngRv; =0 forevery i € I.
If f:V — W is a R-linear map and if the image family f(v;), i € I, is linearly independent over R, then the family v;,
i € 1, is also linearly independent over R.
b) The family v;, i € I, is an R-basis of V, if it a linearly independent generating system of V. The R-module V is a
free R-module, if V has a basis over R.
The family v;, i € I, is a basis of V over R if and only if the R-module homomorphism f, : RY) v, (ai)ier — Yicraivi,
is bijective. If R # 0, then every basis v;, i € I, of V is a minimal generating system for V (Note that v; ¢ }.;.; Rv; for
everyicl).
¢) The knowledge of a basis of V provides a complete description of the elements of V. Often, such a basis a given by
the construction. For example, for V = R the so-called the standard basise;, i€l given above. Analogous
to the free R-module RU), a free R-module V with basis v;, i € I, has the following universal property, due to
which it is known as the free object. It allows to assign the images of the v; freely :
For every R-module W, the map

HOII]R(V,W) - WI? f*_> (f(vi))ielv

is a group isomorphism and if R is commutative, then an R-module isomorphism.

The inverse image f: V — W of the I-tuple (w;);c; € W/, maps the linear combination ¥;a;v; € V onto the linear
combination Y ; a;w; € W. Further, f is surjective if and only if the w;, i € I, generates the module W, and is injective if
and only if the w;, i € I, are linearly independent.

d) The following simple lemma is very useful :

Let v;, i € I, be a family in the R-module V and I = 1" 1" be a partition of I. Then v;, i € I, is linearly independent if
and only if (resp. a basis) the subfamily v;, i € I', is linearly independent and the family of residue-classes [v;|, i € 1",
is linearly independent in (resp. a basis of) V /U, where U := Y jc;/ Rv;.

e) Vector spaces are free. The basic principle of the proof is the following trivial lemma:

Let V be a vector space over the division domain K and v;, i € I, be a linearly independent family in V. For every
vectorv € V withv ¢ U := Y ;c; Kv;, then the extended family v, v;, i € I, is also linearly independent and hence a basis
of U' := Kv+U. Moreover, if w € U' \ U is arbitrary, then w, v;, i € I, is also a basis of U'. (Proof : Suppose that
O0=av+Y,cav; witha R, (a;) € R Ifa+0,then v=— Yicra 'ayv; € ¥,e; Kv;, a contradiction. Therefore a =0
and then also (a;) =0, for all i € I, since v;, i € I, are linearly independent. The proof of the supplement is left to the
reader. o)
f) Prove the following fundamental theorem on the existence of basis :

Let V be a vector space over the division domain K, and v;, i € I, be a generating system for V. Further, assume that v;,
i € 1' C1, be a linearly independent subsystem. Then there exists a subset 1" C 1 withl' C1" suchthatvi, i€l”, isa
basis of V. In particular, V has a basis. (Proof: The supplement follows by taking I’ = 0. — For a proof of existence
of 1" consider the set M of those subsets J of I with I’ C J C I, such that the v;, i € J, is linearly independent. The set
M is inductively (even strictly inductively) ordered with respect to the natural inclusion : Since I’ € M, M # @, and for
a non-empty chain X CM, J;cqcJ € M is an upper bound of X in M. Therefore, by Zorn’s Lemma M has a maximal
element, and every such maximal element I” € M provide a basis v;, i € I”, of V. Namely, if U := YicinKv; TV, then
there exists a ip € I with v;, ¢ U (since the v;, i € I, generate the K-vector space V), and then by Lemma in ), I"” W {ip}
is a strictly bigger element than I” of M, a contradiction. °

—Remarks : Note that in the above proof of the existence of a maximal I” € M is trivial if the index set [ is finite, i.e. if
V is a finite K-vector space. Hamel’s basis: The existence of bases for an arbitrary vector space was first proved
in 1905 by G. Hamel (1877-1954) for the special case of R as Q-vector space. Till today the Q-bases of R are called
Hamel bases. Hamel’s proof make use of a well-order on I with i’ < iforalli’ € I’,i € I I’ — the Well-ordering
Theorem of Zermelo has only just been proved in 1904 by E. Zermelo (1871-1953) — and define I” in the following
way:icI"”ifand onlyifx; ¢ ¥ ;;Kx;. Then I’ C 1" and v;, i € I", is a basis of V. Proof! — Hamel used a Q-Basis v;,
i € I, of R (whose cardinality must be X), to solve the following Problem of Cauchy : Does there exit additive
maps R — R, which are not any stretchings L, : x — ax with an @ € R? Since by the universal property of a basis, we
have the canonical isomorphism EndR = EndqR = R/, and the homothecies L,, a € R, correspond to the /-tuple
(avi)ier, the most additive endomorphisms of R are not stretchings L,, a € R. The cardinality of EndR is equal to
X ¥ =2% > X since every Q-basis of R has the cardinality X.
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It is by no means self-evident that two bases of a free modules over a ring ## 0 have the same cardinal numbers. Indeed
it is also false. There exist rings R # 0, such that for the R-module R there is a basis consisting of two (and hence also
n € IN*) elements, therefore R =2 R" for all n € IN*, see Supplement S1A.37.)

S1A.14 Let K be a field and let by, ..., b,, be elements of K, all of which are not equal to 0. Then there exist
at most m distinct elements x € K, which satisfy the equation
0=by-1+bix+---+bux".

(Hint: If xq,...,x,4 are distinct elements in K, then the elements /; := (x{, .. 7)C£1+1) e K" 0< J < m, are linearly
independent over K. — Remark : The same result is also true for integral domains, since every integral domain is

contained in a field, for example, in its quotient field. With the help of concept of polynomials the above assertion can
be formulated as : A non-zero polynomial of degree < m over a field (or an integral domain) K has at most m zeros in

K.)
S1A.15 Let A be an integral domain (which is contained in a field Q). Further, let U be a subgroup of
the unit group A* of A with an exponent E] m # 0. Then U is cyclic (and finite). In particular, every

finite subgroup of A* is cyclic; further, the unit group of every finite field (for example, the unit group of
a prime ring of characteristic p, p prime, is cyclic.) (Hint: The equation x™ = 1 has at most m solutions in A
by Supplement S1A.14. Now use the following Exercise on groups : Let G be a finite group with neutral elements e.

Suppose that for every divisor d € IN* of the order OrdG there are at most d elements x € G such that x* = e. Then G is
a cyclic group.)

S1A.16 Let U,W be submodules of the R-module V. Then both the so-called Meyer-Vietoris-Se-
quences

0—-UNW—=UpW —=-U+W =0,
0—=V/(UNW)—= (V/U)&(V/W)—=V/(U+W)—0

are exact, where the non-trivial homomorphisms in the first sequence are defined by x — (x, —x) resp.
(x,y) — x+y and in the second sequence analogously are defined by [x] — ([x], —[x]) resp. ([x], [y]) — [x+].

S1A.17 For a family v;, i € I, of vectors in a K-vector space, the following are equivalent: (i) v;, i € I,
is a basis of V. (ii) v;, i € I, is a minimal generating system for V. (iii) v;, i € I, is a maximal linearly
independent family in V.

S1A.18 Let R # 0 and let x be a basis of the cyclic R-module V := Rx. Then y =ax € V, a € R, is a basis
of V if and only if a is a unit in R. (Note that Rx # 0 may be a free R-module without x being a basis of Rx, See
Supplement S1A.37 c).)

S1A.19 (Modules with rank) A free module V over the ring R has by definition a rank if all bases of V have
the same cardinality. This common cardinal number is then called the rank of V (over R) and is denoted by

RankV = RankgV .
In case of vector spaces over a division domain K, in general, instead of rank, we use the dimension of V and write
DimV = DimgV .
a) Without any problem free modules with infinite basis have rank :
Every finite free module V with an infinite basis v;, i € I, over a ring R # 0 has the rank RankgV = |I|. (Proof : Since
vi, i € I, is a minimal generating system for V, by Lemma Supplement S1A.8 b) 1) there is no finite generating system
for V and hence has no finite basis. Suppose that w;, j € J, is an arbitrary basis of V. Then by Supplement SIA.8 b) 2)
I = 1] = ur (V). °)
b) For vector spaces in general we have :
Every vector space V over a division domain K has a dimension, i.e. all bases of V have the same cardinality. (Proof :
By the Theorem in a), we may assume that V is a K-vector space with finite basis. In this case the assertion follows
from the following Lemma in c). °)
¢) LetV be a K-vector space with basis vy, ...,v,. Then every n+ 1 vectors wy,...,,wy+1 €V are linearly dependent.
(Proof: We apply induction on n. The assertion is trivial for » = 0 (and n = 1). For the inductive step from n to
n—+ 1, we may assume that vy,...,v,1 is a basis of V and that wy,...,,w,42 € V are linearly independent. Then by
induction hypothesis, not all w; belong to the subspace U := Kv| + -+ Kv, C V. If, say, w42 ¢ U, then by Lemma
in Supplement S1A.13 e), vy,...,V,, W2 is a basis of V and the residue-classes [vi], ..., [vs] € V/Kwy2 is a basis of
V /Kwpi2 by Lemma in Supplement S1A.13 d). In any case, by Lemma in Supplement S1A.13 d), [wi],..., [wny1] are
linearly independent in V /Kw,4, which is not possible by induction hypothesis. o)

d) The vector spaces K", n € IN, represent, up to isomorphism, all finite dimensional vector spaces over a division
domain K. However, it should not be mistakes that only these spaces as finite dimensional vector spaces are considered.

> Exponent of a group. Let G be a group with neutral element e. Then the set of integers n with " = e for all a € G forms
a subgroup Ug of the additive group of Z, i.e. Ug := {n € Z | a" = e for all a € G} and hence there is a unique m € IN such that
Ug = Zm. This natural number m is called the exponent of G and usually denoted by ExpG. For example, if G is a finite
cyclic group, then ExpG = Ord G ; Exp&3 = Ord &3 ; In general : Exp G and Ord G have the same prime divisors. (proof!).
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The identification of an n-dimensional K-vector space V with K", i.e. an calibration of V, mean the choice of
a K-basis vy,...,v, of V, which was a non-trivial process (already for n = 1 and |K| > 2). — From the Lemma in
Supplement S1A.13 d), it follows directly :

e) (Rank Theorem)Let 0—U L> V -5 W =0 be an exact sequence of K-vector spaces and K-homomorphisms.

Then DimgV = DimgU + DimgW .

In particular, DimgV = DimgU + Dimg (V/U) for a K-vector space V and a K-subspace U C V.

For a K-linear map f : V — W from a finite dimensional K-vector space into arbitrary K-vector space, it follows
Rank f := DimgIm f = DimgV — DimgKer f

This equality which is also known as Rank-Nullity Theorem, also explain the use of the term Rank Theorem.

From the first exact sequence in Supplement S1A.16 deduce in the case that A = K is a division domain, the so-called

Dimension formula . ) . )
DimgU + DimgW = Dimg (U NW) 4+ Dimg (U + W)

and from the second exact sequence in Supplement S1A.16 deduce the so-called codimension formula
Codimg (U, V) + Codimg (W, V) = Codimg (U NW,V) + Codimg (U + W, V).

Thereby, for an arbitrary subspace U of a K-vector space V, Codimg(U,V) := Dimg(V/U) is called the (K-)codi-
mension of U in V. In particular, in the case of a finite dimensional K-vector space V, we have two inequalities :

Dimg (U NW) > DimgU 4 DimgW — DimgV and Codimg (U NW,V) < Codimg (U, V') + Codimg (W, V). Further, if
DimgU + DimgW > DimgV, then U NW # 0.

S1A.20 (Free modules over commutative rings) Free modules over a commutative ring R # 0 also
has a rank. (Proof : This can be proved by the following construction on reducing to the case of the field : First, let
V be an arbitrary module over the arbitrary ring R and a C R be a two-sided ideal in R. Then aV is a submodule
of V with aV =Y ,c; av; for every generating system v;, i € I, of V. Moreover, a C Anng(V/aV) and hence V/aV is
an A/a-module, see Supplement S1.2 (4). Now, if v;, i € I, is a basis of V, then aV = ):?é, av; CV = Z%]Rvi and
(R/a)) = @, (Rvi/av;) =% V/aV. Then it follows that the residue-classes [v;], i € I, form a (R/a)-basis of V/aV.
Therefore, it follows that: if all free (R/a)-modules have a rank, then all free R-modules also have a rank. Since every
commutative ring R # 0 has maximal ideal m by the Theorem of Krull, and R/m is a field, the assertion is a special
case of the Theorem in Supplement S1.18 b) o)

S1A.21 Using an analog (see part c) below) of the Lemma in Supplement S1A.19 c) for commutative rings
# 0, once again we prove free modules over commutative ring 7% 0 have rank.

Let R be aring # 0.

a) Letwy,...,w,4 be linearly independent elements in free R-module V with the basis vy,...,v,. Then V
has a free submodule with a countably infinite basis (Hint : For k € IN, recursively construct linearly independent
elements uy, ...,u; € V and free submodules U, C V with a basis consisting of n elements such that the direct sum
decomposition Ruj & - - - & Ruy @ Uy holds. Then ug,u;,u;,... generate the required submodule. One can begin with
ug :=wi, Up:=Rwry@--- B Rw,11.)

b) If R is left-noetherian and n € IN, then every n+ 1 elements in a R-module V with g (V) < n are linearly
dependent. (We may assume that V = R", and note that R" is a noetherian R-module. — From a) it also follows that the
analogous assertion for left-artinian rings. But, this already follows from the well cited Theorem of Hopkins.)

¢) With a trick the result in b) can be deduced for an arbitrary commutative rings R # 0: If R is commutative
and n € IN, then every n+ 1 elements in a R-module V with ug(V) < n are linearly dependent. (We may

assume that R" contain n + 1 linearly independent elements w; = Y\, a;je;, j=1,...,n+ 1. By the Hilbert’s Basis
Theorem the smallest subring S := Z[a;;,1 <i<n,1 < j <n+1] CR of R which contain all the coefficients g;;, is
noetherian and the elements wy,...,w,1 € S” are also linearly independent over S in S”, a contradiction to b). — The

method applied here is to reduce the problem to the noetherian case is also known as noetherization of a problem.)

S1A.22 We record the following important corollary of the Theorem in Supp S1A.21 b):

Let R be a commutative ring # 0 and V an R-module with a generating system x;, i € I, and W be a free submodule of
V. Then RankgW < |I|. (Proof: If I is finite, then the assertion follows from directly from the Supplement S1A.21 b).
Now, assume that [ is infinite and y;, j € J, be a R-basis of W. Then for every j € J, there exists a finite subset /()
of I such that y; € ¥c/(j) Rx;. The map j — I(j), from J into the set P¢(/) of finite subsets / has finite fibres by
Supplement S1A.21 b) and hence it follows that RankgW = |J| < |PB¢(1)| = |1]. )

S1A.23 We prove the following general theorem on the invariance of ranks :

Let @ : R — S be a homomorphism of rings. If every free S-module has a rank, then every free R-module also has a rank.
(Proof : In view of the Theorem in Supplement S1A.19 a), we have to show that: If m,n € IN are such that R" = R",
then m = n. Suppose that f: R* — R™ and g: R™ — R" are R-isomorphism which are inverses of each other, which
are described by the matrices 2 = (a;;) € M, ,(R°P) and B = (bjx) € M, (R°P), see Supplement S1A.5 c). Then the
product matrices beschreiben die Produktmatrizen B2 € M,,(A) and 2AB € M,,(A) describe the compositions go f =
idg» resp. fog = idgn, and hence are the unit matrices €, resp. €,,. Then the @-images @(A) = (¢(a;j)) € My, (S °P)
and @(B) = (@(bjr)) € My, (S °P) describe S-isomorphisms which are inverses of each other §” — §™ resp. §" — S".
Therefore, by hypothesis on S, it follows that m = n. )
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— Remark : The theory of rings is essentially the theory of modules over rings, where as in the commutative algebra
all modules over noetherian commutative rings are considered. On the other hand, in the linear algebra most part is
occupied with linear maps between free modules and thereby in particular, with the structure of linear maps between
vector spaces (which are free by the Theorem on the existence of bases, see Supplement S1A.13 f)). In the case of
fields, it comes along with the groups of homomorphisms Homg (V,W) which are even K-vector spaces.

S1A.24 (Rank of arbitrary modules over integral domains) Let R be an integral domain, V an
arbitrary R-module and x;, i € I, be a linearly independent system of elements of V. Then, obviously, a;x;, i € I, is also
a linearly independent system in V for every (a;) € R/ witha; #0,i € I.

The set of linearly independent subsets of V is inductively ordered by the natural inclusion and hence by Zorn’s Lemma
every linearly independent subset of V is contained in a maximal linearly independent subset of V. Therefore, if
yj, J €J,1s an arbitrary linearly independent system in V for every y; there exists a non-trivial relation in the x;, i € I,
and y;, i.e. there exista; € R, a; # 0, with a;y; € F := Y ;c; Rx;. Now, a;y;, j € J, are linearly independent and hence
generate a free submodule of F of the rank |J|. Therefore by Supplement S1A.22 |J| < RankgF = |I|. It follows
trivially that any two maximal linearly independent system of elements in V have the same cardinality. This common
cardinality is called the rank of V over R and also denote it by Rankg V. If V is a free R-module, then this is
same as already defined rank of V as a free R-module. If W is a submodule of V, then Rankg W < Rankg V. If W is a
submodule of V and if for every y € V, there exists an a € R, a # 0, with ay € W, then even Rankg W = Rankg V/, since
every maximal linearly independent system in W also such a system in V. The R-modules of rank O are precisely the
torsion modules over R. ) . .

Es sei bemerkt, daAa man den hier eingefA Ahrten allgemeinen Rangbegriff durch Agbergang zum QuotientenkaAlrper

von A leicht auf den Dimensionsbegriff bei VektorraAdumen ZurAAckaAhren kann, vgl. Teil 2, §51, Beispiel 11.

S1A.25 Let R be a ring and V be a free R-module of infinite rank. Then
|V| = |R|-Rankg V = Sup{|R|, Rankg V } .

(Proof: Let x;,i € I, be a R-basis of V. Then |I| = RankgV. We have to show that V and R x I have the same
cardinality. By we have the equality |R|-|I| = Sup{|A|,||}. Let Ry := R~ {0}. If R is finite, then |R x I| = |I| and
|Ry x I| = |I| by If R is infinite, then |R| = |R;|. In any case, |R X I| = |R; x I|. The map (a, i) — ax; from R} x I into V
is injective. It follows that |[R x I| = |R; x I| < |[V].

Nach 7.6 besitzt die unendliche Menge A x I dieselbe MaAdchtigkeit wie die Menge (A x I) der endlichen Teilmengen
von A x I. Die Abbildung E — ¥, ;cg ax; von €(A x I) in V ist aber surjektiv, woraus [A x I| = |€(A x I)| > |V folgt.

Beide Ungleichungen zusammen ergeben mit dem Bernsteinschen Ajquivalenzsatz die Gleichheit |Ax1I|=|V|.

— Note that DimgR = DimgC = X; in words : The cardinality of the Hamel’s basis of R and C over Q are equal to
the cardinality of the continuums. Since |Q| < |R| = |C| = X, the assertion follows directly from Supplement S1A.25.)

S1A.26 Let R be a non-zero ring and let / be an infinite indexed set. For every i € [, let e; be the /-tuple
(5,']')]'61 S R! with 5,']' =1 for J:l and 5ij =0 for ]7& i

a) The family e;, i € I, is a minimal generating system for the left-ideal R") in the ring R’. In particular,
RY is not finitely generated ideal.

0..1 Remark Submodules of finitely generated modules need not be finitely generated!

b) There exists a generating system for RY) as an R’—module that does not contain any minimal generating system.
Hint: First consider the case I = IN and the tuples eg+---+e,,n € IN.

S1A.27 Let R be a commutative ring. Then the R-module R is always torsion-free. More generally, every free
R-module is torsion-free.

(a) Direct sum of torsion-modules is again a torsion-module. A submodule of a torsion-module is a torsion-module.

(b) Direct product of torsion-free modules is again a torsion-free module. A submodule of a torsion-free module is a
torsion-free module.

(¢) In an abelian group (in any Z-module) torsion-elements are precisely the set of elements of positive order. The
Z-module @ is torsion-free. Every finite abelian group if a Z-torsion module. For n € IN*| let Z,, denote a cyclic
group of order n. Then the direct product [],cn+Zn of the Z-torsion modules Z,, n € IN*, is not Z-torsion module.

S1A.28 Let R be an integral domain with quotient field K. Then :
a) If V is a torsion module over R, then Homg(V,R) = 0.

b) Hompz(K,R) # 0 if and only if R = K. In particular, Hom7(Q,Z) = 0. (Hint : Every element f € Homg(K,R)
is a homothecy of K by the element f(1).)

a) If K is an arbitrary direct sum of finite R-submodules, then R = K.

S1A.29 (Maximal submodules) LetR be a commutative ring and let V be an R-module. Then maximal
elements (with respect to the natural inclusion) in the set Sg(V) of all R—submodules of V are called maximal
R-submodules of V. Maximal R- submodules of the R-module R are precisely are maximal ideals in R. Let W
be a maximal R-submodule of V and let x € V,x ¢ W. Then W # W + Rx and by the maximality of W, we have the
equality W 4+ Rx = V. Therefore W is a cofinite R-submodule in the sense of the following definition :

D P Patial/TIQ~ SNTTZMA MA2B1D ~a crimmNT +av NAaveambhear 950 95017 - 11-ED A ;- Y ikl



Page 10 MA 312 Commutative Algebra / Aug—-Dec 2017 Supplement 1A A

An R-submodule W of V is called cofinite if there exists finitely many elements xi,...,x, € V such that V =
W + Rx;| + - - - + Rx,,. Equivalently, the quotient R-module V /W is finitely generated.

If W is a cofinite R-submodule of V, then every R-submodule W’ with W C W’/ C V is also cofinite. Every R-
submodule of a finite R-module is cofinite. Note that in any R-module V cofinite R-submodules different from V exists
if V. has maximal submodules.

a) Prove the converse : Let W be a cofinite R-submodule of an R-module V' with W # V. Then there exists a maximal
R-submodule of V' which contain W. In particular, in a finite non-zero R-module V there are maximal R-submodules.

b) Use a) to deduce the (Krull’s Theorem): Let R be aring and let a be an ideal in R with a # R. Then there
exists a maximal ideal m in R with a C m C R. In particular, in every non-zero ring, there are maximal left-ideals.

S1A.30 Let R be aring and let V # 0 be an R-module. If R, does not have maximal submodules, then R does not
have a minimal generating system. (Hint: If x;,i € I is a minimal generating system for V, then I # 0. Let ip € I and
W = Yien {ioy Axi- Then W is a cofinite submodule of V' and hence V' has maximal submodules.)

S1A.31 (Jacobson-radical) Let R be a commutative ring. The intersection of all maximal ideals of R is called
the Jacobson-radical of R and is denoted by mg. Note that mg # R if and only if there exists a maximal ideal in
R. Equivalently, R # 0.

a) Let V be an R-module and let U be a cofinite submodule of V. If V = U 4+ mV for all maximal ideals m of R, then
V=U.

b) Let R be a commutative ring and V be a finite R-module. If V = mV for all maximal ideals m of R, then V = 0.
(Apply a) with U :=0.)

¢) (Lemma of Krull-Nakayama) Let R be a commutative ring and a be an ideal in R. Then the following
statements are equivalent:

(1) a Cmg.

(i) For every R-module V and every cofinite submodule U of V the implication holds: If V. =U 4 aV, then V =U.

S1A.32 (Simple modules) LetR a(commutative) ring # 0. An R-module V is called simple, if V 7 0 and
the only submodules of V are the trivial submodules 0 and V.

a) For an R-module V, the following statements are equivalent: (i) V is simple. (ii) Every homomorphism V — W of
R-modules is either a zero-homomorphism or injective. (iii) V = Rx for every x € V ~. {0}. (iv) V is isomorphic to a
residue-class module R/a, where a is a maximal ideal in R.

b) Let V be simple R-module. Then the annihilator ideal AnngV of V is the intersection of the maximal ideals Anngx,
xeV~ {0}

S1A.33 Let f: V — W be a homomorphism of R-modules.
a) For a submodule U CV, itis f~!(f(U)) = U +Ker f and

U/(UnNKerf) == (U+Kerf)/Kerf == f(U).
b) If f surjective, then the maps U + f(U) and X ~ f~!(X) are inverse maps of each other between the set of
submodules U of V containing Ker f and the set of all submodules X of W.
¢) Let V and W be simple R-modules, see Exercise S1A.32. Then every R-homomorphism V — W is either the
zero-homomorphism or an isomorphism. In particular, EndgV is a division domain (Lemma of (Issai) Schur).
d) If R is commutative, then the modules R/m, m € SpmR, up to isomorphism, are the only simple R-modules and
distinct maximal ideals of R define non-isomorphic simple R-modules. (Remark : Note that Anng(R/m) = m. — The

classification of the simple modules over non-commutative rings is complicated. A local ring R with Jacobson-radical
mg has the residue-class division domain R/mg (as R-module), up to isomorphism, are the only simple R-modules.)

e) If V is a K-vector space, V # 0, then V is a simple EndgV-module, see Example S1.?7? The endomorphisms of V as
EndgV-module are the homothecies 9, a € K, of V. Therefore Endg,g,vV = K the image of the action homomorphism
U¥: K — EndV.

Let V be a module over the ring R and U C V be a submodule of V. Recall that, by definition, U is a direct
summand of V if U has a module complement W CV,ie. V=U®W.

a) U is a direct summand of V if and only if there exists a projection p € EndgV with Imp = U. In this case,
V=U®W with W :=Kerp, p= pyw is called the projection onto U along W, and the complementary
projection g = gqy,w = idy —py,w = pwy is the projection along U onto W.

b) If R = K is a division domain, then every subspace U C V has a complement.

¢) Let W be a complement of U. Then the map f — I'y = {f(y)+y|y €W} CV is abijective map from Homg(W,U)
onto the set of all complements of U in V.

S1A.34 (Indecomposable Modules) LetV be an R-module over the ring R # 0. We say thatV is inde-
composableor irreducible, if V # 0 and there is no direct sum decomposition V = U & W with submodules
U#0#WofV.

a) V indecomposable if and only if V # 0 and the endomorphism ring EndzV has no non-trivial idempotent elements.
Every simple R-module is indecomposable. Give an example of a indecomposable module which is not simple. The
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R-(left- or right-)module R is indecomposable if and only if the ring R has no non-trivial idempotent elements. (Note
the explicit distinction of this with the indecomposability of R as ring. This is equivalent to that R has no non-trivial
central idempotent elements.)

b) The only indecomposable vector spaces over a division domain K are the 1 dimensional vector spaces. (In general
it is difficult — if not impossible, to classify the indecomposable modules over a given ring R. The finitely generated
indecomposable abelian groups (= Z-modules) are precisely the cyclic groups Z = Zg and Z,«, p € P, o« € IN*. This
is the substantial part of the main theorem the finitely generated abelian groups. However, there are many more
indecomposable abelian groups, for example, all non-zero subgroups of Q = (Q, +) are indecomposable and similarly,
all Priifer’s p-groups 1(p), p € P, are also indecomposable. Every abelian p-group with 1-dimensional (i.e. non-zero
cyclic) p-socal is indecomposable. Up to isomorphism these are precisely the groups Z,«, oo € IN*, and I(p). Why?)

S1A.35 Aring R # 0 is a division domain if and only if all R-(left-) modules (or if all R-right modules) are free.

S1A.36 Let V be a module over the local ring R with the Jacobson-radical mg and v;, i € I, be a family of elements in
V.

a) If v;, i € I, is a generating system of V, then v;, i € I, is minimal if and only if Syzg(v;,i € I) C mRR(I). In this case
(Note that R* = R~ mg), the residue-classes [v;] € V/mgV, i € I, form a (R/mg)-basis of V/mgV, and it follows

(V) = [I] = Dig  (V/meV).
In particular, for every finite R-module V, we have tg(V) = Dimg /n, (V/mgV) and V = 0 if and only if V = mgV ist.

b) If U CV is a submodule of V such that the residue-class module V/U is finite and if V. = U +mgV, then V =U
(Lemma of Nakayama). (Since V/U = mg(V/U), it follows V/U = 0.) If V is finite, then the elements v;, i € I,
generates V if and only if their residue-classes generates the vector space V/mgV.

S1A.37 Let R be aring # 0.
a) If R" = R™t1 (as R-modules) for a natural number m € IN, then R™ 22 R" for all n > m.

b) Elements x,y € R form a basis of the R-module R if and only if there exist elements a,b € R such that (1) ax+by=1,
2) xa=1, 3 xb=0, (4) ya=0und (5) yb=1. (In the matrix notation

coa(p)=m. (5w a=(p 9).

where all matrices are considered over the opposite ring A°P.)

c¢) Let Bbe aring # 0 and V be an B-module # 0 with V =V §V (e.g. a free B-module with infinite basis). Then there
exist elements a, b, x,y in the endomorphism ring R := EndgV satisfying the equations (1) to (5) in b). In particular,
the finite free R-modules does not have rank. (Describe the isomorphisms V =5V @&V and V @&V =% V which are
inverses to each other by matrices with coefficients in the ring EndgV.)

S1A.38 Let V be an additive abelian group. Then V is the additive group of a Q-vector space if and only if V is torsion
free and divisible. Moreover, in this case, the Q-vector space structure on V' is uniquely determined. (Hint: For

a,b € Z,b#0,itis 0, = 0,0, ' =0, ' 9.
If V,W are arbitrary torsion free and divisible abelian groups, then Hom(V,W) = Homz(V,W) = Homq(V,W). (Hint :

If V torsion free and divisible, then the characteristic homomorphism 7Z — EndV maps the Z* into AutV and hence it
can be extended to a unique ring homorphism Q — End V.)

Therefore, up to isomorphism, the torsion free and divisible abelian groups are precisely the direct sums Q, 1 arbitrary

set. Since \QU )| = |I| for infinite sets , it follows, in particular, that two uncountable torsion free and divisible abelian
groups are isomorphic if and only if they have the same cardinality. For example, the additive groups of the R-vector

spaces R”, n € IN*, as well as R™ and RN are all isomorphic to each other.
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