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S u p p l e m e n t 4
D i r e c t S u m s a n d D i r e c t P r o d u c t s — I d e m p o t e n t E n d o m o r p h i s m s

S4.1 ( D i r e c t p r o d u c t r e p r e s e n t a t i o n s o f r i n g s ) Let B i, i∈ I, be a family of rings, B :=
∏ i∈I B i its direct product and let π i : B→B i, i∈ I, be the canonical projections. For an arbitrary ring A ,
the map ϕ 7→ (π iϕ) i∈I from Hom(A ,B) into ∏ i∈I Hom(A ,B i) is bijective. If ϕ i : A→B i is a family of
ring homomorphisms, then this family is called a r e p r e s e n t a t i o n o f A a s a ( d i r e c t ) p r o d u c t
o f t h e r i n g s B i, i∈ I, if the corresponding ring homomorphism ϕ : A→∏ i∈I B i with ϕ i = π iϕ is an
isomorphism. In this case, all the ϕ i, i∈ I, are necessarily surjective.
From now on we discuss representations of a ring as finite products.

4.S.1 Theorem A finite family ϕ i, i∈I, of surjective ring homomorphisms ϕ i : A→ B i represents A as direct
product of the rings B i, i∈ I, if and only if the two-sided ideals a i := Kerϕ i satisfy the two conditions : (1)
a i +aj = A for all i 6= j and (2)

⋂
i∈I a i = 0 .

Proof Let B := ∏ i∈I B i and let ϕ : A→B be the homomorphism with ϕ i = π iϕ for i∈ I. Then ϕ (a) =
(ϕ i(a)) i∈I for all a ∈A , and hence Kerϕ =

⋂
i∈I a i. Therefore ϕ is injective if and only if (2) holds. — Now

we show that the surjectivity of ϕ is equivalent to (1). Suppose that ϕ is surjective and let i, j ∈ I with i 6= j.
By hypothesis on ϕ , there exists an a∈A such that ϕ i(a) = 0 and ϕ j(a) = 1. Then a ∈ a i and 1−a ∈aj ,
and so 1 = a+(1−a) ∈ a i +aj. It follows that a i +aj = A . Conversely, suppose that (1) is fulfilled. Then

a i +
⋂

j 6=i
aj = A for every i∈ I .

To prove this formula, it is enough to show: If a ,b ,c are two-sided ideals in A with a+ b = A and
a+ c= A, then a+(b∩ c) = A . But, if a ′+b =1 and a ′′+ c =1 with elements a ′,a ′′ ∈a , b ∈b , c ∈c , then
1 = (a ′+b)(a ′′+ c) = (a ′a ′′+a ′c+ba ′′)+bc ∈ a+(b∩ c) . (Note that even a+bc= A . ) By the formula
just proven, there is a representation 1= a i+d i with a i ∈ a i and d i ∈

⋂
j 6=i aj . Therefore ϕ i(d i)=ϕ i(1−a i)=

ϕ i(1)−ϕ i(a i)=1−0=1 and ϕ j (d i) = 0 for j 6= i , and we have ϕ (d i) = (ϕ j (d i))j∈I = (δ i j ·1B j)j∈I , where
δ ij is the Kronecker symbol. Now, if b i ∈A , i∈ I, are arbitrary, then, for a := ∑ i∈I b i d i ∈A,

ϕ (a) = ∑
i∈I

ϕ (b i)ϕ (d i) = ∑
i∈I

(
ϕ j (b i)

)
j∈I · (δ ij ·1B j)j∈I =

(
ϕ j(bj)

)
j∈I .

This proves that ϕ is surjective. •
Two two-sided ideals a , b in a ring A are called c o m a x i m a l (or c o p r i m e) i d e a l s if a+b = A .
With this concept, condition (1) in 4.S.1 can be reformulated as follows: The two-sided ideals a i, i∈ I,
are pairwise comaximal. By the way, if a,b are comaximal two-sided ideals in A, then a∩b = ab+ba
and, in particular, a∩ b = ab if A is commutative. For, if 1 = a+ b, a ∈ a, b ∈ b and c ∈ a∩ b, then
c = 1 · c = (a+b)c = ac+bc ∈ ab+ba.

4.S.2 Solving Simultaneous Congruences Let a i, i∈ I, be a finite family of pairwise comaximal two-sided
ideals in a ring A. For every family a i, i∈ I, of elements a i ∈ A, there exists an a ∈A such that

a≡ ai mod a i , i∈ I .

Moreover, any two solutions of these simultaneous congruences are congruent modulo the two-sided ideal⋂
i∈I a i.

Proof Let a :=
⋂

i∈I a i. The canonical projections A→A/a i induce surjective homomorphisms ϕ i :A/a→
A/a i . By Theorem 4.S.1, the ϕ i , i∈ I, define a representation of the ring A/a as the direct product of the
family A/a i, i∈ I. But, congruences modulo a i/a in A/a are congruences modulo a i in A . •
For the ring Z , Theorem 4.S.2 is the Chinese Remainder Theorem. For this reason its generalization given in
4.S.2 is also called the ( g e n e r a l i s e d ) C h i n e s e R e m a i n d e r T h e o r e m.
Under the assumptions of Theorem 4.S.1, B i is canonically isomorphic to A/a i and therefore ∏ i∈I B i is
canonically isomorphic to ∏ i∈I A/a i. Therefore all finite product representations of A are, up to canonical
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isomorphisms, obtained by finite families of quotient maps A→ A/a i, where the two-sided ideals a i satisfy
the conditions (1) and (2) of Theorem 4.S.1. The set of these direct product representations of A can also be
described with the help of central idempotent elements in A .

4.S.3 Theorem Let A be a ring and let I be a finite index set. The map defined by

(ei) i∈I 7→ (a i) i∈I with a i := ∑ j 6= i Aej = A(1− ei)

is a bijection from the set of the families (ei) i∈I of idempotent elements ei ∈ A which satisfy the conditions :
(1) ei ∈ Z(A) , (2) ei ej = δ ij ei , (3) ∑ i∈I ei = 1; onto the set of families (a i) i∈I of two-sided ideals in A
which satisfy conditions (1) and (2) of Theorem 4.S.1.

Proof Let (ei) be a family of idempotent elements in A with the given properties. The associated ideals a i
are two-sided since ei ∈ Z(A). Moreover, they are pairwise comaximal since, for i 6= j , 1= ∑r∈I er ∈ a i +aj
and hence a i + aj = A . Further, since 1− ei = ∑ j6=i ej and ej = ej (1− ei) for all j 6= i, it follows that
∑ j 6= i Aej = A(1−ei). Finally, consider an element a ∈ a :=

⋂
i∈I a i. Since a ∈ a i , there exists a b i ∈ A such

that a = b i (1−ei). It follows aei = b i (1−ei)ei = 0 and a = a ·1 = a ∑ i ei = ∑ i aei = 0. This proves a= 0.

Conversely, let (a i) be a family of two-sided ideals which satisfy the conditions (1) and (2) in 4.S.1. By 4.S.1,
the canonical homomorphism A→ B := ∏ i∈I A/a i is an isomorphism. The elements of B with 1 as one of
its components and 0 as the remaining components form a family of central idempotent elements in B with
properties (1), (2) and (3), and the inverse of the isomorphism A→ B maps this family onto a family (ei),
i ∈ I, in A with the same properties. This map (a i) 7→ (ei) is the inverse of the map in 4.S.3. •
A non-zero ring which is not isomorphic to a product of two non-zero rings is called i n d e c o m p o s a b l e
or c o n n e c t e d . The above discussion yields:

4.S.4 Corollary For a non-zero-ring A the following statements are equivalent:

(i) A is indecomposable.
(ii) There are no non-trivial two-sided comaximal ideals a and b in A with a ∩b= 0 .
(iii) The center Z(A) of A is indecomposable.
(iv) 0 and 1 are the only central idempotent elements in A.

One has to distinguish between indecomposable rings and simple rings, see Example ??. Every simple ring is
indecomposable. Every integral domain is an indecomposable ring, but a simple ring only in case it is a field.

S4.2 ( S i m p l e r i n g s ) A ring A is called s i m p l e if A is not the zero ring and if the trivial ideals 0 and
A are the only (two-sided) ideals of A . A non-zero ring A is simple if and only if every ring homomorphism
A→ B of A into a non-zero ring B is injective. Division domains are simple rings. Furthermore :

4.S.5 Proposition For a two-sided ideal a in a ring A, the following conditions are equivalent: (i) A/a is a
simple ring. (ii) a is a maximal two-sided ideal in A. — A non-zero ring A has residue class rings which are
simple rings. In other words, there exist surjective homomorphisms from the ring A 6= 0 onto simple rings.

A commutative ring is simple if and only if it is a field. Simple rings which are no division domains are, for
instance, the rings Mn(K) , of n×n -matrices over a division domain K, n≥ 2, see ???.

S4.3 ( D i r e c t s u m d e c o m p o s i t i o n s o f m o d u l e s )
The decomposition of modules into direct sums of submodules is described in the following theorem with the
help of endomorphisms.

4.S.6 Theorem Let A be a ring, V be an A-module and I be a set. The map defined by
(Pi)i∈I 7→ (ImgPi)i∈I

is a bijection from the set of families (Pi)i∈I of endomorphisms Pi ∈ End AV with the properties: (1)
PiPj = δi jPi for all i, j ∈ I, (2) (Pi)i∈I is summable, and ∑i∈I Pi = 1(= idV ); onto the set of the families
(Vi)i∈I of submodules Vi of V with V =

⊕
i∈I Vi.

Proof Let (Pi)i∈I be a family of endomorphisms Pi ∈ End AV which satisfy the properties (1) and (2). Since
PiPj = 0 for i 6= j and (P2

i =)PiPi = Pi for every i ∈ I, i.e. Pi vanish on ImgPj, if i 6= j, and the restriction of
Pi onto ImgPi is the identity. Therefore, since the sum of the submodules ImgPi in V is direct. Namely, if
∑i∈I xi = 0 with elements xi ∈ ImgPi, with xi = 0 for almost all i ∈ I; then for every j ∈ I, we have

0 = Pj

(
∑
i∈I

xi

)
= ∑

i∈I
Pj(xi) = Pj(x j) = x j .
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Now it follows from (2) that V is also the direct sum of the submodules ImgPi. Namely, for x ∈V , we have
x = idV (x) =

(
∑
i∈I

Pi

)
(x) = ∑

i∈I
Pi(x) .

Altogether, we have proved V =
⊕

i∈I ImgPi . Since Pi satisfy the property (1), they are uniquely determined on
the subset E :=

⋃
i∈I ImgPi; and E is is a generating system of V , it follows that the map (Pi)i∈I 7→ (ImgPi)i∈I

is injective.
Finally, we need to prove that this map is surjective. For this let (Vi)i∈I be a given family of submodules of V
with V =

⊕
i∈I Vi. If x ∈V , then x has a unique representation x = ∑i∈I xi with uniquely determined elements

xi ∈Vi, where xi = 0 for almost all i ∈ I. Therefore the maps Pi : V →V , x 7→ xi, i ∈ I, are well-defined. These
maps are obviously, A-linear and Pi(x) = 0 for almost all i ∈ I. This proves that (Pi) is a summable family of
endomorphisms of V . Further, clearly ImgPi =Vi, and (1) is satisfied for the family (Pi)i∈I . Since

x = ∑
i∈I

xi = ∑
i∈I

Pi(x) =
(
∑
i∈I

Pi

)
(x) .

it follows that ∑i∈I Pi = idV . Therefore the condition (2) is also satisfied for (Pi)i∈I . The image of this family
is the given family (Vi)i∈I . •
4.S.7 Definition Let V be a module over the ring A. An A-endomorphism P : V →V of V with P2 = P is
called a p r o j e c t i o n of V . Therefore, the projections of an A-module V are precisely idempotent elements
of the endomorphism ring End AV of V .

Altogether, with this, in the case, I = {1,2}, the Theorem 4.S.6 takes the following form :

4.S.8 Theorem Let A be a ring and V be an A-module. The map
P 7→ (ImgP, KerP)

is a bijection from the set of the projections of V onto the set of pairs (U,W ), where U, W are submodules of
V with V =U⊕W.

For a fixed direct summand U of V , it follows from Theorem 4.S.8 that :

4.S.9 Corollary Let U be a direct summand of the A-module V . Then the set of the omplements of U in V is
the set of the kernels of the projections P of V with ImgP =U.

Let V be an A-module and U,W be submodules of V with V =U⊕W . Then the unique projection P of V
with ImgP =U and KerP =W which exist by Theorem 4.S.6, is called the p r o j e c t i o n o f V o n t o U
a l o n g W . If P is the projection of V onto U along W , then 1−P is the projection of V onto W along U .
The identity of V is the projection of V onto V along 0, and the zero homomorphism is the projection of V
onto 0 along V .
4.S.10 Example ( I n d e c o m p o s a b l e m o d u l e s ) Let V be a module over the ring A. If V 6= 0 and has no direct
summands other than 0 and V , then V is called i n d e c o m p o s a b l e ; otherwise V is called d e c o m p o s a b l e . By
Theorem 4.S.8, V is indecomposable if and only if the endomorphism ring End A V has only trivial idempotent elements
0 and 1 and 0 6= 1 i. A vector space over a division domain is indecomposable if and only if it has dimension 1.

S4.4 ( D i r e c t s u m d e c o m p o s i t i o n s o f r i n g s ) Let A be a ring. The map ρ : Aop→ End A A, a ∈ Aop 7→
ρa = (x 7→ xa), is an isomorphism of rings. The map A→ End A A, a 7→ ρa is anti-isomorphism of rings. Therefore the
projections of the A-module A are the endomorphisms x 7→ xe of A, where e ∈ A is idempotent. Further, we have the
following assertion :

4.S.11 Theorem Let A be a ring and I be a finite index set. The map defined by
(ei)i∈I 7→ (Aei)i∈I

is a bijection from the set of the families (ei)i∈I of elements ei ∈ A which satisfy the conditions eie j = δi jei and
∑i∈I ei = 1 onto the set of families (ai)i∈I of left-ideals ai ⊆ A which satisfy the condition A =

⊕
i∈I ai.

The following simple exercise shows that it is not necessary to assume that the indexed set is finite.

4.S.12 Exercise Let V be a finite module over a ring. If V is a direct sum of submodules Vi, i ∈ I, then Vi = 0 for
almost all i ∈ I.

The A-module A is decomposable if and only if A 6= 0 and there exists a non-trivial (6= 0, 1) idempotent element in A. If
A is a domain, then A is always indecomposable, namely, if e ∈ A is idempotent, then e(1− e) = e− e2 = 0, and hence
e = 0 or 1− e = 0.

4.S.13 Remark In 33.7 we have described direct product representations of a ring A using the families (ei) of central
idempotent elements in A. If one forgets the multiplicative structure structure of the ring A, then one acquires a special
direct product decomposition of the A-module A which can be formulated as direct sum decomposition of type as
in Theorem 4.S.11 (with minor description of the ideals ai). Note that in the application of families of idempotent
elements both these situations need to be distinguished.

D. P. Patil/IISc 2017MA-MA312-ca-supp04.tex November 20, 2017 ; 12:00 p.m. 3/4



Page 4 MA 312 Commutative Algebra / Aug–Dec 2017 Supplement 4

We still investigate the complements of left-ideals. By Theorem 4.S.8, a left-ideal a in A has a complement if and
only if a= Ae for some idempotent element e ∈ A; with corresponding complement A(1− e). One can then ask when
exactly there is only one element e with this property.

4.S.14 Theorem Let a ebe a left-ideal in A. Then the following statements are equivalent:

(1) a has only one complement in A.
(2) a= Ae with one and only one idempotent element e ∈ A.
(3) There exists a two-sided ideal b in A with A = a⊕b.
(4) A = a⊕Ann A a.

Proof By Theorem 4.S.8 and Corollary 4.S.9 (1) and (2) are equivalent. For every two-sided ideal b in A with a∩b= 0
ist ba⊆ a∩b= 0, and hence b⊆ Ann A a. If, further c is another complement of a in A, then 1 = a+ c with elements
a ∈ a and c ∈ c, d = d ·1 = da+dc = dc ∈ c for every d ∈ Ann A a, and so : Ann A a⊆ c. This proves the implications
(3)⇔ (4) and (4)⇒ (1). Now we only need to prove (2)⇔ (4). For this under the hypothesis of (2), it is enough
to prove that A(1− e) ⊆ Ann A a, or equivalently (1− e)a = 0. For this, let a ∈ A be arbitrary and b := (1− e)ae; it
remains to show b = 0. It is easy to check that e′ := e−b and Ae = Ae′, and it follows that e = e′ by (2) and b = 0. •
4.S.15 Corollary Let a be a left-ideal in the ring A. If a= Ae with a central idempotent element e, then this is the only
idempotent element which generate the ideal a, and Ann A a= A(1− e) is the only complement of a in A.

4.S.16 Corollary In a commutative ring A, an ideal a which is a direct summand of A is generated by a unique
idempotent element e and has a unique complement, namely Ann A a= A(1− e).

S4.5 We prove the following structure theorem for commutative artinian rings :

4.S.17 Theorem ( D e c o m p o s i t i o n T h e o r e m f o r c o m m u t a t i v e a r t i n i a n r i n g s ) Let A be a commu-
tative artinain ring. Then A is a direct product of unique artinian commutative local rings which are indecomposable
and uniquely ordered by the maximal ideals of A. — If A is reduced, then these local rings are fields.

— The local direct factors of the artinian commutative ring A are called the l o c a l c o m p o n e n t s or t h e l o c a l
f a c t o r s of A.
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